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Abstract

We study a simple Markov chain, known as the Glauber
dynamics, for randomly sampling (proper)k-colorings of
an input graphG on n vertices with maximum degree∆
and girth g. We prove the Glauber dynamics is close to
the uniform distribution afterO(n log n) steps whenever
k > (1 + ε)∆, for all ε > 0, assumingg ≥ 9 and
∆ = Ω(log n). The best previously known bounds were
k > 11∆/6 for general graphs, andk > 1.489∆ for graphs
satisfying girth and maximum degree requirements.

Our proof relies on the construction and analysis of a
non-Markovian coupling. This appears to be the first ap-
plication of a non-Markovian coupling to substantially im-
prove upon known results.

1 Introduction

1.1 Overview

Given a graphG = (V,E) with maximum degree∆, is
there an algorithm which randomly generates ak-coloring
wheneverk > ∆ and runs in time polynomial in the size
of G? A k-coloring is an assignment of colors to vertices
σ : V → [k] such that all neighboring vertices receive dif-
ferent colors. Although constructing such a coloring is triv-
ial providedk > ∆, even with this many colors the sam-
pling problem seems difficult.

This problem has received considerable attention in the
Computer Science, Discrete Mathematics and Statistical
Physics communities. (In Statistical Physics jargon, we
want to efficiently simulate the Gibbs distribution of the
zero-temperature anti-ferromagnetic Potts model [13].) Ef-
ficient sampling algorithms are central to approximation al-
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gorithms for the corresponding #P-complete counting prob-
lem (estimating the number ofk-colorings), see [10].

It is widely believed there is an efficient scheme for sam-
pling colorings wheneverk ≥ ∆ + 2. Surprisingly, the
following very simple Markov process likely suffices. The
Markov chain, popular in the Statistical Physics commu-
nity, is known as theGlauber dynamics(Metropolis ver-
sion). From a coloringXt ∈ Ω, we perform the following
transitionXt → Xt+1:

• Choose a vertexv and colorc uniformly at random
from V and[k] respectively.

• SetXt+1(z) = Xt(z) for all z 6= v.

• If no neighbors ofv have colorc in Xt+1, then set
Xt+1(v) = c, otherwise setXt+1(v) = Xt(v).

It is straightforward to verify that the Glauber dynamics for
all k ≥ ∆ + 2 is ergodic and time-reversible with unique
stationary distribution uniformly distributed overΩ.

Our goal is to analyze themixing timeof the Glauber
dynamics. Roughly speaking, the mixing time is the num-
ber of transitions till the chain is close to stationarity from
an arbitrary initial coloring; see Section 2.1 for a formal
definition. Fast convergence of the Glauber dynamics has
implications for phase transitions in the Potts model, e.g.,
see [3, 8].

The first significant progress was by Jerrum [10], prov-
ing the mixing time isO(n log n) wheneverk > 2∆. In-
dependently, Salas and Sokal [13] proved closely related re-
sults about phase transitions in the Potts model. Vigoda [14]
improved these results tok > 11∆/6 via analysis of a more
complicated Markov chain, which impliedO(n2) mixing
time of the Glauber dynamics.

Dyer and Frieze [6] focused attention on locally tree-
like graphs with large maximum degree, specifically∆ =
Ω(log n) and girthg = Ω(log ∆).1 Under these assump-
tions, they provedO(n log n) mixing time of the Glauber
dynamics whenk > α0∆, whereα0 ≈ 1.763. Molloy
[12], under the same assumptions, proved the same conclu-
sion whenk > α1∆, whereα1 ≈ 1.489. Very recently,

1The girth of a graph is the length of the shortest cycle.



Hayes [9] reduced the girth requirement in Molloy’s result
to g ≥ 6.

All the aforementioned analyses of the Glauber dynam-
ics use an approach known as the coupling method (see Sec-
tions 1.2 and 2.1), and more specifically a “maximal one-
step coupling”. Molloy’s result seems to be the best pos-
sible using this approach; it appears that no one-step cou-
pling, also known as aMarkovian coupling, coalesces in
polynomial time beyond Molloy’s threshold (see [12, Sec-
tion 4]). In fact, Molloy raises the question of whether the
constantα1 can be improved at all, and still have polyno-
mial mixing time.

We give a positive answer, and in fact prove for allε > 0
thatk > (1+ ε)∆ suffices, assuming sufficiently large girth
(9 suffices) and∆ = Ω(log n) (the implicit constant de-
pends exponentially on1/ε). Our proof uses a new cou-
pling, defined with respect to theCn-step evolution of the
Glauber dynamics, for some fixedC > 0. Our coupling is
an example of anon-Markovian couplingof the Glauber dy-
namics. The non-Markovian aspect of our coupling appears
to be an essential feature.

Here is the formal statement of our result.

Theorem 1. For everyε > 0, there existsC > 0 such that
for every graphG onn vertices with maximum degree∆ ≥
C log n and girth g ≥ 9, and for everyk ≥ (1 + ε)∆,
the Glauber dynamics fork-coloringG has mixing time at
mostCn log n.

We continue with an informal exposition on the cou-
pling technique along with its application in related previ-
ous work. We then briefly describe the intuition behind our
improvement.

1.2 Previous Results

A coupling is simply a joint stochastic process(Xt, Yt)
on Ω × Ω. Our only requirement is that each of the pro-
cesses(Xt) and(Yt) viewed in isolation must be a Markov
chain evolving with the same transition probabilities. No
restrictions are placed on the correlations between the two
chains, a feature essential to the power of the approach.

The goal is to design a coupling which minimizes the
coalescence time, i.e., the smallestt such thatXt = Yt with
probability≥ 1/2. The coalescence time from the worst
pair of initial states is easily seen to be an upper bound on
the mixing time (see Section 2.1). Despite several successes
of this technique, (see e.g., [10, 11]) it is often an difficult
task to design and analyze a coupling for all pairs of initial
states.

The Path Coupling Theorem of Bubley and Dyer [2]
is a powerful tool for simplifying the coupling method.
Roughly speaking, it suffices to define and analyze a cou-
pling for only those initial pairs from a subsetS ⊆ Ω2,

assuming the graph(Ω, S) is connected. This “partial cou-
pling” is then extended to a coupling for an arbitrary pair
of states. This approach has been instrumental in simplify-
ing and improving results obtained via the coupling method
(see e.g., [7, 14]).

In the setting of graph colorings,S is defined as the pairs
of colorings which differ at exactly one vertex. To bound
the coalescence time it suffices to define a joint evolution
where the Hamming distance decreases in expectation.

A naive one-step coupling works whenk > α∆ where
α = 3. Consider a pair of statesXt, Yt which only dif-
fer at vertexw, sayXt(w) = cX andYt(w) = cY . The
naive coupling chooses for both chains the same vertex
v and colorc for the attempted update. Observe that if
v /∈ N(w) = {z ∈ V : (w, z) ∈ E)} or c /∈ {cY , cX}
then the attempted recoloring works or fails in both chains.
Thus, there are at most2∆ transitions which might increase
the distance. Conversely, after any successful recoloring
of w the two colorings are identical, and there are at least
k − ∆ such recolorings. For this coupling the condition
k − ∆ > 2∆ implies the Hamming distance decreases in
expectation. Hence, we haveO(n log n) coalescence time,
and the same bound on the mixing time.

Jerrum [10] reducedα to 2 via a simple modification
of the above coupling. First, choose a random vertex and
color, say(v, c). If v ∈ N(w) andc ∈ {cY , cX}, then set
c′ = {cY , cX} \ c. Otherwise, setc′ = c. Jerrum’s cou-
pling attempts the recoloring(v, c) in Xt and(v, c′) in Yt.
There is now at most one coupled color pair per neighbor
of w which might increase the distance (namelyc = cY ).
For Jerrum’s coupling, the conditionk − ∆ > ∆ implies
O(n log n) mixing time of the Glauber dynamics. In fact,
Jerrum’s analysis is tight for a worst pair of initial states.

Dyer and Frieze [6] avoid the worst-case scenario in Jer-
rum’s analysis by running the chains for a “burn-in period”
before attempting the coupling. The burn-in period is suffi-
ciently long for most vertices in the neighborhood ofw to be
recolored at least once. Assuming girthg = Ω(log log n),
the color choices on the neighborhood ofw will be roughly
independent, as there is insufficient time for the dynamics
to communicate the color choices along a path of length at
leastg. It then follows that the expected number of available
colors forw is roughlyk(1−1/k)∆ ≈ k exp(−∆/k). Fur-
ther assuming∆ = Ω(logn), with high probability every
vertex has close to its expected number of available colors
for a polynomial number of transitions of the dynamics. It
then suffices to havek exp(−∆/k) > ∆, which reducesα
to (approximately)1.76322.

Molloy [12] further reducedα to 1.48908. In addition to
the number of available colors, Molloy bounds the number
of neighborsv of w which include two specific colors (e.g.,
cY andcX ) in Xt(N(v) \ {w}). Such av can not be re-
colored tocX or cY in either chain. Thus, under Jerrum’s
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coupling there are no transitions which causev to differ in
the two chains, i.e.,v is “blocked” from the “bad” update in
both chains.

1.3 Our Approach

Our focus is on those updates which succeed in exactly
one of the coupled chains, what we will callsingly blocked
updates. Under Jerrum’s coupling, this type of update al-
ways increases the Hamming distance. Roughly speaking,
if we could create a coupling where updates always succeed
in both chains or fail in both chains, we would eliminate
half of these increases. This is exactly what we do. Let us
examine these singly blocked updates in more detail.

We are interested in coupled updates ofv ∈ N(w) which
succeed in exactly one of the chains. Such av has one of the
colors, sayc = cY , in its neighborhoodN∗(v) = N(v) \
{w}, but notc′ = cX . In this scenario the attempted update
of v to cY fails in Xt (i.e., it is blocked by some vertex in
N∗(v)), but the update ofv to cX succeeds inYt. Hence, the
coupled (attempted) recoloring ofv increases the Hamming
distance. In the symmetric scenario wherec = cX andc′ =
cY , the update ofv succeeds inXt, but fails inYt.

Our aim is to couple these “singly blocked” scenarios to-
gether. As a result, the attempted update ofv (albeit to dif-
ferent colors in the two chains), will succeed in both chains
or fail in both chains. Such a coupling necessitates having
different colorings on the neighborhoodN∗(v). The high-
level idea is to introduce temporary disagreements on two
vertices, sayz andz′, inN∗(v). Vertexz will block the up-
date ofv inXt, whilez′ will block the update inYt. Surpris-
ingly, we can guarantee that the temporary disagreements
we create will disappear before their disagreement propa-
gates. This requires examining the vertex-color choices at
many future times. This is the crucially non-Markovian as-
pect of our coupling. In some sense we look into the future
evolution to find a suitablez andz′, then revisit past deci-
sions.

Here is a more precise (although still vague) picture of
our non-Markovian coupling. Consider a pair of evolutions
X0, . . . , XT andY1, . . . , YT , coupled under Jerrum’s cou-
pling. Suppose these chains only differ at vertexw up till
time t with Xt(w) = cX , Yt(w) = cY . At time t, under
Jerrum’s coupling, we attempt to updatev ∈ N∗(w) to cY
in Xt andcX in Yt, and there is a uniquez ∈ N∗(v) col-
oredcY , but noz′ ∈ N∗(w) coloredcX . We will modify
the coloring onN∗(w) in Yt so that the attempted update
fails in Yt as well.

LetS(cX) denote thosez′ ∈ N∗(v) whose current color
can be replaced bycX and only affect the update at time
t. In other words, suppose at the last successful recoloring
of z′ we had instead successfully updatedz′ to cX ; if this
modification does not affect the coloring of any neighbors

in N∗(z′) = N(z′) \ {v} at any time, then we includez′

in S(cX). A vertexz′ ∈ S(cX) can be used to block the
attempted update inYt without direct “side effects.”

After the burn-in period, we have|S(cX)| ≈ |S(cY )|
with sufficiently high probability. We define a bijection (in
fact, a “near-bijection”) between the setS(cX) and the anal-
ogous setS(cY ). Givenz ∈ S(cY ), the bijection defines an
associatedz′ ∈ S(cX). We now modify the evolution of
Y at earlier times, specifically at the previous updates ofz′

andz. At the last (prior to timet) successful recoloring of
z′ we still recolor it toXt(z′) in X, but we recolor it tocX
in Y . Consequently, the attempted update ofv at timet fails
in both chains.

In order to ensure our partial coupling is valid, we make
it “reversible”. This requires also modifying the last up-
date of z in a reverse manner toz′. In particular, let
S−1(z′) denote those colorsc for which z′ ∈ S(c). These
are the colors which can be “swapped” with the current
color of z′ and not affect the coloring onN∗(z′). We de-
fine a bijection between the setS−1(z′) and the analogous
setS−1(z). (This requires that we choose az′ such that
|S−1(z′)| ≈ |S−1(z)|.) Given the color ofz′ at timet in
X, the bijection defines a complementary color, sayc, for
z. We then perform the following modification of the evolu-
tion of Y . At the last (prior to timet) successful recoloring
of z we still recolor it tocY in X, but we recolor it toc in
Y .

We call such a sequence of modifications of the evolution
of Y at earlier times a “non-Markovian update”. Our cou-
pling evolvesX for Cpcn steps whereCpc is a sufficiently
large constant. We then evolveY according to Jerrum’s
coupling, applying non-Markovian updates whenever pos-
sible. These non-Markovian updates are defined to be sym-
metric with respect to the roles ofX andY . More precisely,
if we take the final evolution ofY (after all non-Markovian
updates were applied) and evolveX under our coupling, we
obtain the original evolution ofX. This reversibility of our
coupling will imply it is a valid coupling.

1.4 Outline of the Paper

The following section presents background material on
the coupling technique, and introduces notation and defi-
nitions which will be useful in the remainder of the paper.
Many readers may prefer to skip directly to Section 3 during
their initial reading. Section 3 formally presents our partial
coupling. Before analyzing the coupling in Section 5, we
present some uniformity results in Section 4.

A full version of this paper is available online.
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2 Preliminaries

2.1 Coupling Technique

Let Ω denote the states of the Glauber dynamics,P its
transition matrix, andπ its stationary distribution. For a pair
of distributionsµ andν onΩ let dTV (µ, ν) denote their (to-
tal) variation distance. The mixing time is defined as the
number of steps until the Glauber dynamics is within varia-
tion distance1/4 of π, starting from the worst initial state.

We use the coupling method to bound the mixing time. A
t-step coupling is defined as follows. For every(X0, Y0) ∈
S, let (X,Y ) = (X(X0,Y0), Y (X0,Y0)) be a random vari-
able taking values inΩt × Ωt. We say(X,Y ) is a valid
coupling if for all (X0, Y0) ∈ Ω2, and for all0 < ` ≤ t, the
distribution ofX` is P `(X0, ·) and the distribution ofY` is
P `(Y0, ·).

A coupling satisfies the following bound, known as the
Coupling Inequality [4] (or e.g., [1]). For allX0 ∈ Ω,

dTV (P t(X0, ·), π) ≤ max
Y0∈Ω

Pr (Xt 6= Yt | X0, Y0)

Therefore, by defining at-step coupling where all initial
pairs have coalesced (i.e., are at the same state) with prob-
ability at least3/4, we have proved the mixing time is at
mostt.

2.2 Definitions

For technical reasons, for a graphG = (V,E), we con-
sider the Glauber dynamics defined on the setΩ = [k]V

where[k] = {1, . . . , k}. (This generalization of the dynam-
ics to labellings occurs in all previous works [10, 14, 6, 12].)
The definition of the dynamics is identical to the earlier def-
inition. Observe that the stationary distribution of this new
chain is uniformly distributed over proper colorings. There-
fore, upper bounding the mixing time of this chain implies
the same bound on the mixing time of the original chain
defined only on proper colorings. The purpose of allowing
improper colorings is to make it easier to “interpolate” be-
tween arbitrary legal colorings, a frequent operation in path
coupling.

We will call the elements ofΩ colorings, regardless of
whether they are proper or not. ForX,Y ∈ Ω, denote their
Hamming distance by

H(X,Y ) := |{v ∈ V (G) : X(v) 6= Y (v)}| .

ForX ∈ Ω, v ∈ V , denote the set of available colors forv
in X by

A(X, v) := [k] \X(N(v)).

The subsequent definitions apply to arbitrary sequences
of colorings where successive colorings differ at a sin-
gle vertex (if at all). Therefore, let achain of colorings

be a sequence of coloringsX0, . . . , XT and sequence of
updates{(v(1), c(1)), . . . , (v(T ), c(T )) satisfying, for all
1 ≤ t ≤ T :

Xt(w) =

{
c(t) orXt−1(w) if w = v(t)
Xt−1(w) otherwise

Denote the set ofsuccessful updatesas

Tsucc = {t : Xt(v(t)) = c(t)}.

Definition 2. Let X0, . . . , XTpc be a chain of colorings.
For any vertexv ∈ V , and time0 ≤ t ≤ Tpc, we define the
t-epoch forv, denotedI(v, t) = IX(v, t), as the smallest
time interval containingt, in whichv is successfully recol-
ored twice. In other words,I = (tv, t̂v), wheretv < t < t̂v,
and

tv = max{t′ < t : v = v(t′), t′ ∈ Tsucc}
t̂v = min{Tpc,min{t′ > t : v = v(t′), t′ ∈ Tsucc}}

We next lay down a set of eligibility criteria which must
be met in order for a vertex to be considered for a non-
Markovian update. Although they are technical, we need
them to ensure that our coupling is well-defined.

Definition 3. Let X0, . . . , XTpc be a chain of colorings.
Fix a timet ∈ [1, Tpc]. Forv ∈ V, p ∈ N(v), define the set
of eligible neighborsof v at timet with respect to parentp
as

Nelig(v, p, t)={z ∈ N(v)\{p} : I(z, t)⊆ [t− Tm, t+ Tm]},

whereTm = Cmn for a constantCm which will be spec-
ified in our coupling. Forz ∈ V , define the set ofeligible
colorsfor z at timet as

S−1(z, t)=A(Xt, z)\{c(t′) : t′∈I(z, t)\{t}, v(t′)∈N(z)}.

Finally, we shall be interested in the set of eligible neighbors
of v with a particular eligible colorc, defined as

S(v, c, t)=Sp(v, c, t)={z ∈ Nelig(v, p, t) : c ∈ S−1(z, t)}.

The following definition is the central component of our
non-Markovian updates.

Definition 4. Consider a chain of coloringsX0, . . . , XT ,
time 0 ≤ t < T , adjacent verticesv, p, and colorsc, c′.
ForZ ⊂ N(v) \ {p}, let

S = {z1, . . . , zj} = Z ∪ S(v, c, t) and

S′ = {z′1, . . . , z′j′} = S(v, c′, t),

where these sets are sorted in decreasing order of
|S−1(zi, t)| and |S−1(z′i, t)|, respectively. Let` =
min{j, j′}.
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Define thecomplementary neighborsfor the setZ with
respect to colorsc, c′ and parentp as

CN (Z) =

{
{z′i : zi ∈ Z} if i ≤ ` for all zi ∈ Z
undefined otherwise

Forz′i ∈ S′, α ∈ [k], let

C ′ = {c′1 < · · · < c′m′} = ({α} ∪ S−1(z′i, t)) \ {c, c′},
C = {c1 < · · · < cm} = S−1(zi, t) \ {c, c′}

Let `′ = min{m,m′}. Define thecomplementary colorof
α as

CC(z′i, α) =


cj if α = c′j , for somej ≤ `′

c if α = c′

c′ if α = c

undefined otherwise

For a setZ ′ ⊆ S′ define

CC(Z,Xt) = {CC(z′i, Xt(z′i)) : z′i ∈ Z ′},

whereCC(Z ′, Xt) is undefined ifCC(z′i, Xt(z′i)) is unde-
fined for anyz′i ∈ Z ′.

The following definitions capture when our non-
Markovian updates are applicable.

Definition 5. We sayv is singly blocked with respect to
colorsc, c′ and parentp at timet if

|Xt(N(v) \ {p}) ∩ {c, c′}| = 1,

i.e., exactly one of the colorsc, c′ appears in the neighbor-
hood ofv (excludingw).

Definition 6. Supposev is singly blocked at timet with
respect to colorsc, c′ and parentp. Let

Z = (N(v) \ {p}) ∩X−1
t ({c, c′}) 6= ∅

be the set of blocking vertices. We sayv is swap-eligible at
timet with respect toc, c′ and parentp if additionally

• Z ⊆ Nelig(v, p, t);

• Z ′ = CN (Z) is defined; and

• CC(Z ′, Xt) is defined.

Our final definition captures the generalization of the
Glauber dynamics needed for our application of the path
coupling technique in the proof of our main theorem.

Definition 7. LetA ⊆ V and0 ≤ t ≤ T . LetX0, . . . , Xt

and Y0, . . . , Yt be sequences of random colorings dis-
tributed according to Glauber dynamics, with an arbitrary
coupling that preserves the vertex sequencev(1), . . . , v(t)
(andX0, Y0 are arbitrary). LetZ0, . . . , Zt be defined by the
following interpolationrule: for everyi ≤ t, w ∈ V , set

Zi(w) =
{
Xi(w) if w ∈ A
Yi(w) otherwise

Let the rest of the evolution,Zt+1 . . . , ZT be generated by
Glauber dynamics, with initial coloringZt. Then we say
ZT has aT -step generalized Glauber distribution.

3 Coupling Construction

In this preliminary version of the paper, we only prove
Theorem 1 for∆-regular graphs. The extension to non-
regular graphs involves straightforward generalizations of
the uniformity properties presented in Section 4, and the
extension of the analysis in Section 5.1 to a weighted Ham-
ming distance as used by Molloy [12].

In this section we prove the following lemma, which is
the crux of our proof.

Lemma 8. For everyε > 0, there existCd, Cpc, Cb such
that for every∆-regular graphG on n vertices with∆ >
Cd log n and girth g ≥ 9, and for everyk ≥ (1 + ε)∆,
there exists aTpc = Cpcn-step partial coupling of Glauber
dynamics, defined for all pairs of colorings which differ
at a single vertex, with the following property. Sample
X0 = ZTb according to aTb-step generalized Glauber dis-
tribution, whereTb ≥ Cbn log n. Arbitrarily chooseY0

such thatH(X0, Y0) = 1. Then with probability≥ 1−n−10

(over the random choice ofX0),

E (H(XT , YT ) | X0, Y0) < 1/2,

whereX0, . . . , XT , Y0, . . . , YT are generated according to
our partial coupling, givenX0, Y0.

3.1 Overview

In order to simplify the definition and analysis of our
non-Markovian coupling there are several unlikely events
we want to avoid. For example, we want to guarantee that
the subgraph induced by the set of disagreeing vertices re-
mains a tree throughout our partial coupling. We will de-
fine a good eventGOOD(Tpc) = GOODx0,y0(Tpc), which
will imply that no difficulties arise in our definition of the
non-Markovian partial coupling. If we are not able to estab-
lish all of our desired guarantees, then we will use a basic
Markovian coupling for allTpc steps of our partial coupling.

We will make use of the following notational conven-
tions. LetΛ = ΛTpc := (V × [k])Tpc denote the space
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of all sequences of (vertex, color) choices forTpc steps
of Glauber dynamics. Our coupling works by sampling
sx ∈ Λ uniformly at random, and using it as the sequence
of (vertex, color) choices for(Xt). We first check whether
sx ∈ GOOD(Tpc). If so we iteratively define our non-
Markovian coupling inTpc steps. Otherwise we simply use
a basic (Markovian) coupling.

We denote the above coupling by

sy = fx0,y0(sx) = ((v(1), cy(1)), . . . , (v(Tpc), cy(Tpc))).

Observe that both chains always select the same vertexv(t)
at timet.

Before defining our non-Markovian coupling, we define
the basic (Markovian) coupling. A very similar coupling
was used in all previous coupling arguments for the Glauber
dynamics. Let

Dt = D(Xt−1, Yt−1, v(t))
= {w ∈ N(v(t)) : Xt−1(w) 6= Yt−1(w)},

denote the “disagreeing neighbors” ofv(t).
The basic coupling iteratively setscy(t) = σ(cx(t)),

whereσ = σ(Xt−1, Yt−1, v(t)) is any permutation of[k]
which is a maximal pairing ofXt−1(Dt) \ Yt−1(Dt) with
Yt−1(Dt) \Xt−1(Dt), and is the identity on the remaining
colors.

Note that the basic coupling differs from the maximal
one-step coupling introduced by Jerrum [10, 6, 12, 9], in
that it ignores the colors on “agreeing neighbors.”

In the subsequent section we formally define our non-
Markovian coupling. The following result implies our par-
tial coupling is valid.

Lemma 9. Our coupling satisfiesfx0,y0 = f−1
y0,x0

. Thus,
fx0,y0 is a bijection onΛ.

The proof of Lemma 9 is omitted due to lack of space.

3.2 Partial Coupling: Definition

Consider(x0, y0) ∈ S andsx ∈ Λ. We will define a se-
quences0, s1, . . . , sTpc such thatsj ∈ (V × [k])j andsy =
sTpc . We denotesj = ((v(1), cj(1)), . . . , (v(j), cj(j))) for
all 1 ≤ j ≤ Tpc. Let Y j0 , . . . , Y

j
j be thej-step evolution

from Y j0 = y0 defined bysj .
Fromx0, y0, sx andst−1 we definest, building upon the

basic coupling. We tentatively setct(`) = ct−1(`) for all
1 ≤ ` < t, although we may modify these choices later.
The transition at timet is defined by the basic coupling of
Xt−1 andY t−1

t−1 .
Let σt = σ(Xt, Y

t−1
t , v(t)) denote the permutation of

[k] defining the basic coupling forXt−1 andY t−1
t−1 . For

sx ∈ GOOD(Tpc), the following setM(t) will contain all

times≤ t when a disagreement might propagate.M(t) is
defined as

M(t) =

{
M(t− 1) ∪ t if cx(t) ∈ Y t−1

t−1 (Dt)
M(t− 1) otherwise,

whereDt = D(X,Y t−1, t). Let V (M(t)) = {v(t′) : t′ ∈
M(t)} ∪ {w}, wherew is the disagree vertex betweenx0

and y0. We also define an auxiliary setAUX(t) of ver-
tices which are used in our non-Markovian updates. Let
AUX(0) = ∅.

SayGOOD(t) holds if all of the following are satisfied:

1. GOOD(t− 1) holds.

2. Unique disagree parent and no repropagation:If
cx(t) ∈ Xt−1(Dt) ∪ Y t−1

t−1 (Dt), then|Dt| = 1, and
v(t) /∈ V (M(t− 1)) ∪ AUX(t− 1). We refer to the
unique disagree neighbor as the “parent” vertex de-
noted byp = p(v(t)).

3. Locally tree-like: If t ∈ M(t), then the subgraph in-
duced by

V (M(t)) ∪AUX(t−1) ∪N(v(t)) ∪N(N(v(t))\{p})

does not contain a cycle.

4. Swap-eligible: For Tm < t ≤ Tpc (whereTm =
Cmn), colorscx(t), ct(t) and parentp = p(v(t)), if
t ∈M(t) andv(t) is singly blocked, thenv(t) is swap-
eligible. (Recall Definitions 5 and 6.)

If GOOD(t) does not hold, we simply definesy via the
basic coupling for the entireTpc steps.

If GOOD(t) holds,Cmn < t ≤ Tpc andv = v(t) is
swap-eligible (with respect to colorscx(t), ct(t) and parent
p), we perform the following modifications of earlier times.
Denote the blocked color ofv ascb, and the unblocked color
asca. Note that{cb, ca} = {cx(t), ct(t)}.

Let Z = X−1
t (cb) ∩ N(v) \ {p} = {z1, . . . , zi} 6= ∅

be the set of neighbors ofv which block colorcb at timet.
Let Z ′ = {z′1, . . . , z′i} = CN (Z) andC = {c1, . . . , ci} =
CC(Z ′, Xt), whereCN andCC are defined with respect to
vertexv, colorscb, ca, parentp and timet (see Definition 4).
Condition 4 ensures that the setsZ ′ andC are well defined.

Now, for all 1 ≤ j ≤ i, we do the following modifi-
cations of earlier times (these are our non-Markovian up-
dates):

• Let tj = tzj , t
′
j = tz′j denote the last successful recol-

orings of verticeszj andz′j respectively, prior to time
t.

• Redefine the color choice for our coupling at these
times asct(tj) := cj andct(t′j) := ca. Observe that if
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cb = Y t−1
t−1 (p), the modifications at these earlier times

ensure that the attempted recoloring ofv at timet does
not work in either chain. Conversely, ifcb = Xt−1(p),
the recoloring ofv at timet now works in both chains.

• For each times wheretj < s < t, v(s) ∈ N(zj) and
cx(s) = cb, redefinect(s) := cj . Similarly, for times
s such thatt′j < s < t, v(s) ∈ N(z′j) andcx(s) =
Xt−1(z′j), redefinect(s) := ca. These modifications
ensure that these updates are still blocked by vertexzj
or z′j .

Finally, we need to defineAUX(t). The set of neighbors of
Z ∪ Z ′ whose color choices are modified is denoted as

W ={w : there existsz ∈ N(w)∩(Z ∪ Z ′) , s ∈ I(t, z),
such thatv(s) = w, cx(s) = Xt−1(z)}.

If we performed a non-Markovian update, we set

AUX(t) = AUX(t− 1) ∪ Z ∪ Z ′ ∪W,

otherwise we setAUX(t) = AUX(t− 1).
Additionally, forGOOD(Tpc) we further check that the

subgraph induced byV (M(Tpc)) ∪ AUX(Tpc) does not
contain a cycle.

Remark 10. Before concluding, let us observe the effect
of a non-Markovian update at timet. Whencx(t) = cb
these updates ensure the attempted update ofv(t) does not
work in either chain, so the Hamming distance stays un-
changed. Whencx(t) = ca the attempted update succeeds
in both chains, increasing the Hamming distance by one.
Without our non-Markovian updates, either possibility for
cx(t) would increase the Hamming distance by one. Thus,
these updates reduce the expected change in Hamming dis-
tance, which is the key to our improvement.

4 Local Uniformity Properties

In order to prove our Lemma 8, we require several “lo-
cal uniformity” properties of randomk-colorings, which are
key to showing that our partial coupling decreases Ham-
ming distance in expectation. After a “burn-in” period of
O(n log n) steps, colorings generated by the Glauber dy-
namics will satisfy these properties, with error probability
≤ n−10. The same general approach was taken in the earlier
papers of Dyer and Frieze [6], Molloy [12] and Hayes [9];
although this section somewhat extends their catalog of lo-
cal uniformity properties, no new techniques are required.

The following theorem summarizes the burn-in proper-
ties required for the analysis of our partial coupling. Only
the third part is new (see Remark 12).

Theorem 11. For everyε, δ > 0, there existsCd, Cb, Cm
such that the following hold. LetG = (V,E) be a ∆-
regular graph onn vertices with∆ ≥ Cd log n and girth
g ≥ 6. Let k > (1 + ε)∆, t ∈ [Cbn log n, T ], p ∈ V
andc, c′ ∈ [k]. SampleX0, X1, . . . , XT from a generalized
Glauber distribution. Then, with probability≥ 1 − n−10,
the coloringXt−1 satisfies

1. Pr (t ∈ Tsucc | Xt−1, v(t) = p) ≈ exp(−∆/k).

2. Pr (t ∈ Tsucc | Xt−1, c(t) = c, v(t) ∈ N(p))
≈ exp(−∆/k).

3. Assumingt < T − Cmn,

Pr
(
v(t) is singly blocked
but not swap-eligible

∣∣∣ Xt−1,
v(t) ∈ N(p)

)
≈ 0.

In each of the above statements,a ≈ b means|a− b| ≤ δ.

Remark 12. The lower bound in part 1 of Theorem 11 is
due to Dyer and Frieze [6], and the upper bound is due to
Molloy [12]. We have rephrased the result somewhat from
its original form. The second result is due to Molloy [12].
In both cases, the results were originally proved for girth
Ω(log log n), and the reduction to constant girth is due to
Hayes [9]. The third result is new. We note that the as-
sumption thatG is ∆-regular can be removed with only mi-
nor modifications to the conclusions, and was not present in
the original results. Also, the girth requirement is only5 for
the first result, and can possibly be reduced by one more.

We note that the results of Dyer and Frieze, Molloy, and
Hayes all were originally proved for the heat bath version
of the Glauber dynamics, in which the colorc(t) is chosen
randomly from the set of available colors forv(t) (and so
every recoloring attempt succeeds). Fortunately, all their
proof techniques extend with minor modifications to the
Metropolis version considered here, as well as to the gener-
alized Glauber dynamics (see Definition 7).

The proof of Theorem 11 is omitted due to lack of space.

5 Analysis of our Partial Coupling

5.1 Coalescence Probability

In this section we complete the proof of Lemma 8.
Let H(t) denote the event that, looking only at

X0, . . . , Xt, the good eventGOOD(t) cannot be ruled out
a priori. In other words, no repropagation or near-cycle-
traversal has occurred, and no non-Markovian update has
been observed to fail (i.e., a singly blocked vertex which is
not swap-eligible). Thus,H(t) ⊇ GOOD(t), since a singly
blocked vertex may be swap-ineligible, but we may not ob-
serve this until some later timet′ ∈ [t, t + Tm]. Observe
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that ⋂
t≤Tpc

H(t) =
⋂
t≤Tpc

GOOD(t) = GOOD(Tpc).

To simplify our argument, letG(t) denote the intersec-
tion of the eventsH(t) and all the high probability events
from Section 4. LetB(t) be the complementary “bad” event
for eventG(t).

Our approach is based on the observation that

E
(
H(XTpc , YTpc)

)
≤ E

(
H(XTpc , YTpc) | G(Tpc)

)
Pr (G(Tpc))

+E
(
H(XTpc , YTpc) | BAD(Tpc)

)
Pr (BAD(Tpc))

+nPr (B(Tpc) \ BAD(Tpc)). (1)

The eventB(Tpc) \ BAD(Tpc) is a subset of the event that
some high probability event from Section 4 fails to hold.
The probability of this event is at mostn−5. Thus, the non-
trivial aspect of the analysis is to bound the first two sum-
mands on the right hand side. In the next three Lemmas, we
will upper bound these quantities, showing that their sum is
less than1/2. SinceH(X0, Y0) = 1, this will complete the
proof of Lemma 8.

Lemma 13. For everyε, Cpc > 0 there existsCd such that
wheneverG has maximum degree∆ ≥ Cd log n and girth
g ≥ 9, k ≥ (1 + ε)∆, Tpc = Cpcn, then

Pr(BAD(Tpc)) < 4 exp(−5Cpc).

Proof. Recall that there are three ways for the event
BAD(Tpc) to occur: traversing a cycle, repropagation, or
a singly blocked vertex being ineligible for a swap. We’ll
prove an upper bound ofexp(−5Cpc) on each, conditioned
on the non-occurrence of the earlier types of bad event.

We begin by bounding the probability the potential dis-
agreement setM(Tpc) gets large. We then bound the prob-
ability of certain bad events by conditioning onM(Tpc) be-
ing small, and using the following observation, forD > 0,

Pr(BAD(Tpc))
< Pr (BAD(Tpc) | |M(Tpc) ∪AUX(Tpc)| > D)

+ Pr (|M(Tpc) ∪AUX(Tpc)| > D)

Large disagreement:ForD > 0 we will prove

Pr (|M(t)| ≥ D) ≤ exp(−D exp(−Cpc)). (2)

For 1 ≤ i ≤ D, let ti be the time at which thei’th dis-
agreement is generated (possibly counting the same vertex
multiple times). Denotet0 = 0. Let ηi := ti − ti−1 be
the waiting time for the formation of thei’th disagreement.
Conditioned on the evolution at all times in[0, ti], the distri-
bution ofηi is stochastically dominated by that of a Poisson

random variable with ratei∆/kn, since at all times prior to
ti we have|M(t)| ≤ i and thus the setM(t) increases with
probability at mosti∆/kn. Being somewhat generous, let
us assume eachηi is an independent Poisson random vari-
able with ratei∆/kn. Our problem is now to bound the
probability thatη1 + · · ·+ ηD < Tpc.

Now, consider the problem of collectingD coupons,
when each coupon is generated by a Poisson process with
rate∆/kn. The delay between collecting thei’th coupon
and thei + 1’st coupon is Poisson distributed with rate
(D − i)∆/kn. Hence the time to collect allD coupons
has the same distribution asη1 + · · · + ηD. But the event
that the total delay is less thanTpc is nothing but the inter-
section of the (independent) events that each coupon is hit
in [0, Tpc]. The probability of this is at most

(1− exp(−Tpc∆/kn))D < exp(−D exp(−Cpc)).

A very similar bound can be established for
|M(t) ∪ AUX(t)| (see the full version of this paper):

Pr (|M(t) ∪AUX(t)| ≥ D) ≤ exp(−D exp(−10Cpc)).

SettingDmax = 5Cpc exp(10Cpc), we have

Pr (|M(t) ∪AUX(t)| ≥ Dmax) ≤ exp(−5Cpc).

We can now condition on|M(t) ∪ AUX(t)| ≤ Dmax

for all t ≤ Tpc and add an extra term ofexp(−5Cpc) into
the upper bound on the probability of the bad event. This
establishes the first upper bound.

Locally Treelike/No Repropagation:A single argu-
ment can be used to establish the “locally tree-
like” and “no repropagation” conditions from the
definition of the good event. Fixx0, y0 and
sx,<t = ((v(1), cx(1)), . . . , (v(t− 1), cx(t− 1))).
Let A(t) be the event that, at timet, a disagreement
propagates from parent vertexp ∈ M(t− 1), and there
exists w ∈ V (M(t− 1)) ∪ AUX(t− 1) such that
d(v(t), w) < d(p, w) < g/2, whered denotes shortest-path
distance inG. Notice that both repropagation and violating
the locally tree-like condition are special cases ofA(t).
Thus it will suffice to prove a suitable upper bound on
Pr
(
A(t) | x0, y0, sx,<t

)
.

Supposep, w ∈ M(t− 1) are fixed, withd(p, w) <
g/2. Then by definition of girth, there exists a unique neigh-
bor of p which is closer tow than p is. The probability
that at timet this closer vertex is chosen, together with
p’s color, is 1/kn. Thus |M(t− 1) ∪ AUX(t− 1)|2/kn
is an upper bound on the probability ofA(t). Assuming
|M(t− 1) ∪ AUX(t− 1)| ≤ Dmax, and taking a union
bound overt ≤ Tpc, the probability thatA(t) ever occurs is
at mostCpcDmax

2/Cd log n, which can be made arbitrarily
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small by choosingCd sufficiently large with respect toCpc
(and hence toDmax).

Swaps failing:
It follows from part 3 of Theorem 11 that the proba-

bility of a swap failing at timet, given t ∈ M(t), is at
mostδ. Since there are at mostDmax such times, the prob-
ability that a swap ever fails is at mostδDmax. We can
makeδDmax arbitrarily small by choosingCd sufficiently
large with respect toCpc. This completes the proof of
Lemma 13.

WhenBAD(Tpc) holds we are using the basic coupling
for the Tpc steps. The following Lemma bounds the dis-
tance in this case.

Lemma 14. For everyε > 0 there existCpc, Cd such that
wheneverG has maximum degree∆ ≥ Cd log n and girth
g ≥ 9, k ≥ (1 + ε)∆, Tpc = Cpcn then

E
(
H(XTpc , YTpc) | BAD(Tpc)

)
Pr (BAD(Tpc)) < 1/4.

Proof. If we had (unconditionally) used the basic coupling
for all Tpc-steps, then we claim, for allD > 0,

Pr
(
H(XTpc , YTpc)>D

)
≤ exp(−D exp(−Cpc)). (3)

The proof is the same as for (2).
ForD0 > 0, we have

E
(
H(XTpc , YTpc) | BAD(Tpc)

)
Pr (BAD(Tpc))

<
∑
D≥D0

Pr
(
H(XTpc , YTpc)≥D

)
+D0Pr (BAD(Tpc))

<
∑
D≥D0

exp(−D exp(−Cpc)) + 4D0 exp(−5Cpc)

=
exp(−D0 exp(−Cpc))
1− exp(− exp(−Cpc))

+ 4D0 exp(−5Cpc)

< exp(Cpc −D0 exp(−Cpc)) + 4D0 exp(−5Cpc),

where the second inequality follows by (3) and Lemma 13.
SettingD0 = exp(2Cpc), the above quantity is clearly

< 1/4 for all sufficiently largeCpc.

It remains to bound the expected Hamming distance
when the good eventGOOD(Tpc) holds.

Lemma 15. For everyε, Cm > 0 there existCpc, Cd such
that wheneverG has maximum degree∆ ≥ Cd log n and
girth g ≥ 9, k ≥ (1 + ε)∆, Tpc = Cpcn, then

E
(
H(XTpc , YTpc) | G(Tpc)

)
Pr (G(Tpc)) < 1/4

Proof of Lemma 15.For 0 ≤ t ≤ Tpc, let H̃(t) be defined
by

H̃(t) =

{
H(Xt, Yt) if G(t)
0 otherwise.

Note thatH̃(0) = 1, and

H̃(Tpc) = E
(
H(XTpc , YTpc) | G(Tpc)

)
Pr (G(Tpc)).

The broad outline of our proof is as follows. For the
initial Tm steps of the coupling, where we are not consider-
ing any non-Markovian updates, we use the following easy
bound (see, e.g., [10]). For arbitraryXt, Yt ∈ Ω,

E
(
H̃(t+ 1)

)
≤ (1 + (3∆− k)/nk)H̃(t) < (1 + 2/n)H̃(t). (4)

For the finalTm steps of our coupling, it is possible that
the auxiliary vertices used for non-Markovian updates re-
main disagreements at timeTpc. (However, we are still
guaranteed that these disagreements will not spread.) Given
that a non-Markovian update occurs at timet, the expected
number of auxiliary vertices involved is less than 20 (see
the full version of this paper), conditioned onXt−1, Yt−1,
with high probability. A pessimistic bound is thus

E
(
H̃(t+ 1)

)
≤ (1 + 21(3∆− k)/nk)H̃(t)

< (1 + 42/n)H̃(t). (5)

For the middleTpc− 2Tm steps of our coupling, we will
prove that, whenCd is chosen sufficiently large,

E
(
H̃(t+ 1)

)
≤ (1− δ/n)E

(
H̃(t)

)
, (6)

for a suitable constantδ (of the same order of magnitude
asε). From (4), (5) and (6) we then have

E
(
H̃(Tpc)

)
≤ (1 + 2/n)Tm(1 + 42/n)Tm(1− δ/n)Tpc−2Tm

< 1/4, (7)

whenCpc is sufficiently large relative toδ andCm.
Now letTm < t < Tpc − Tm and condition on the good

eventG(t). In case a bad event occurs at timet+ 1, such as
traversing a cycle, or a non-Markovian update failing, then
H̃(t+ 1) = 0, which would be the best possible outcome.
We will more or less ignore this possibility. Observe that
a disagreement propagates with no swap possible or a non-
blocking swap possible exactly when the attempted update
(v(t), c(t)) for Xt satisfies:

1. The colorc(t) is the same as the color of the parent of
v(t) in Y tt ;

2. The parent ofv(t) is colored differently in the two
chains; and

3. No neighbors ofv(t), excluding its parent, have color
c(t).

9



4. G(t+ 1) holds.

By part 2 of Theorem 11, the rate of this event is at most
∆ exp(−β) + δ∆ with high probability.

On the other hand, by part 1 of Theorem 11, disagree-
ments are recolored to the same color in both chains with
rate at leastk exp(−β) − δ∆ with high probability (again,
ignoring the possibility thatG(t+ 1) fails to hold, which
would be even better). Collecting terms, we now have the
desired bound stated in inequality 6.

Lemma 8 now follows by combining the results of Lem-
mas 14 and 15 with Inequality (1).

5.2 Finishing off the proof

We can now easily prove our main theorem.

Proof of Theorem 1.Given any two initial colorings
X0, Y0 ∈ Ω, we begin by “burning in” both colorings for
Tb = Cn log n steps. We now apply the path coupling
technique (see [2]). Consider an arbitrary canonical
ordering onV , sayV = {v1 < v2 < · · · < vn}, and let
Vi = {v1, . . . , vi}.

For each0 ≤ i ≤ n, we defineZiTb as the interpola-
tion betweenXTb andYTb with respect toVi, see Definition
7. The pathZ0

Tb
, . . . , ZnTb (with self-loops removed) is of

lengthH(XTb , YTb), where neighboring colorings on this
path differ at a single vertex.

Compose the Tpc-step couplings guaranteed by
Lemma 8 along this path. By the triangle inequality

E
(
H(XTb+Tpc , YTb+Tpc) | XTb , YTb

)
≤
H(XTb ,YTb )∑

i=1

E
(
H
(
Zi−1
Tb+Tpc

, ZiTb+Tpc

)
| Zi−1

Tb
, ZiTb

)
.

By Lemma 8, this expectation is at mostn/2 with prob-
ability ≥ 1 − n−10 over the random choice ofXTb , YTb .
Hence the unconditional expectation ofH(XTb+T , YTb+T )
is upper bounded byn/2 + n−9. Repeating this process of
interpolation and composing partial couplings forO(log n)
iterations, the result easily follows by standard techniques
(e.g., see the proof of the path coupling theorem in [2]).

References

[1] D. J. Aldous. Random walks on finite groups and
rapidly mixing Markov chains. InŚeminaire de Prob-
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