Randomly Coloring Graphs of Girth at Least Five

[Extended Abstract] *

Thomas P. Hayes
University of Chicago
1100 East 58th Street
Chicago, lllinois 60637

hayest@cs.uchicago.edu

ABSTRACT

We improve rapid mixing results for the simple Glauber
dynamics designed to generate a random k-coloring of a
bounded-degree graph.

Let G be a graph with maximum degree A = Q(logn), and
girth > 5. We prove that if kK > a/A, where a &= 1.763 then
Glauber dynamics has mixing time O(nlogn). If girth(G)>
6 and k > BA, where 8 =~ 1.489 then Glauber dynamics
has mixing time O(nlogn). This improves a recent result of
Molloy, who proved the same conclusion under the stronger
assumptions that A = Q(logn) and girth Q(log A). Our
work suggests that rapid mixing results for high girth and
degree graphs may extend to general graphs.

Analogous results hold for random graphs of average de-
gree up to n'/*, compared with polylog(n), which was the
best previously known.

Some of our proofs rely on a new Chernoff-Hoeffding type
bound, which only requires the random variables to be well-
behaved with high probability. This tail inequality may be
of independent interest.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory— Graph al-
gorithms; G.3 [Probability and Statistics|: [Markov pro-
cesses, Probabilistic algorithms (including Monte Carlo)];
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory.

Keywords

Glauber dynamics, graph coloring, Markov chain Monte Carlo,

*A full version of this article is available on the author’s
website at www.cs.uchicago.edu/~hayest/papers.

Permission to make digital or hard copies of all or part of this work for

posterior analysis, Chernoff bounds, concentration inequal-
ities.

1. INTRODUCTION

The Glauber dynamics for randomly coloring graphs has
attracted considerable attention in a variety of fields, includ-
ing combinatorics [1], computer science [9], and statistical
physics [13]. The dynamics is a simple Markov chain whose
stationary distribution is uniformly distributed over proper
k-colorings of a bounded degree graph. For algorithmic pur-
poses we want to upper bound the rate of convergence to sta-
tionarity. This would give an efficient method to simulate
the associated Gibbs distribution in physics [13], and an ap-
proximation algorithm for the corresponding #P-complete
counting problem [9, 10].

We will specifically examine the “heat bath” version of
Glauber dynamics, in which, starting from a given k-coloring
of the graph G = (V, E), at each step, a vertex is selected
at random, and its color changed to a random color not
taken by a neighboring vertex. It is well-known that this
Markov chain is ergodic when & > A + 1, where A is the
maximum degree of the graph. By “mixing time,” we will
mean the number of steps until the distribution is within
total variation distance 1/2 of the stationary distribution.
The chain is said to be “rapidly mixing” if the mixing time
is polynomial in the size of G. It is clear that the mixing
time must be Q(nlogn), since every vertex must be colored
at least once. The outstanding conjecture in the area is that
the mixing time is also O(nlogn) for all k > A + 1. So far,
we seem very far from the answer.

Jerrum [9] showed that, when k > 2A, the mixing time is
O(nlogn). His proof uses the coupling method, which has
recently enjoyed many successful applications in theoretical
computer science, e.g., [2, 5, 6, 8, 9, 11, 14].

Remarkably, Vigoda [14] showed that, when k& > 11A/6,
the mixing time is O(n?logn), by comparing Glauber dy-
namics to a related, somewhat more complicated Markov
chain. So far, no direct analysis of Glauber dynamics has
been able to match this result for general graphs.

Whereas Jerrum [9] and Vigoda [14] analyze coupling in
a worst case situation, Dyer and Frieze [5] avoid the worst
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girth assumption forces dependencies to be “communicated”
through long paths, effectively postponing them until after
the time of interest. When the maximum degree is Q(log n),
and the girth is Q2(log A), Dyer and Frieze proved the mixing
time is O(nlogn) for k > 1.763A. The constant was sub-
sequently improved to 1.489 by Molloy [11]. These results
also apply with high probability to random graphs with edge
density logn®® /n.

Main Contributions

We extend the results of Dyer and Frieze and Molloy to a
much broader class of graphs, by reducing the girth require-
ment to a constant. We will use the following notation.

Let o* = 1.763... denote the root of ze /* = 1, and
let 8* = 1.489... denote the positive root of (1 —e™/*)2 4
ze 1/* = 1. Let G be a graph on n vertices having maximum
degree A and girth g.

THEOREM 1. For every a > o, there exists C' such that
if A > Clogn, g > 5, and k > aA, then the Glauber dy-
namics for k-coloring G has mizing time O(nlogn).

THEOREM 2. For every 3 > (3%, there exists C' such that
if A > Clogn, g > 6, and k > BA, then the Glauber dy-
namics for k-coloring G has mizing time O(nlogn).

These results may be considered evidence that the “Dyer
and Frieze approach” can be extended to general graphs:
previous work by Dyer, Greenhill, and Molloy [6] suggests
that very short cycles are not an obstacle to rapid mixing;
also, the degree requirement seems to be an artifact of our
method of applying Chernoff’s bound, rather than an essen-
tial feature of the Markov chain.

The effect of our improved girth requirements is quite no-
ticeable in the application to random graphs, which now
handles graphs of average degree up to n'/*, compared with
the polylog(n) which was previously known.

THEOREM 3. For every a > «* and 3 > 3%, there exists
C such that, if G is a random graph on n vertices whose
edges are included independently with probability p, then with
probability 1 — 1/poly(n),

1. ifk > apn, and pn € (Clogn, Cilnl/‘l), then Glauber
dynamics for k-coloring G has mizing time O(nlogn).

2. if k > Bpn, and pn € (C'logn, C’flnl/E’), then Glauber
dynamics for k-coloring G has mizing time O(nlogn).

The same conclusions hold when pn is an integer and G is
uniformly selected from the set of reqular graphs of degree
pn.

Overview

Our approach is closely related to that of Dyer and Frieze [5]
and Molloy [11], in that our primary goal is to prove that
after an initial “burn in” period (allowing most vertices
to be recolored at least once), the colorings generated by
Glauber dynamics are, with high probability, “locally uni-
form” (made precise below). This local uniformity allows us
to discount certain unfavorable configurations which might
delay convergence of the chain.

The first such uniformity property, studied by Dyer and
Frieze [5], is that the number of distinct colors in the neigh-
borhood of a vertex v is not much more than if all colors

were assigned independently, without regard for legality of
the resulting coloring.

The second uniformity property, studied by Molloy [11], is
that, for every vertex v and pair of colors ¢, ¢, the number of
neighbors of v having at least one neighbor with color ¢ and
one with ¢’ is about the same as if all colors were assigned
independently, without regard for legality.

It is clear that the first local uniformity property fails
to hold when V has large cliques. However, when G is
triangle-free, after enough burn-in time, colorings generated
by Glauber dynamics do have this property with high prob-
ability (see Section 4.1). We conjecture that the amount
of burn-in time required is O(n), which would allow this
property to be used for proofs of rapid mixing. Under the
stronger assumption that G has girth > 5, we are able to
prove this conjecture (see Lemma 5).

Similarly, the second local uniformity property can fail-
for instance, when G contains a complete bipartite subgraph
KAa,a. But when G has girth > 5, the uniformity property
holds in the limit, and when G has girth > 6, it holds after
O(n) steps of Glauber dynamics (see Lemma 30).

Both Dyer and Frieze and Molloy proved their local uni-
formity properties using “paths of disagreement” arguments.
The idea is to condition on the coloring at time t — Cn, and
to use the assumption of large girth to establish that the
colors assigned to neighbors of v at time ¢ are very near to
being fully independent. This is possible because any infor-
mation about the first color assigned to a neighbor would
have to be transmitted either through v, which is a bot-
tleneck, or along a very long path, which is unlikely given
only Cn steps. This method does not seem applicable in the
constant girth setting.

At the heart of our approach is a posterior analysis of the
Glauber dynamics, conditioned on the colors assigned at all
but a few times of interest. By conditioning on more infor-
mation, we gain more independence, at the price of having
to work with slightly more complicated distributions.

The key property is that when the vertices selected at this
time are at minimum distance 3, the conditional distribu-
tion is the product of its marginal distributions, allowing
the application of Chernoff-type bounds. As a consequence,
when girth(G) > 5, if we pretend v does not affect the col-
oring, then, conditioned on the behavior of the rest of the
graph, the colors assigned to the neighbors of v are inde-
pendent. Moreover, it turns out that most of the neighbor
colors are distributed almost uniformly over Q(logn) possi-
bilities. Chernoff-type bounds, together with a key lemma
of Dyer and Frieze [5, Lemma 2.1], allow us to establish
Theorem 1.

One notable feature of the present work, as well as those
of Dyer and Frieze and Molloy, is that the main technical
result, namely establishing local uniformity, has nothing to
do with couplings; the coupling argument is essentially sep-
arate from the proof of local uniformity. However, because
the earlier papers used a path coupling argument, the need
arose to establish local uniformity for intermediate states
which are not sampled from the same distribution, leading
to some subtle technical issues. Our approach avoids these
difficulties by eschewing path coupling in favor of the older
method of general coupling.

Another feature of our work, which may be of independent
interest, is Theorem 27, a generalization of the well-known
tail inequalities of Chernoff, Hoeffding and Azuma (cf. [12,



Chapter 4]), which allows the user to assume some “good”
events occur when establishing the hypotheses. Of course,
there is a penalty for this assumption, which is proportional
to the probability that a “bad” event occurs.

In subsequent work with Eric Vigoda [8], we were able to
improve Molloy’s constant, 1.489, to about 1.483, via analy-
sis of a non-Markovian coupling. Those techniques seem to
be orthogonal to the ones presented here.

Organization of the Paper

Sections 2—5 present a complete proof of Theorem 1. Sec-
tion 2 first introduces essential terminology and notation
used throughout the paper, then states the main technical
lemmas required for Theorem 1. (Almost all are needed for
Theorem 2 as well). Section 3 contains the proof of Theo-
rem 1. Section 4 contains the proof of local uniformity via a
posteriori analysis of Glauber dynamics. Section 5 contains
proofs of the remaining technical results, including (Section
5.3) the general coupling argument.

Section 6 contains a fairly detailed outline of the proof
of Theorem 2, including some of the proofs. Our improved
version of Chernoff’s bound is proved in Section 6.1.

Section 7 contains a brief outline of Theorem 3.

The next subsection can be skipped, but helps motivate
some of the technical notations introduced in Section 2.

The Big Picture

Here is a bird’s eye view of our approach to Theorem 1.
We first require several properties of a random sequence of
vertices, each of which is a relatively straightforward appli-
cation of Chernoff-type inequalities.

LEMMA 4. For every € > 0, there exists C > 0 such that
the following is true. Let G be a graph on n vertices having
mazimum degree A > C'logn and girth > 5. Let t > Cn
be fized. Choose o : [T] — V(G) uniformly at random. Set
v = o(t). For every w € T'(v), let t, = max{t' < t |
o(t') = w} be the last time before t that w was chosen (0
by default). Let T, = {tw <t <t | o(t') € T(w)} be the
times between t,, and t at which neighbors of w are chosen.
Then, with high probability (> 1 —n~*°), there exists a set
N of neighbors of v such that

1. |N| > |I'(v)| — eA.
2. For every w € N, |Ty| < 2eCA.

3. o(t) = v at fewer than €A times t € UpenTw.

It turns out that the conclusions of Lemma 4 are enough to
guarantee the local uniformity property of Dyer and Frieze:

LEMMA 5. The conclusions of Lemma 4 imply that for
a sequence £ = (fo, f1,..., fr), of k-colorings of G chosen
according to Glauber dynamics, for everyt > Cn,

Pr (A(f,t) < ke Bk — 36A) <n '

where A(f,t) = k — #f:(L(c(t))) is the number of colors
“available at time t.”

From this, Theorem 1 follows along the same lines as Jer-
rum’s original proof. Lemmas 4 and 5 will follow from the
more general Lemmas 12 and 11 in the next section.

2. MAIN TECHNICAL LEMMAS

In this section, we present the model, our terminology,
and the main technical lemmas required for the proof of
Theorem 1, presented in Section 3.

We define the most pervasive notation first.

NOTATION 6. G = (V, E) will always denote a graph on n
vertices with maximum degree A. We denote the neighbor
set of a vertex v by I'(v) = {w € V(G) | {v,w} € E}.
When we speak of graph colorings, we shall always mean
k-colorings, where k > A. We will also use the notation
[N]:={1,...,N}, where N is a positive integer.

Before we formally define what we mean by “Glauber dy-
namics,” note that there is an alternative “Metropolis” ver-
sion of Glauber dynamics on graph colorings, with which
this should not be confused (although the mixing times of
these two chains are known to differ by a factor of at most
n in all cases). There are also versions of Glauber dynamics
for sampling from other state spaces.

DEFINITION 7. Glauber dynamics is a random process
which generates a sequence f = (fo, fi,..., fr), where each
fi : V(G) — [k] is a k-coloring of G. fo may be distributed
arbitrarily. Given f;—1, f; is determined by selecting a
vertex v = o(t) uniformly at random, and a color ¢ uni-
formly at random from [k] \ fi—1(T'(v)). f: is defined to
equal f;—1 except at v, where f;(v) = c. We call the vec-
tor f = (fo, f1,..., fr) a coloring sequence drawn according
to Glauber dynamics. We call the corresponding vertex se-
quence, o : [T] — V(QG), the coloring schedule. (Note that
o is just a uniformly random sequence of vertices).

It will sometimes be convenient to think of the coloring
schedule o as being determined before any of the colorings
fi,..., fr. Since o(t) is independent of fo,..., fi—1, this
makes no difference.

As can be seen from the “paths of disagreement” argu-
ment used by Dyer and Frieze, the coloring schedule o can
be a substantial obstacle to the flow of color information
through G. An important example occurs when G is bi-
partite and o alternately recolors the two halves; in this
case, the colors assigned to neighbor sets are completely in-
dependent, a fact which can be exploited to extend Dyer
and Frieze’s result to bipartite graphs with maximum de-
gree Q(logn) (see [7]).

The following “influence sets,” Z and F, will play an im-
portant role in our proof of Theorem 1. These are closely
related to the “epochs” studied by Dyer and Frieze [5].

DEerFINITION 8. Fix a coloring sequence o and a time t.
We denote Z(o,t) := {i | i > t,0(i) € T(c(t)),(Vt <t <
i) o(t') # o(t)}. We will refer to Z(o,t) as the set of times
directly influenced by t. Similarly, denote F(o,t) := {i >
0|t € Z(o,i)}, the set of times with direct influence on t.
When ¢ is understood, we omit it from the notation.

Note that for any fixed time ¢, the time sets Z(o,t) and
F(o,t) depend only the schedule o, not the colors chosen
at each time. Also note that, at time ¢, the set f;(I'(v))
of colors assigned to neighbors of v, is exactly the set of
colors assigned at Z(o,t) (ignoring any neighbors of v which
have never been recolored). It turns out that, in order to
study this set of neighbor colors, it is often notationally more
convenient to work with the time set Z(o, ¢) rather than the
vertex set I'(v). This motivates the following conventions.



NOTATION 9. Let o be a coloring schedule. let 7 =
T (o) C [T] be a set of times. Let f be a coloring sequence
with schedule 0. We denote f(7) := {fi(o(t)) |t € T} C [k]
and o(7) := {o(t) | t € T(0)} C V(G). We denote
A(£,T) := k — |£(7)|, the number of colors unused in f
at times in 7. For a single time ¢, we will sometimes write
A(f,t) := A(f, F(t)), which is the number of unused colors
in the neighbor set of o(t) at time ¢.

We now define a notion of “goodness” for a time set 7 (o),
which we will later show implies a high probability of “local
uniformity” (see Lemma 11).

DEFINITION 10. For every coloring schedule o : [T] —
V(G), let T(o) C [T] be a set of times. Let ¢ > 0. We
say 7 1is e-good if, for o chosen uniformly at random, with
probability > 1 — n*%, there exists 7' C 7 (o) such that

(EG1) o(7') is an independent set of vertices,
(EG2) |T'|>T(0)| — €A,

(EG3) forallt € 7', |Z(t)| < 2ecA, and
(EG4) (X,er IZM)]) = |User Z(1)| < log®n.

Now we have all the definitions we need to state our main
Lemmas. The first one, a generalization of Lemma 5, is our
main tool for reducing the girth requirements, and is used
in the proofs of Theorems 1 and 2.

LEMMA 11. For every € > 0, there exists C > 0 such that
whenever G is a graph of mazimum degree A > C'logn, and
k > (14 ¢e)A, the following holds. Let T be e-good. Let
fo: V — [k] be a given k-coloring. Select a random coloring
sequence £ = (fo,..., fr) according to Glauber dynamics.
Then

Pr (A(f,T(a(f))) < ke 1Tk 26A) <n710.

Section 4 is primarily devoted to the proof of Lemma 11.

The next Lemma establishes that F (o, t) is in fact e-good
after an initial “burn-in” period of O(n) steps, assuming the
graph has maximum degree Q(log n) and girth > 5. Combin-
ing this with Lemma 11 establishes the first local uniformity
property, needed for Theorem 1.

LEMMA 12. For every € > 0, there exists C > 0 such that
for every t > Cn and every graph G having girth > 5 and
mazimum degree A > C'logn, the map F(-,t) is e-good.

The proof is in Section 5.1.

The following result will be a key ingredient in the cou-
pling argument used to prove Theorems 1 and 2. It also
leads to a Chernoff-type bound, Theorem 27, which we will
use, in Section 6 to establish Molloy’s local uniformity prop-
erty.

LEMMA 13. Let Xo,...,Xn be random variables taking
values in [0, D], let B1 C --- C By be a nested sequence of
“bad” events, and let G; = B; be the complementary “good”
events. Suppose further that for 1 <i < N, E(X;| Gi) <
o;E (Xi—1 | Gi), for some parameters aa,...,an. Then

E(Xy) <E(Xo) [[ ac+ D Pr(Bw).
=1

The proof is in Section 5.2.
The next result shows that local uniformity implies rapid
coupling.

THEOREM 14. Let G be a graph on n vertices with maxi-
mum degree A. Let fo,..., fr and go,...,gr be maximally
coupled copies of Glauber dynamics for k-colorings of G.
Then

Pr(fr =gr) >1—ne "/ —np,

where

p:=Pr ((Hvﬂt <T) (min{A(f, t), A(g, 1)} < i&)) .

The proof is in Section 5.3.

3. PROOF OF THEOREM 1

Let T = Cnlogn. By the Coupling Theorem (cf. [9]),
it is enough to show, for all initial colorings fo, go, and
two maximally coupled copies of Glauber dynamics, f =
(fo,..., fr),&=(go,...g7), that Pr(fr = gr) > 1/2.

Let the number of colors be k = (o™ + 2¢)A. Applying
Lemma 11, assuming C' is sufficiently large, and using the
definition of a*, we find

Pr ((Ht > Cn) A(f,t) < %) <n 10
—¢

By Theorem 14, applied to the last T'— C'n steps of the
chain,

Pr(fr =gr) >1—2/n—ne T-Om/,

For T > 2¢ 'n(lnn + C), this is at least 1 — 3/n, which is
greater than 1/2. [

4. ESTABLISHING LOCAL UNIFORMITY

The main goal of this section is to prove Lemma 11, which
says that e-good sets of times 7 (-,t) almost always miss
about ke~ I7C:O! colors.

We begin by presenting a much simpler example which, in
addition to motivating our technique, gives some hope that
the method can be extended to work for all triangle-free
graphs.

4.1 Random Colorings are Locally Uniform

Suppose we sample a proper k-coloring of G uniformly at
random. How many distinct colors will not appear in the
neighbor set of a vertex v?

We quickly look at three special cases. When G is the
empty graph, we will almost certainly miss close to ke~ 2/*
colors, since each color is missed with probability (1—1/k)® ~
e~/ * and the assignments are independent.

When v is part of a A + 1-clique, we will miss exactly
k — A distinct colors, since all the neighbor colors must be
distinct.

When v is part of a Ka,a-subgraph, we expect with high
probability to miss about 2 colors, where (2 —e™2/%) = k.
(For this example, the proof is more difficult; see the full
version for details)

Next we observe that for triangle-free graphs, as long as
k> (14 €)A, the first local uniformity property holds with
high probability for a uniformly random proper coloring.



This provides some intuitive justification for the general ap-
proach of trying to prove local uniformity properties for the
Glauber dynamics: since we know these properties hold for
the stationary distribution, they should also hold after the
Glauber dynamics has run “long enough.”

OBSERVATION 15. Suppose G is triangle-free and has mazx-
imum degree A = Q(logn). Let k > (1 + €)A. Then for
a random proper k-coloring f : V(G) — [k], with prob-
ability 1 — poly(1/n), for every vertex v, k — |f(I'(v))| >
ke 27k — eA.

If we also exclude 4-cycles, a two-sided concentration re-
sult is possible:

PROPOSITION 16. Suppose G is girth > 5 and mazimum
degree A = Q(logn). Let k > (1+ €)A. Then for a ran-
dom proper k-coloring f : V(G) — [k], with probability
1—poly(1/n), for every vertez v, |k —|f(T(v))| — ke 2/*| <
eA.

We remark that the example of a complete bipartite graph,
discussed above, shows that the conclusion of Proposition 16
does not hold for all triangle-free graphs.

We will need the following result, due to Dyer and Frieze [5,
Lemma 2.1]. It says that, in a sequence of independent color
selections for which no one color is very likely in any stage,
the number of missed colors will not be much less than if
each color were chosen independently and uniformly from all
of [k]. Although originally stated with the stronger hypoth-
esis that each color is selected uniformly from a subset of
[k], the original proof suffices for the current version as well.
The weaker hypotheses stated here will be needed when we
apply this result in Section 4.2.

LEMMA 17 (DYER AND FRIEZE). Let k be a positive in-
teger, and let D1,...,Ds be probability distributions on the
color set [k] such that under every D;, no color has probabil-
ity more than p. For 1 < i < s, let ¢; be chosen according to
D;, independently of c1,...,ci—1. Let A:=k—|{c1,...,cs}|
be the number of unused colors. Then E (A) > k(1 — p)*/*P |
and for every a >0, Pr(A<E(A) —a) < e’ /2k,

PROOF OF OBSERVATION 15. Let v be fixed. Select a
proper k-coloring f uniformly at random. Select new colors
for I'(v) uniformly at random from among the available col-
ors. The resulting coloring is distributed uniformly among
k-colorings, since for any pair of proper colorings f, g, the
probability of selecting f, then g, is the same as the proba-
bility of selecting g, then f.

But now we can see that the colors on I'(v) are indepen-
dent random variables, each drawn from a uniform distribu-
tion on at least k — A > €A > Clogn colors! The result
follows by Lemma 17. []

4.2 Proof of Lemma 11

To prove our first local uniformity property, we need to
answer the following question: if £ = (fo,..., ft,..., fr) is
selected according to Glauber dynamics, how can we prove
a tail law for A(f,¢)?

Straightforward approaches are hampered by (potentially)
complex dependencies among the random variables fi(u),u €
L(o(t)).

Our approach is to gather more information before an-
swering the question. Suppose that, for some vertex set

U, we are told everything about f except the |U| values
ft(u),u € U. Conditioned on this extra information, the
distribution of f may be much simpler, since there are many
fewer possibilities to consider. In fact, if U has minimum
distance 3, then the random variables f;(u) turn out to be
fully independent, allowing us to prove strong tail inequali-
ties for the posterior distribution of f;(U).

First, we will need some more notation and terminology.

DEFINITION 18. Fix a coloring schedule o : [T] — V. Let
f, g be two coloring sequences with schedule o, such that
fo=go. Let T C [T] be a set of times. If

(vt & T) fi(a(t)) = g:(a(t)),

then we say that f and g agree except at times in 7. Note
that this is an equivalence relation on the space of coloring
sequences.

We are interested in the following experiment. For ev-
ery coloring schedule o suppose 7 = 7 (o) C [T] is a set of
times such that the vertex set o(7) is guaranteed to have all
pairwise distances at least 3. Let f be a coloring sequence
with schedule 0. Select a coloring sequence g according to
the posterior distribution of Glauber dynamics conditioned
on the event that g has schedule ¢ and agrees with f ex-
cept at times in 7. Then (Lemma 20) for any fixed f, the
random variables g:(o(t)), t € 7, are fully independent,
and moreover, for most o, for most f, for most t € 7T (o),
the distribution of g¢(c(t)) is “roughly uniform” on a set
of Q(logn) colors. This allows us to prove strong tail es-
timates on A(g, 7). This approach generalizes to the case
when 7 is only e-good, rather than distance 3, although the
variables g:(o(t)), t € T are no longer independent. Finally,
Lemma 11 follows because f has the same distribution as g,
as seen from the following observation.

OBSERVATION 19. Let ~ be an equivalence relation on a
finite set S. Let D be a probability distribution on S. Sample
X, Y € S as follows: draw X according to D, then draw 'Y
according to D conditioned on'Y ~ X. ThenY is distributed
according to D.

PROOF. Let Z € S/ ~ be any equivalence class induced
by ~. Then, for every z,y € Z,

Pr((X,Y) =(z,y) | X €%)
= Pr(X=2|Xez)Pr(Y=y|Yez).

Since Y € z iff X € Z, the right-hand side is symmetric in
X and Y, therefore X and Y can be switched on the left-
hand side too, which implies the result. Moreover, we see
that the distribution of (X,Y’) within Z x Z is a product
distribution. [J

Our next lemma says that if the vertex set o(7’) has min-
imum distance > 3, then the distribution of g is the prod-
uct of its marginal distributions. Also, the nonuniformity
of these marginal distributions is bounded in terms of the
influence sets Z(o,t), t € 7.

LEMMA 20. Fiz a coloring schedule o : [T] — V and a
proper coloring sequence £. Let T C [T] be a set of times
such that o(T) is an independent set, and such that the sets
Z(t), t € T are pairwise disjoint. Select a coloring sequence
g according to Glauber dynamics, conditioned on the event



that g agrees with f except at times in 7. Then the random
variables g.(o(t)), t € T, are fully independent. Moreover,
for every t € T, c,c’ € [k] such that Pr(g:(o(t)) =c) #0,

[Z(®)]
Pr(gi(o(t)) =¢') < (1 + 7 j A) Pr(g:(o(t)) =c¢).

PrOOF. Let h be a coloring sequence which agrees with f.

A priori, given only that g is selected according to Glauber
dynamics with coloring schedule o,

T
=[xy

By our assumption that the sets Z(t), t € T are pairwise

disjoint, we can write
=Cc[] H (1)
teT zeI(t)

1
where C = ' H m
igU, Z(t)
t € 7, and hence is constant for all h which agree with f
except at times in 7.

Now let us take into account the additional information
that g agrees with f except at times in 7. Bayes’ Law says
that posterior probabilities are in the same proportion as
the original probabilities, except for those values which are
ruled out by the new information. Thus the product de-
composition in (1) implies the independence of the variables
gt(o(t),teT.

Moreover, the ratios of the a posteriori probabilities are
bounded by the maximum ratio of the terms in (1), which
is easily seen to be < maxie7(141/(k—A))F®
the details to the full version. [

does not depend on any h¢ (o (t)),

|, We leave

Next we use Lemma 20, together with Chernoff’s bound,
to derive, for each o,7,f, a tail law on A(g,7), assuming
only that o(7) is an independent set. There are trade-offs
between the strength of the tail law and the size and overlap
of the influence sets Z(t), t € 7, as well as the number of
distinct colors possible for each g (o (t)).

LEMMA 21. Fiz a coloring schedule o : [T] — V and a
proper coloring sequence f. Let T C [T] be a set of times
such that o(T) is an independent set. Select a coloring se-
quence g according to Glauber dynamics, conditioned on the
event that g agrees with f except at times in 7. Then, for
every a > 0,

1 \*_
Pr(A(g, T)< k(1 - p) TV/" _ q) < (1+n)ea2/2m7

where, for eacht € T,
di = e[ Pr(g(o(t)) =c)# 0}

1 170
b= I%’—‘E( A)

(S -|y

REMARK 22. Note that if ¢(7) has minimum distance
> 3, then R = 0. As another example, if 0(7) = I'(v) and
G has girth > 5, then R is a weighted count of how often v
is recolored at times “influenced by 7.”

R

Proor. First, let us suppose R = 0, i.e., that the sets
Z(t), t € T, are pairwise disjoint. Then by Lemma 20,
we know the random variables g:(o(t)), ¢ € 7, are fully
independent, and that the probabilities of the d; possible
values are all within a factor (1 + 1/(k — A))F®! of each
other; hence each of these probabilities is at most p. Thus
we are in exactly the setting of Lemma 17, which gives the
desired conclusion.

In the case R > 0, the g¢(c(t)) are no longer independent,
so we first approximate them by a set of random variables
which are. As in the proof of Lemma 20, we express the a
priori distribution of g, selected according to Glauber dy-
namics, as

T

1 1
Pre=m =1l y-¢ I aa

i€User Z(2)

where C := Hi%Utefl(t) m does not depend on any of

the values assigned at times in 7.
Let g’ be a coloring sequence which agrees with f except
at times in 7, and drawn with probabilities proportional to

II IT 455
teT zel'(t)

Relative probabilities of events are somewhat distorted in
this new distribution: for coloring sequences h,h’ we have

Pr(g'=h')  Pr(g=h') 1 "
Pr(g —h) ~ Pr(g=h) (”k A) !

since, for every i, A(h,i) is determined to within 1, and
min A(h,i) > k — A.
From Lemma, 17 applied to g’, we know that

Pr (A(g/,T) < k(1 —p)TI/ke a) < e /ATl

But g’ can be thought of as g, except with atoms distorted

R
by up to F = (1 + ﬁ) , hence the probability of any
event in the original space is not more than F times the
probability in the new space. Thus

Pr (A(g/,T) < k(1 p)iTl/kp - a) < Fefa?ﬂiﬂ7

which was to be proved. []

We are at last ready to prove Lemma 11.

ProoOF OF LEMMA 11. Choose a coloring schedule o uni-
formly at random. Since 7 is e-good, with probability at
least 1 — n~1%, there exists an independent subset 7’ C T

such that |77| > |7| — €A, (Z |I(t)|> — U Z(t)
teT’ teT’
log®n, and for all t € T, |Z(t)| < 2ecA,

Randomly choose f according to Glauber dynamics with
coloring schedule 0. Now choose g according to Glauber
dynamics for G, conditional on g agreeing with f except
at times in 7. Recall that, by Observation 19, g has the
same distribution as f. Thus, it will suffice to prove the tail
inequality for A(g,7T)

Applying Lemma 21 to 7’ with a = €A,

Pr (A(g,T’) < k(1 —p) Tk eA)

1 1 f —e2A2 /2|7 9

<




where, for each t € T', d; := |{c| Pr(g:(c(t)) =) # 0},
IZ ()]
b= maXieT d_lt <1 + ﬁ) yand R = (e 1Z(1)]) -
{UteT, I(t)‘ < log®n.
Fixing t € 77, the probability that a particular color does

2ecA
not occur in Z(t) is > (1 — k_;A)

than exp(—2ecA/(k — A — 1)) =: e~ %", Now, since the
events “color ¢ is missed” are negatively dependent (see
Dubhashi and Ranjan [4, Theorem 46]), we can apply Propo-

sition 24, proving that with probability > 1 —n~1° (for suit-
‘-1

, which is greater

ably large A), not fewer than ke~ colors are missed.
Hence p = O(1/logn). Using the inequality (1 —p)lT/Vkp >
ef‘Tll/k(l —p)‘T/Vk (cf. [12, p. 435, Prop B.3.2]), together
with the observations above, inequality (2) can be used to
derive

Pr (A(g, T') < ke |71k EA) <n10

as long as A > C'logn, where C is suitably (exponentially)
large relative to 1/e. Since 7 has at most €A elements more
than 77, this establishes the desired inequality. [

5. TECHNICAL LEMMAS
5.1 Proof of Lemma 12

In order to prove Lemma 12, we shall need to establish sev-
eral large-deviation bounds. To do this, it will be convenient
to use a generalized version of the usual Chernoff-Hoeffding
bounds (due to Dubhashi and Ranjan [3, 4]) which holds for
random variables which are “negatively associated”, rather
than independent.

DEFINITION 23. Suppose X1, ..., X, are random variables
such that for any two disjoint subsets I,J C [n], and any
two increasing functions f : Rl - R, g : RVl - R,

E(f (Xa)ier) 9 ((Xj)jes)) S E(f (Xi)ier)) E (g ((Xy)je0)) -

Then we say X1, ..., X, are negatively associated.

A very useful property is that non-decreasing functions
of disjoint subsets of a set of negatively associated random
variables are also negatively associated [4, Proposition 1.7].
The following result is Proposition 1.5 in [4]

PROPOSITION 24  (DUBHASHI-RANJAN [4]). Suppose

Xi,...,Xn are negatively associated [0, 1]-valued random vari-

ables. Let X =" | X;. Then for every § > 0,

6—62E(X)/27

PriXx<(1-90)E(X)) < and

el E(X)

We now present a detailed sketch proof of Lemma 12.
PrOOF OF LEMMA 12. Since by definition,
o(F(o,t)) ={w € T'(v) | weo([t])} SI(v),

the independence condition (EG1) of Definition 10 automat-
ically holds.

For each w € V(G), let X,, be the number of times
w was recolored during the last Cn time steps prior to ¢,
ie, Xo = |{ et—Cn,t—1] | o(¥') =w}|. Similarly,

let Yy, := |{t' € [t,t + Cn] | o('t) = w}|. To establish that
F(-,t) is e-good, it will suffice to establish the following as-
sertions:

(A1) Pr({fw eT(v) | Xw =0o0rY, =0} >eA) <

1,-10
Z'I’l .

(A2) Pr(Xy+Y, >eA) < in'0
(A3) Pr ((aw € I'(v)) <zzer(w> X, + Ve > 2ecA) ) < fn 0,

To see this, note that with probability at least 1 — n =19,

none of these three events occurs. Setting
T = {t' € Flo,t) | Z(o,t') C [t — Cn,t+ Cn]}
{t, S .7:(0', t) | Xa(t’) # 0 and Ya(t’) #* 0},

assertion (A1) implies [7’| > |F(o,t)| — €A, which is con-
dition (EG2) of Definition 10. Note that 7’ was defined
so that, for every t' € 7', we have Z(t') C [t — Cn,t +
Cn]. Hence assertion (A3) implies condition (EG3) of Defi-
nition 10. Finally, condition (EG4) of Definition 10 follows
from assertion (A2), since v is the only common neighbor
of o(7"). All that remains is to prove assertions (A1)—(A3).
We only sketch this part of the proof.

Assertion (A1) relies on the fact that the events {X,, = 0}
and {Y, = 0} are negatively associated, and that conse-
quently Proposition 24 applies (see also [4, Theorem 46]).

Assertion (A2) is just Chernoff’s bound, relying on the
independence of the selected vertices o(t—Cn),...,o(t—1).

Now we prove assertion (A3). First, in light of assertion
(A1), we may discount the effect of v on 3° () Xo + Yo
Then, the probability that >° ., [,y Xe + Yo exceeds

(2ec — €)A is at most e~ ° by Chernoff’s bound. Call this
event Z,. Since girth(G) > 5, the sets I'(w) \ {v} are dis-
joint. Thus the events Z,, are increasing functions of disjoint
sets of negatively associated random variables, and so they
are negatively associated' (see [4, Proposition 7]). Hence
Proposition 24 applies, which gives the desired result.
Remark: the dependence of C on 1/¢ is exponential. [

5.2 Proof of Lemma 13

ProoOF. We prove the stronger claim that, for every
0<i<N,0<j<N—q,

i+
E(Xis;| G) <E(Xi| G) [[ ac+DPr(Birs| Gi).
=it1

Specializing to the case ¢ = 0,7 = N gives the desired result.
The proof is by induction on j. The base case j = 0 holds
with equality, since B; and G; are complements.

Let 0<i< N,1<j <N —4. Since Giy1 C G;, we can
rewrite E (Xiy; | Gi) = E(Xiy; | Gig1) Pr(Giva | Gi)
+E (Xi+j | 87,'4_17 gz) PI‘ (Bi+1 | gz) Applymg the inductive
hypothesis to bound E ( X;+; | Git+1) yields

i+
E(Xiv; | Gi) < (E(XH—I | Gis1) [[ e+ DPr(Biy; | gi+1)>

=it2
XPr(Git1| Gi) + D Pr(Bix1 | Gi) .

Applying the initial hypothesis that E ( X;11 | Git1) <

Note that this negative association would fail to hold if the
case x = v were left in the sums.



ai+1E (X; | Giy1), we obtain

it
E(Xi+; | Gi) < (E(Xi | Gis) [[ e+ DPr(Biy; | gz’+1)>

=it1
XPr(Git1] Gi) + D Pr(Biy1 | Gi).

Finally, rearranging terms and applying the law of total
probability (twice), the previous expression simplifies to

itJ

E(X:| Gi) H ae+ D Pr(Bit; | Gi)
r=it1
i+j
—E (X | Bi+1,G:) Pr(Biy1 | Gi) H Qg.
f=it1

Dropping the last term leaves the desired upper bound. []
5.3 Proof of Theorem 14

ProoOF. For 1 < j < T, define the “bad” event

B, i— {(ay 3t < j) (min{A(f,t),A(g,t)}< ﬁe)}.

Let G1,...,Gr denote the corresponding complementary
“good” events. By definition, p = Pr(Br). Let H; :=
H(ft, g:) denote the Hamming distance at time t¢.

Let 1 <t < T. We compute an upper bound on the
expected change in Hamming distance, assuming no bad
events. Fix particular values for fo, g0, f1,91,---, fi—1,9t—1
from the good event G;. Assuming these values, we have

Z Pr (v not selected and f;—1 # gi—1)
veV(G)

+ Z Pr (v selected and f; # g¢)
veV(G)

E(H:) =

n

1 Z # bad neighbors of v

LY TA
n T min{A(f, 1), A(g, )}’

veV(G)
where a neighbor w € I'(v) is called “bad” if f;—1(w) #
gi—1(w). Since the event G; occurred, we are guaranteed
that the denominators of terms in the sum are all at least
A/(1 —€), hence

-1 1—
o Hi_1 + ¢

E(H:) < Z # bad neighbors of v

veV(G)

n

(- o)

where the last step follows because the set of “vertex, bad
neighbor” pairs equals the set of “bad vertex, any neighbor”
pairs, and so has cardinality H;—1 A.

Averaging over the event G, we find that E (H; | G¢) <
(1— i)E(Ht,l | G¢). Setting X; := H; for 0 < i < T,
we are in exactly the setting of Lemma 13, which implies
the desired result, considering that n is an absolute upper
bound on the Hamming distance. [

6. REACHING THE 1.498 THRESHOLD

Although we lack space for a complete proof of the Theo-
rem 2, we shall nevertheless be able to give a fairly detailed
outline. We begin by presenting a (to our knowledge) new
concentration inequality, which will be one of our main tools.

6.1 A Chernoff-type bound

We first state a general tail inequality of Chernoff type.

LEMMA 25. Let Xi,...,Xn be random variables taking
values in [0,1], and let By C --- C By be a nested sequence
of “bad” events, with complementary “good” events G; = B;.
For1 <i <N, suppose that E (X; | X1,X2,...,Xi-1,Gi) <
pi. Let p:= vazl pi. Then for every § > 0,

Pr <i X;> (1 +5)p>

i=1
N
s ap(148) [ AN (e _
< mine (e Pr(Bn) + lj[l(l + pi(e 1))>
PrOOF. Let A > 0 be arbitrary. For 0 < ¢ < N, define
Y: = exp <)\ 22:1 Xi>. Following the usual approach, we
observe that Pr (X > (14 6)u) = Pr (Y > exp((1 + )An)) =
Pr (exp(—(1 4 0)Ap)Yn > 1) < exp(—(1 4+ 6)Ap)E (Yn), by
Markov’s inequality. Our goal is now to get a good upper
bound on E (Yn).
For every 1 <7 < N,
E(Yi|G)=E(E(Y:| X1, Xa, ...
Since Y; = e)‘X"’Yéfl, and Y;_1 is a function of X1, ...
this becomes

E(Yi| gi):E(Yi_lE(exxi

, Xi21,Gi) | Gi).
y X1,

X17X27---7Xi—17gi> ‘ gi) .

Since exp(At) is a convex function, it follows that, among all
random variables V' with expectation p and taking values
in [0,1], the ones which maximizes E (exp AV) are {0,1}-
valued. Thus

B (exp(AXi) | ..) < max(14p(e’ = 1)) =1+ pile” 1),

Thus, by averaging, we see that

E(Yi| Gi) < (1+pi(e* = 1))E(Yi1 | Gi)
for all 1 < i < N. The result follows by applying Lemma 13
to Yo,...,Yy. O

REMARK 26. A very similar version applies when lower
bounds are known for E (X; | Xi1,...,Xi—1,Gi). We leave
the nearly identical statement and proof for the full version.

Many variants of Lemma 25 can easily be constructed
by making simplifying assumptions of different kinds. The
following is a natural choice which achieves the usual Cher-
noff’s bound when the probability of bad events is zero. It
is far from optimal when the bad event probability is larger.

THEOREM 27. Let X1,...,Xn be random variables tak-
ing values in [0,1], and let By C --- C By be a nested se-
quence of “bad” events, with complementary “good” events
G =B, For1<i< N, suppose that

E(XZ | Xl,XQ,...,Xi_l,gi) (= [mZ,Ml]
Let m := Zfil m; and M = vazl M;. Then for all § > 0,

N 65 M
i=1
+Pr (BN) (1 + 5)N7(1+5)IW

N
and Pr <Z Xi<(1- 5)m) < o —8%m/2 + Pr(By) o(8-82/2)

i=1



PRrOOF. For the first inequality, substitute A = In(1 +
0) in Lemma 25. The second inequality follows from the
unstated lemma mentioned in Remark 26, after substituting

A=—In(1-¢). O

We remark that Theorem 27 can also be viewed as a gener-
alization of the unweighted version of the Azuma-Hoeffding
inequality. See the full version for details.

6.2 Sketch of Theorem 2

For several reasons, Theorem 2 is more technically dif-
ficult to prove that Theorem 1. Most of these difficulties
were already present in Molloy’s original setting [11], and
are resolved here more or less the same way.

We will make the simplifying assumption that G is A-
regular. This is a justifiable assumption because low-degree
vertices actually cause Glauber dynamics to couple faster, as
can be seen from Jerrum’s original proof [9] (a disagreement
at a low-degree vertex has few neighbors to which it can
spread). However, low-degree vertices do not benefit from
the second local uniformity property, and therefore have to
be handled by a more or less separate argument. In the full
version, we follow Molloy’s approach of using a weighted
Hamming metric in our coupling argument.

First we need to establish an upper bound on the number
of colors available at each vertex. Combined with Lemma, 5,
this establishes a two-sided concentration inequality.

LEMMA 28. For every e > 0, there exists C > 0 such that
for every t > Cn and A-regular graph G having girth > 6
and degree A > C'logn, when £ = (fo,..., fr) is selected
according to Glauber dynamics,

Pr <A(f, t) > ke 2/F 4 eA) <n '

The proof will rely on the following technical lemma, which
we state without proof.

DEFINITION 29. For all t € [T] and i € [|F(o,t)|], let
gm-(a) = {tl,...,ti_1} U]‘-(O',ti), where .7-'(cr,t) = {tl <
to < -0 < tl]—'(a,t)\}'

LEMMA 30. For every ¢ > 0, there exists C' > 0 such
that for every t > Cn, 1 < i < d(v), and graph G having
girth > 6 and mazimum degree A > C'logn, the map G ; is
€-good.

The proof of Lemma 30 proceeds along very similar lines
to that of Lemma 12, so we omit it from this abstract.

The proof of Lemma 28 follows Molloy’s approach of split-
ting the burn-in period into a sequence of stages; during each
stage we establish an improved bound, building inductively
on the bound from the previous stage.

PRrROOF. (Sketch proof of Lemma 28). Let ¢ > 0 be
suitably small (how small will be seen later). Through-
out the proof, “high probability” will mean probability 1 —
n~ ¢, where ¢ is some positive integer, such as 10. We will
break the burn-in interval, [Cn], into many smaller inter-
vals, [C'n],[C'n + 1,...,2C'n],.... During each interval
[iC'n+1, (j+1)C'n], we will establish by induction that for
every t > jC'n+1, A(f,t) < (1+n;)ke”>/* with high prob-
ability, where no,n1,m2,..., is a decreasing sequence with
no = e~’F —1 and nc/c = €. The base case j = 0 is trivial
by definition of 7.

Let 5 > 1, and suppose t > jC'n + 1. Let v = o(t).
Chernoff’s bound can be used to show that, with high prob-
ability, |F(o,t) N[(j —1)C'n+1,t]| > (1 — ¢ )A. For sim-
plicity, we will assume that F(o,t) C [(j —1)C'n+1,t]. Let
Flo,t) = {t1 < t2 < --- < ta},and for 1 < i < A, let
w; = o(t;), so that I'(v) = {w1,...,wa}.

Now, exposing the colors in f(F(o,t)) one by one, the
total number of colors equals the number of steps at which
a “new” color is seen. For 1 < i < A, let X; be the 0 — 1
indicator variable for the event that a “new” color is seen at
time ¢;. Then k — A(f,t) = >.% | X;. On the other hand,

E(X:| fo,fi,. - fr;—1) = A(f, t;)

Lemmas 30 and 11 together give a high-probability lower
bound on A(f,G:;). By induction, we also have a high-
probability upper bound on A(f,¢;). In other words, if we
condition on the “good” event that both of these bounds
hold, then the expectation in question is upper bounded by

NI _ )
W <e /k/(l +n;) +€”. Since X1,..., X1

are functions of fo, fi1,...
that

, ft;—1, we have shown, for each i,

VXio1,Gi) > e F /(L4 my) + €

from which it follows by Theorem 27 that with high proba-
bility,

E(X:| Xo,...

A
k— A1) = > X,
i=1

> > e /() +7A
> k(L= e (14 ) + €A,
Equivalently, with high probability,

e A/k

e+ + 6(5)) .

A(ft k
(£,0) < ( o

Setting this upper bound equal to (1417;41)ke /%, we find

(et —1)

(6) _A/k
+ee .
1+mn;

Nj+1 <

Since e®/* —1 < 1 for k > 1.45A, the sequence N0, M1y - - -
decreases essentially geometrically, until it reaches the same
order of magnitude as €’. Choosing ¢’ sufficiently small al-
lows the desired goal of nc/cr = €. We omit the details of
what each “high probability” means, as well as the relation-
ships between the various €’s. []

Our next result says, roughly, that if we were to randomly
select a neighbor of v, and recolor it with a legal color, then
every color (except that of v) is about equally likely to be
chosen. Equivalently, every color is about equally likely to
be forbidden (ignoring v).

LEMMA 31. For every € > 0, there exists C' > 0 such
that for every time t > Cn, color ¢ € [k], and A-regular
graph G having girth > 6 and degree A > C'logn, when
f=(fo,..., fr) is selected according to Glauber dynamics,

{w e ") :cel(w)\ {v}} € [A(1 —e /") +eA].



We omit the proof, which is another iterative argument
in the style of the proof of Lemma 30. The final step in
our sketch is to show that, if a random neighbor of v is
chosen, then every pair of colors is about equally likely to
be forbidden. This is a key property, since it means that
when two coupled copies of Glauber dynamics differ at v,
only a certain fraction of the neighbors of v are at risk to
propagate this difference.

LEMMA 32. For every ¢ > 0, there exists C' > 0 such
that for every time t > Cn, colors c,c’ € [k] and A-regular
graph G having girth > 6 and degree A > C'logn, when
f=(fo,..., fr) is selected according to Glauber dynamics,

H{w € T(v) 1 e,d € T(w) \ {v}}| € [A(1 — e 2/F)* £ eA].

Once Lemma 32 has been established, Theorem 2 follows
by a coupling argument very similar to Theorem 14. See the
full version for details.

7. RANDOM GRAPHS

Theorem 3 follows easily from the following fact.

PROPOSITION 33. Let G be a random graph on n vertices
with edges included independently with probability p. Let A
denote the maximum degree of G. Then, for every e € [0,1],

Pr(|A —pn| > epn) < ne= < P/3,

For £ > 3, let X¢ denote the maximum over all v, of the
number of neighbors of v contained in a cycle of length < ¢
through v. Then

Q(epn)
Pr (X, > epn) < nPW (pln£_1> "

Thus choosing p = Q(logn) ensures that A = Q(logn)
with high probability, and choosing p < n~'*/¢~¢ ensures
that G has too few short cycles of length < £ to interfere with
any of the arguments from this paper. In particular, setting
¢ =4 and ¢ = 5, and applying Theorems 1 and 2 implies
Theorem 3 for the independent-edges model. The extension
to random regular graphs follows by similar methods.
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