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Abstract

We study a simple Markov chain, known as the Glauber

dynamics, for randomly sampling (propétjcolorings of
an input graphG on n vertices with maximum degrek
and girth g. We prove the Glauber dynamics is close to
the uniform distribution aftetO(nlogn) steps whenever
k> (1+¢A, forall e > 0, assumingg > 9 and

A = Qogn). The best previously known bounds were
k > 11A/6 for general graphs, anél > 1.489A for graphs
satisfying girth and maximum degree requirements.

Our proof relies on the construction and analysis of a
non-Markovian coupling. This appears to be the first ap-
plication of a non-Markovian coupling to substantially im-
prove upon known results.

1 Introduction
1.1 Overview

Given a graphG = (V, E) with maximum degreé\, is
there an algorithm which randomly generatefs-eoloring
wheneverk > A and runs in time polynomial in the size
of G? A k-coloring is an assignment of colors to vertices
o : V — [k] such that all neighboring vertices receive dif-
ferent colors. Although constructing such a coloring is triv-
ial providedk > A, even with this many colors the sam-
pling problem seems difficult.

Eric Vigoda

gorithms for the corresponding #P-complete counting prob-
lem (estimating the number &fcolorings), see [10].

It is widely believed there is an efficient scheme for sam-
pling colorings whenevek > A + 2. Surprisingly, the
following very simple Markov process likely suffices. The
Markov chain, popular in the Statistical Physics commu-
nity, is known as theGlauber dynamicgMetropolis ver-
sion). From a coloringX; € €2, we perform the following
transitionX; — X;,1:

e Choose a vertex and colorc uniformly at random
from V and|k] respectively.

o SetX;,1(2) = X¢(z) forall z #£ v.

e If no neighbors ofv have colorec in X;,4, then set
Xi4+1(v) = ¢, otherwise sei; 1 (v) = X, (v).

It is straightforward to verify that the Glauber dynamics for
all k > A + 2 is ergodic and time-reversible with unique
stationary distribution uniformly distributed ovex.

Our goal is to analyze thmixing timeof the Glauber
dynamics. Roughly speaking, the mixing time is the num-
ber of transitions till the chain is close to stationarity from
an arbitrary initial coloring; see Section 2.1 for a formal
definition. Fast convergence of the Glauber dynamics has
implications for phase transitions in the Potts model, e.g.,
see [3, 8].

The first significant progress was by Jerrum [10], prov-
ing the mixing time isO(nlogn) wheneverk > 2A. In-
dependently, Salas and Sokal [13] proved closely related re-

This problem has received considerable attention in theSults about phase transitions in the Potts model. Vigoda [14]
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Physics communities. (In Statistical Physics jargon, we complicated Markov chain, which implie@(n*) mixing

want to efficiently simulate the Gibbs distribution of the

zero-temperature anti-ferromagnetic Potts model [13].) Ef-

time of the Glauber dynamics.
Dyer and Frieze [6] focused attention on locally tree-

ficient sampling algorithms are central to approximation al- like graphs with large maximum degree, specifically—
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Q(logn) and girthg = Q(log A).} Under these assump-
tions, they proved)(n logn) mixing time of the Glauber
1.763. Molloy

[12], under the same assumptions, proved the same conclu-
sion whenk > a1 A, wherea; ~ 1.489. Very recently,

~
~

1The girth of a graph is the length of the shortest cycle.



Hayes [9] reduced the girth requirement in Molloy’s result
tog > 6.

All the aforementioned analyses of the Glauber dynam-

assuming the grapff?, S) is connected. This “partial cou-
pling” is then extended to a coupling for an arbitrary pair
of states. This approach has been instrumental in simplify-

ics use an approach known as the coupling method (see Sedng and improving results obtained via the coupling method

tions 1.2 and 2.1), and more specifically a “maximal one-
step coupling”. Molloy’s result seems to be the best pos-

(seee.qg., [7, 14]).
In the setting of graph colorings, is defined as the pairs

sible using this approach; it appears that no one-step couof colorings which differ at exactly one vertex. To bound

pling, also known as &arkovian coupling coalesces in
polynomial time beyond Molloy’s threshold (see [12, Sec-
tion 4]). In fact, Molloy raises the question of whether the
constantn; can be improved at all, and still have polyno-
mial mixing time.

We give a positive answer, and in fact prove foreatt 0
thatk > (1+ ¢)A suffices, assuming sufficiently large girth
(9 suffices) andA = Q(logn) (the implicit constant de-
pends exponentially oi/e). Our proof uses a new cou-
pling, defined with respect to th@n-step evolution of the
Glauber dynamics, for some fix&d > 0. Our coupling is
an example of aon-Markovian couplingf the Glauber dy-

the coalescence time it suffices to define a joint evolution
where the Hamming distance decreases in expectation.

A naive one-step coupling works whén> oA where
«a = 3. Consider a pair of state&,, Y; which only dif-
fer at vertexw, say X;(w) = ¢x andY;(w) = ¢y. The
naive coupling chooses for both chains the same vertex
v and colorc for the attempted update. Observe that if
vé Nw)={z¢€V:(wz) € E)}orc ¢ {cy,cx}
then the attempted recoloring works or fails in both chains.
Thus, there are at mo21\ transitions which might increase
the distance. Conversely, after any successful recoloring
of w the two colorings are identical, and there are at least

namics. The non-Markovian aspect of our coupling appears;, — A such recolorings. For this coupling the condition

to be an essential feature.
Here is the formal statement of our result.

Theorem 1. For everye > 0, there exists” > 0 such that
for every graphZ onn vertices with maximum degree >
Clogn and girthg > 9, and for everyk > (1 + €)A,
the Glauber dynamics fdt-coloring G has mixing time at
mostCn log n.

We continue with an informal exposition on the cou-
pling technique along with its application in related previ-
ous work. We then briefly describe the intuition behind our
improvement.

1.2 Previous Results

A coupling is simply a joint stochastic procegk;, Y;)
on  x Q. Our only requirement is that each of the pro-
cessesX;) and(Y;) viewed in isolation must be a Markov
chain evolving with the same transition probabilities. No

k — A > 2A implies the Hamming distance decreases in
expectation. Hence, we ha@n logn) coalescence time,
and the same bound on the mixing time.
Jerrum [10] reduced: to 2 via a simple modification
of the above coupling. First, choose a random vertex and
color, say(v,c). If v € N(w) andc € {cy,cx}, then set
¢ = {ey,ex} \ c¢. Otherwise, set’ = ¢. Jerrum’s cou-
pling attempts the recolorin@, ¢) in X; and(v, ) in Y;.
There is how at most one coupled color pair per neighbor
of w which might increase the distance (namely= cy).
For Jerrum’s coupling, the conditioh— A > A implies
O(nlogn) mixing time of the Glauber dynamics. In fact,
Jerrum’s analysis is tight for a worst pair of initial states.
Dyer and Frieze [6] avoid the worst-case scenario in Jer-
rum’s analysis by running the chains for a “burn-in period”
before attempting the coupling. The burn-in period is suffi-
ciently long for most vertices in the neighborhood:ofo be
recolored at least once. Assuming girth= Q(loglogn),
the color choices on the neighborhooduotvill be roughly

restrictions are placed on the correlations between the twoindependent, as there is insufficient time for the dynamics

chains, a feature essential to the power of the approach.
The goal is to design a coupling which minimizes the

coalescence time, i.e., the smallestich thatX; = Y; with

probability > 1/2. The coalescence time from the worst

to communicate the color choices along a path of length at
leasty. It then follows that the expected number of available
colors forw is roughlyk(1 — 1/k)* ~ kexp(—A/k). Fur-

ther assuming\ = Q(logn), with high probability every

pair of initial states is easily seen to be an upper bound onvertex has clo_se to its expected n_umber of available_ colors
the mixing time (see Section 2.1). Despite several successe#or a polynomial number of transitions of the dynamics. It

of this technique, (see e.g., [10, 11]) it is often an difficult
task to design and analyze a coupling for all pairs of initial
states.

The Path Coupling Theorem of Bubley and Dyer [2]
is a powerful tool for simplifying the coupling method.

then suffices to haveexp(—A/k) > A, which reduces
to (approximately)l.76322.

Molloy [12] further reducedv to 1.48908. In addition to
the number of available colors, Molloy bounds the number
of neighbors of w which include two specific colors (e.g.,

Roughly speaking, it suffices to define and analyze a cou-cy andcy) in X;(N(v) \ {w}). Such av can not be re-

pling for only those initial pairs from a subsst C QZ2,

colored tocx or cy in either chain. Thus, under Jerrum’s



coupling there are no transitions which caus® differ in in N*(z') = N(z') \ {v} at any time then we include’
the two chains, i.ey is “blocked” from the “bad” update in  in S(cx). A vertexz’ € S(cx) can be used to block the
both chains. attempted update iF, without direct “side effects.”

After the burn-in period, we haviS(cx)| ~ [S(cy)|
1.3 Our Approach with sufficiently high probability. We define a bijection (in
fact, a “near-bijection”) between the sgfcx ) and the anal-

Our focus is on those updates which succeed in exactlyogous sef(cy ). Givenz € S(cy ), the bijection defines an
one of the coupled chains, what we will calhgly blocked  associated’ € S(cx). We now modify the evolution of
updates Under Jerrum’s coupling, this type of update al- Y at earlier times, specifically at the previous updates of
ways increases the Hamming distance. Roughly speakingandz. At the last (prior to time&) successful recoloring of
if we could create a coupling where updates always succeed:’ we still recolor it toX,(z") in X, but we recolor it ta:x
in both chains or fail in both chains, we would eliminate inY. Consequently, the attempted update af timet fails
half of these increases. This is exactly what we do. Let usin both chains.
examine these singly blocked updates in more detail.

We are interested in coupled updates @ N (w) which
succeed in exactly one of the chains. Suethas one of the
colors, sayc = cy, in its neighborhoodV*(v) = N(v) \
{w}, but not¢’ = cx. In this scenario the attempted update
of v to ¢y fails in X, (i.e., it is blocked by some vertex in
N*(v)), butthe update af to cx succeeds ii¥;. Hence, the
coupled (attempted) recoloring ofincreases the Hamming
distance. In the symmetric scenario where cy andc’ =
cy, the update of succeeds iX;, but fails inY;.

Our aim is to couple these “singly blocked” scenarios to-

In order to ensure our partial coupling is valid, we make
it “reversible”. This requires also modifying the last up-
date of z in a reverse manner te’. In particular, let
S~1(2") denote those colorsfor which 2’ € S(c). These
are the colors which can be “swapped” with the current
color of z’ and not affect the coloring oiv*(z’). We de-
fine a bijection between the st !(2’) and the analogous
setS~1(z). (This requires that we choosezasuch that
|S71(2")] ~ |S~1(2)|.) Given the color of:’ at timet in
X, the bijection defines a complementary color, sajor

’ ; z. We then perform the following modification of the evolu-
gether. As aresult, the attempted update @lbeit to dif- o o5y At the last (prior to time) successful recoloring
ferent colors in the two chains), will succeed in both chains of = we still recolor it tocy in X, but we recolor it ta in

or fail in both chains. Such a coupling necessitates havingy-
different colorings on the neighborhodd@*(v). The high-
level idea is to introduce temporary disagreements on two We call such asequence of modifications of the evolution
vertices, say andz’, in N*(v). Vertexz will block the up- of Y at earlier times a “non-Markovian update”. Our cou-
date ofv in X, while 2’ will block the update irt;. Surpris-  Pling evolvesX for Cy.n steps where,,. is a sufficiently
ingly, we can guarantee that the temporary disagreementdarge constant. We then evolue according to Jerrum’s
we create will disappear before their disagreement propa-coupling, applying non-Markovian updates whenever pos-
gates. This requires examining the vertex-color choices atsible. These non-Markovian updates are defined to be sym-
many future times. This is the crucially non-Markovian as- Metric with respect to the roles &f andY'. More precisely,
pect of our Coup”ng_ In some sense we look into the future if we take the final evolution oY (after all non-Markovian
evolution to find a suitable andz’, then revisit past deci- updates were applied) and evol¥eunder our coupling, we
sions. obtain the original evolution oX. This reversibility of our

Here is a more precise (although still vague) picture of coupling willimply it is a valid coupling.
our non-Markovian coupling. Consider a pair of evolutions
Xo,...,XrandYy,...,Yr, coupled under Jerrum’s cou-
pling. Suppose these chains only differ at vertexip till 1.4 Outline of the Paper
time t with X;(w) = ¢x,Y:(w) = cy. Attimet, under
Jerrum’s coupling, we attempt to updatec N*(w) to cy
in X; andcy in Y;, and there is a unique € N*(v) col-
oredcy, but noz’ € N*(w) coloredcx. We will modify
the coloring onN*(w) in Y; so that the attempted update
fails in Y; as well.

Let S(cx) denote those’ € N*(v) whose current color
can be replaced byx and only affect the update at time
t. In other words, suppose at the last successful recoloring
of 2’ we had instead successfully updatédo cy; if this
modification does not affect the coloring of any neighbors A full version of this paper is available online.

The following section presents background material on
the coupling technique, and introduces notation and defi-
nitions which will be useful in the remainder of the paper.
Many readers may prefer to skip directly to Section 3 during
their initial reading. Section 3 formally presents our partial
coupling. Before analyzing the coupling in Section 5, we
present some uniformity results in Section 4.



2 Preliminaries be a sequence of coloringsy, ..., X and sequence of
updates{(v(1),¢(1)),..., (v(T),c(T)) satisfying, for all

2.1 Coupling Technique 1< t< T
Let Q) denote the states of the Glauber dynamiests X,(w) = c(t) or Xy (w) if w=wv(t)
transition matrix, anet its stationary distribution. For a pair K Xi—1(w) otherwise

of distributionsy andr onQ let dry (u, v) denote their (to-

tal) variation distance. The mixing time is defined as the Denote the set aduccessful updatess

number of steps until the Glauber dynamics is within varia-

tion distancel /4 of =, starting from the worst initial state. Touee = {t: Xi(v(t)) = c(t)}-
We use the coupling method to bound the mixing time. A yqfinition 2. Let X,

t-step coupling is defined as follows. For evéo, Yo) € £or any vertex e V, and time0 < ¢ < Ty, we define the

S, let (X, Y) = (X(x,,v0), Y(x0,%)) b€ @ random vari- _enq0h fory, denotedi(v, ) = Ix(v,t), as the smallest

able taking values if2’ x Q. We say(X,Y)isavalid  {me interval containing, in whichv is successfully recol-

distribution of X, is P*(X,, -) and the distribution o¥; is and

..., X _ be a chain of colorings.
pc

Pe(Yba )
A coupling satisfies the following bound, known as the ¢, = max{t' <t:v=v(t'),t' € Touec}
Coupling Inequality [4] (or e.g., [1]). For alk, € Q, &, = min{Tpe, min{t’ > ¢ : v = v(t'),t' € Tonec}}

t
dry (P*(Xo,),m) < voag Pr (X, #Y: | Xo,Y0) We next lay down a set of eligibility criteria which must

be met in order for a vertex to be considered for a non-

Therefore, by defining a&-step coupling where all initial _ ;
pairs have coalesced (i.e., are at the same state) with probl_vlarkowan update. -Although they are technical, we need

ability at least3/4, we have proved the mixing time is at them to ensure that our coupling is well-defined.

mostt. Definition 3. Let Xj,..., X7, be a chain of colorings.
o Fix atimet € [1,Ty.]. Forv € V,p € N(v), define the set
2.2 Definitions of eligible neighborof v at timet with respect to parent
as

For technical reasons, for a graph= (V, E), we con-
sider the Glauber dynamics defined on the @et= [k]V Nelig(v,p, t)={z € N()\{p}: I(2,t) C[t — T, t + T]},
wherelk] = {1,..., k}. (This generalization of the dynam- ) )
ics to labellings occurs in all previous works [10, 14, 6, 12].) WhereT,, = Cy,n for a constant;,, which will be spec-
The definition of the dynamics is identical to the earlier def- ified in our coupling. For € V, define the set oéligible
inition. Observe that the stationary distribution of this new colorsfor z at timet as
chain is uniformly distributed over proper colorings. There- __; _ N p
fore, upper bounding the mixing time of this chain implies STz )= AKX, )\ () el (z,D\{th, v(t) €N (2)}-
the same bound on the mixing time of the original chain Fina|ly, we shall be interested in the set of eligible neighbors

defined only on proper colorings. The purpose of allowing of ,, with a particular eligible coloe, defined as
improper colorings is to make it easier to “interpolate” be-

tween arbitrary legal colorings, a frequent operation in path S(v, ¢, t) =S, (v, ¢, t) = {2 € Najig(v,p,t): c € S~ (2,1)}.
coupling. . L

We will call the elements of2 colorings, regardless of The following definition is the central component of our
whether they are proper or not. F&t Y € ©, denote their ~ hon-Markovian updates.

Hamming distance by Definition 4. Consider a chain of coloringXy, ..., Xr,

H(X,)Y):=[{veV(G): X(v)#Y ()} . time 0 < t < T, adjacent vertices, p, and colorsc, ¢'.

. ForZ c N(v) \ {p}, let
For X € Q,v € V, denote the set of available colors for

|nbe S:{Zl,...,Zj} = ZUS(U,C,t)and
A(X,v) = [k] \ X(N(v)). S =A{e,... .55t = S(v,d1),
The subsequent definitions apply to arbitrary sequenceswvhere these sets are sorted in decreasing order of

of colorings where successive colorings differ at a sin- |[S7%(z;,t)| and |S™1(2/,t)|, respectively. Let{ =
gle vertex (if at all). Therefore, let ahain of colorings  min{j, j'}.



Define thecomplementary neighbofer the setZ with
respect to colors, ¢’ and parenp as

{

Forzl € S, a € [K], let

{#}: 2, € Z}
undefined

if i </forall z;, € Z
otherwise

CN(2)

({a}US™H (=, 1)) \ {e, '},
Sil(ziﬁt) \ {C7 C/}

Let ¢ = min{m,m’}. Define thecomplementary coloof
« as

C'={d<---<d,}
C={c1 < - <cm}

¢y if = c;-, for somej < ¢/
ifa=¢
cc(a) =1 ", re=c
c ifa=c
undefined otherwise

For asetZ’ C S’ define
CC(Z,Xy) ={CC(z, X¢(2)): 2z, € Z'},

whereCC(Z', X;) is undefined ifCC(z}, X (%)) is unde-
fined for anyz; € Z'.

The following definitions capture when our non-
Markovian updates are applicable.

Definition 5. We sayw is singly blocked with respect to
colorse, ¢’ and parenp at timet if

[ X:(N(@)\ {p}) n{e. '} =1,

i.e., exactly one of the colorks ¢’ appears in the neighbor-
hood ofwv (excludingw).

Definition 6. Supposev is singly blocked at time with
respect to colors, ¢’ and parenp. Let

Z=(N@\{ph)nX; ({e,c}) #0

be the set of blocking vertices. We sajs swap-eligible at
timet with respect ta:, ¢’ and parentp if additionally

o 7 g Nelig(vvpat);
e 7' =CN(Z) is defined; and
e CC(Z', X;) is defined.

Our final definition captures the generalization of the
Glauber dynamics needed for our application of the path
coupling technique in the proof of our main theorem.

Definition 7. LetA C Vand0 <t < T. LetXy,...,X;
and Yy, ...,Y; be sequences of random colorings dis-
tributed according to Glauber dynamics, with an arbitrary
coupling that preserves the vertex sequen@dg, . .., v(t)
(and Xy, Yy are arbitrary). Let,, . . ., Z; be defined by the
following interpolationrule: for every; < t, w € V, set

{me if we A

Y;(w) otherwise
Let the rest of the evolutiory,, ..., Zr be generated by
Glauber dynamics, with initial coloring;. Then we say
Z7 has dl'-step generalized Glauber distribution

Zi(w)

3 Coupling Construction

In this preliminary version of the paper, we only prove
Theorem 1 forA-regular graphs. The extension to non-
regular graphs involves straightforward generalizations of
the uniformity properties presented in Section 4, and the
extension of the analysis in Section 5.1 to a weighted Ham-
ming distance as used by Molloy [12].

In this section we prove the following lemma, which is
the crux of our proof.

Lemma 8. For everye > 0, there existCy, C., Cp Such
that for everyA-regular graphG on n vertices withA >
Cylogn and girthg > 9, and for everyk > (1 + €)A,
there exists &, = C),.n-step partial coupling of Glauber
dynamics, defined for all pairs of colorings which differ
at a single vertex, with the following property. Sample
Xy = Zr, according to al}-step generalized Glauber dis-
tribution, whereT, > Cynlogn. Arbitrarily chooseYj
such that (X, Yp) = 1. Then with probability> 1—7n~1°
(over the random choice df),

E(H(XT,YT) | Xo,Yb) < 1/27

whereXy, ..., Xr, Yy, ..., Y are generated according to
our partial coupling, givenXy, Y.

3.1 Overview

In order to simplify the definition and analysis of our
non-Markovian coupling there are several unlikely events
we want to avoid. For example, we want to guarantee that
the subgraph induced by the set of disagreeing vertices re-
mains a tree throughout our partial coupling. We will de-
fine agood ever§OOD(T},c) = GOODy, y, (Tpc), Which
will imply that no difficulties arise in our definition of the
non-Markovian partial coupling. If we are not able to estab-
lish all of our desired guarantees, then we will use a basic
Markovian coupling for alll},. steps of our partial coupling.

We will make use of the following notational conven-
tions. LetA = Ap,_ := (V x [k])T» denote the space



of all sequences of (vertex, color) choices . steps
of Glauber dynamics. Our coupling works by sampling
sz € A uniformly at random, and using it as the sequence
of (vertex, color) choices fofX;). We first check whether
sz € GOOD(Ty.). If so we iteratively define our non-
Markovian coupling inl},. steps. Otherwise we simply use
a basic (Markovian) coupling.

We denote the above coupling by

Sy = fuoyo(82) = ((v(1),¢y(1)), .-+ (v(Tpe)s cy(Tpe)))-

Observe that both chains always select the same veftgx
at timet.

Before defining our non-Markovian coupling, we define
the basic (Markovian) coupling. A very similar coupling

was used in all previous coupling arguments for the Glauber 2.

dynamics. Let

Dy = D(X¢_1,Yi—1,v(1))
={w e N(v(t): Xi—1(w) # Vi1 (w)},

denote the “disagreeing neighbors™qt).

The basic coupling iteratively sets (t) = o(c.(¢)),
wheres = o(X;_1,Y;—1,v(t)) is any permutation ofk]
which is a maximal pairing of;_1(D;) \ Y:—1(D;) with
Yio1(D:) \ X:—1(Dy), and is the identity on the remaining
colors.

Note that the basic coupling differs from the maximal
one-step coupling introduced by Jerrum [10, 6, 12, 9], in
that it ignores the colors on “agreeing neighbors.”

In the subsequent section we formally define our non-
Markovian coupling. The following result implies our par-
tial coupling is valid.

Lemma 9. Our coupling satisfiegy, 4, Thus,

fzo,u0 1S @ bijection onA.

_ —1
- fyo,mu'

The proof of Lemma 9 is omitted due to lack of space.
3.2 Partial Coupling: Definition

Consider(zg,yo) € S ands, € A. We will define a se-
quences®, s', ..., sTee such that? € (V x [k])7 ands, =
sTre. We denotes? = ((v(1),¢/(1)), ..., (v(j),c(4))) for
all1 < j < T, LetYy,...,Y/ be thej-step evolution
from Y] = y, defined bys’.

Fromzg, yo, s, andst—! we defines?, building upon the
basic coupling. We tentatively set(¢) = c¢!=1(¢) for all
1 < ¢ < t, although we may modify these choices later.
The transition at time is defined by the basic coupling of
X, andY;} .

Let o, = o(X, Y !, v(t)) denote the permutation of
[k] defining the basic coupling foX; , andY;"}'. For
sy € GOOD(Ty.), the following seth (¢) will contain all

times < ¢ when a disagreement might propagalé(t) is
defined as

M(t) = {

whereD; = D(X,Y!1 ). LetV(M(t)) = {v(t') : t' €
M(t)} U {w}, wherew is the disagree vertex betweep
andy,. We also define an auxiliary sétUX(¢) of ver-
tices which are used in our non-Markovian updates. Let
AUX(0) = 0.

SayGOOD(t) holds if all of the following are satisfied:

Mt —1)Ut if c.(t) € Y (Dy)
M(t—1) otherwise,

1. GOOD(t — 1) holds.

Unique disagree parent and no repropagationif
cx(t) € Xi_1(Dy) UY(Dy), then|D;| = 1, and
v(t) ¢ V(M(t—1)) U AUX(¢t — 1). We refer to the
unique disagree neighbor as the “parent” vertex de-
noted byp = p(v(t)).

. Locally tree-like: If t € M(t), then the subgraph in-
duced by

V(M(t)) UAUX(t=1) UN (v(t)) UN (N (v(t)) \{p})
does not contain a cycle.

4. Swap-eligible: For T;,, < t < T, (whereT;, =
Cm), colorse,(t),ct(t) and parenp = p(v(t)), if
t € M(t) andw(t) is singly blocked, them(t) is swap-

eligible. (Recall Definitions 5 and 6.)

If GOOD(t) does not hold, we simply defing, via the
basic coupling for the entirg,. steps.

If GOOD(t) holds,C,,,n < t < T, andv = v(t) is
swap-eligible (with respect to coloes(t), ¢t (¢) and parent
p), we perform the following modifications of earlier times.
Denote the blocked color afasc;,, and the unblocked color
asc,. Note that{cy, ¢, } = {c.(t), c(¢)}.

Let Z = X; ' (cy) N N(v) \ {p} = {z1.....2:} # 0
be the set of neighbors efwhich block colore, at timet.
LetZ' = {z{,...,2l} =CN(Z)andC = {c1,... ,¢;} =
CC(Z', X;), whereCN andCC are defined with respect to
vertexwv, colorsey, ¢,, parent and timet (see Definition 4).
Condition 4 ensures that the sefsandC' are well defined.

Now, for all1 < j < 4, we do the following modifi-
cations of earlier times (these are our non-Markovian up-
dates):

o Lett; = tzj,t;- =t denote the last successful recol-

orings of vertices;; andz; respectively, prior to time

e Redefine the color choice for our coupling at these
times as’*(t;) := ¢; andc!(t}) := c,. Observe that if



cp = Yttjll (p), the modifications at these earlier times Theorem 11. For everye,d > 0, there existCy, Cy, C,y,
ensure that the attempted recoloringGft timet does such that the following hold. Le& = (V,FE) be aA-

not work in either chain. Conversely,df = X;_1(p), regular graph onn vertices withA > C,logn and girth
the recoloring ofy at timet now works in both chains. g > 6. Letk > (1 +¢€)A,t € [Cynlogn,T],p € V
ande, ¢ € [k]. SampleXy, X, ..., X from a generalized

e For each times wheret; < s < t,v(s) € N(z;) and  Glauber distribution. Then, with probability 1 — n 1,
cx(s) = Cp, redefinect(s) = Cj. Similarly, for times the Co|0ri|‘]g)('ti1 satisfies
s such thatt; < s < t, v(s) € N(z}) ande,(s) =
Xi-1(#}), redefinect(s) := c,. These modifications 1. Pr(t € Zauce | Xi—1,0(t) = p) = exp(=A/k).
ensure that these updates are still blocked by vertex 2. Pr(t € Touee | Xi1,c(t) = c,0(t) € N(p))

!
or zj- ~ exp(—A/k).

Finally, we need to definAUX(t). The set of neighbors of

. . 3. Assuming < T — C,,n,
Z U Z' whose color choices are modified is denoted as 9 "

p v(t) is singly blocked | X;_1, ~ 0
W ={w: there exists € N(w)N(ZU Z"),s € I(t, z), "\ but not swap-eligible v(t)e N(p) )~

such thab(s) = w, ca(s) = X;-1(2)}- In each of the above statemenisy b meanga — b| < 4.

If we performed a non-Markovian update, we set Remark 12. The lower bound in part 1 of Theorem 11 is
, due to Dyer and Frieze [6], and the upper bound is due to
AUX(t) = AUX(t-1)uZUuZz' UW, Molloy [12]. We have rephrased the result somewhat from

i its original form. The second result is due to Molloy [12].

otherwise we seAUX(¢) = AUX(t — 1). In both cases, the results were originally proved for girth

Additionally, for GOOD(T,,) we further check thatthe  (15510g 1), and the reduction to constant girth is due to
subgraph induced by (M(Tyc)) U AUX(T),c) does not  pHayes [9]. The third result is new. We note that the as-
contain a cycle. sumption that7 is A-regular can be removed with only mi-
nor modifications to the conclusions, and was not present in
the original results. Also, the girth requirement is osifpr
the first result, and can possibly be reduced by one more.

We note that the results of Dyer and Frieze, Molloy, and
Hayes all were originally proved for the heat bath version
of the Glauber dynamics, in which the cold() is chosen
randomly from the set of available colors foft) (and so

Remark 10. Before concluding, let us observe the effect
of a non-Markovian update at time Whenec,(t) = ¢
these updates ensure the attempted updaté¢tptoes not
work in either chain, so the Hamming distance stays un-
changed. When, (t) = ¢, the attempted update succeeds
in both chains, increasing the Hamming distance by one.

Without our non-Markovian updates, either possibility for every recoloring attempt succeeds). Fortunately, all their
¢, (t) would increase the Hamming distance by one. Thus, y g P ' ¥,

. . ! proof technigues extend with minor modifications to the
these updates reduce the expected change in Hamming dis- : ; .
L . etropolis version considered here, as well as to the gener-
tance, which is the key to our improvement.

alized Glauber dynamics (see Definition 7).

4 Local Uniformity Properties The proof of Theorem 11 is omitted due to lack of space.

In order to prove our Lemma 8, we require several “lo- 2 Analysis of our Partial Coupling
cal uniformity” properties of randork-colorings, which are
key to showing that our partial coupling decreases Ham-5.1 Coalescence Probability
ming distance in expectation. After a “burn-in” period of
O(nlogn) steps, colorings generated by the Glauber dy- In this section we complete the proof of Lemma 8.
namics will satisfy these properties, with error probability Let H(¢) denote the event that, looking only at
< n~1%. The same general approach was taken in the earlierXy, . .., X;, the good even§ OOD(t) cannot be ruled out
papers of Dyer and Frieze [6], Molloy [12] and Hayes [9]; a priori. In other words, no repropagation or near-cycle-
although this section somewhat extends their catalog of lo-traversal has occurred, and no non-Markovian update has
cal uniformity properties, no new techniques are required. been observed to fail (i.e., a singly blocked vertex which is
The following theorem summarizes the burn-in proper- not swap-eligible). Thugi(t) 2> GOOD(t), since a singly
ties required for the analysis of our partial coupling. Only blocked vertex may be swap-ineligible, but we may not ob-
the third part is new (see Remark 12). serve this until some later tim¢ € [¢,¢t + T,]. Observe



that

) Ht) = () GOOD(t) = GOOD(T,.).

t<Tpe t<Tpe

To simplify our argument, le§(¢) denote the intersec-
tion of the event${(¢) and all the high probability events
from Section 4. LeB3(t) be the complementary “bad” event
for eventG(t).

Our approach is based on the observation that

E (H(Xr,.,YT,.))
< E(H(X7,.,Yr,.) | G(Tpe))Pr(G(Tpc))
+E (H(Xr,,, Yr,.) | BAD(Ty))Pr (BAD(Ty,c))
+nPr (B(Tpe) \ BAD(Ty.))- 1)
The event3(T,.) \ BAD(T,.) is a subset of the event that
some high probability event from Section 4 fails to hold.

The probability of this event is at most>. Thus, the non-
trivial aspect of the analysis is to bound the first two sum-

random variable with ratéA /kn, since at all times prior to
t; we havel M (t)| < i and thus the se¥/(¢t) increases with
probability at mostA/kn. Being somewhat generous, let
us assume eaat) is an independent Poisson random vari-
able with rateiA/kn. Our problem is now to bound the
probability thaty;, + --- + np < Tpe.

Now, consider the problem of collectin coupons,
when each coupon is generated by a Poisson process with
rate A/kn. The delay between collecting thih coupon
and thei + 1'st coupon is Poisson distributed with rate
(D — i)A/kn. Hence the time to collect alD coupons
has the same distribution as + - - - + np. But the event
that the total delay is less thdh, is nothing but the inter-
section of the (independent) events that each coupon is hit
in [0, Tpc]. The probability of this is at most

(1 — exp(—TpeAJkn))P < exp(—D exp(—Che)).

A very similar bound can be established for
|M(t) U AUX(t)| (see the full version of this paper):

mands on the right hand side. In the next three Lemmas, we
will upper bound these quantities, showing that their sum is Pr (M (t) U AUX(?)| = D) < exp(—D exp(—10Cy)).

less tharl /2. SinceH (X, Y)) = 1, this will complete the
proof of Lemma 8.

Lemma 13. For everye, C,,. > 0 there exists”,; such that
whenevelG has maximum degre& > Cj;logn and girth
g>9,k> (14 €A, Ty = Cpen, then

Pr(BAD(Tyc)) < 4exp(—5Cpe).

Proof. Recall that there are three ways for the event
BAD(T,.) to occur: traversing a cycle, repropagation, or
a singly blocked vertex being ineligible for a swap. We'll
prove an upper bound ekp(—5C,.) on each, conditioned
on the non-occurrence of the earlier types of bad event.
We begin by bounding the probability the potential dis-
agreement se¥/ (T,,.) gets large. We then bound the prob-
ability of certain bad events by conditioning 8f(7},.) be-
ing small, and using the following observation, for> 0,

Pr(BAD(Ty.))
< Pr(BAD(Tpe) | |M(Tpe) UAUX(Tpe)| > D)
+ Pr (|M(Tp.) UAUX(Te)| > D)
Large disagreementor D > 0 we will prove
Pr(|M(t)] = D) < exp(—=Dexp(=Cpe)).  (2)

Forl < i < D, lett; be the time at which théth dis-

SettingDyyax = 5Cpc exp(10C,,.), we have
Pr (|M(t) UAUX(t)| > Dmax) < exp(—5Cp:).

We can now condition oM (¢) U AUX(t)| < Dmpax
for all t < T, and add an extra term ekp(—5C,.) into
the upper bound on the probability of the bad event. This
establishes the first upper bound.

Locally Treelike/No Repropagation:A single argu-

ment can be used to establish the “locally tree-
like” and “no repropagation” conditions from the
definition of the good event. Fixxzg,yo and

Sx,<t = ((v(1),cx(1)), -, (vt = 1), ca(t — 1))).
Let A(t) be the event that, at timé, a disagreement
propagates from parent vertex € M(¢ — 1), and there
exists w € V(M(t—1)) U AUX(t—1) such that
d(v(t),w) < d(p,w) < g/2, whered denotes shortest-path
distance inG. Notice that both repropagation and violating
the locally tree-like condition are special casesAff).
Thus it will suffice to prove a suitable upper bound on
Pr (A(t) | ®o,Y0, 52, <t)-

Supposep,w € M (t— 1) are fixed, withd(p, w) <
g/2. Then by definition of girth, there exists a unique neigh-
bor of p which is closer tow thanp is. The probability
that at timet this closer vertex is chosen, together with

agreement is generated (possibly counting the same vertey’s color, is1/kn. Thus|M(t —1) U AUX(t — 1)|?/kn

multiple times). Denoté, = 0. Lety; := t; — t;_1 be
the waiting time for the formation of théth disagreement.
Conditioned on the evolution at all times|in ¢;], the distri-
bution ofn; is stochastically dominated by that of a Poisson

is an upper bound on the probability d@f(¢). Assuming

|M(t —1) U AUX(t — 1)| < Dmax, and taking a union
bound over < T, the probability thatA(¢) ever occurs is
at mostC). Dimax~/Cqlog n, which can be made arbitrarily



small by choosing’; sufficiently large with respect t6',,
(and hence td ,,,.x).
Swaps failing:

It follows from part 3 of Theorem 11 that the proba-
bility of a swap failing at timet, givent € M(t), is at
mostd. Since there are at most,,,, such times, the prob-
ability that a swap ever fails is at moéD,,,.. We can
maked D, arbitrarily small by choosing’; sufficiently
large with respect ta’,.. This completes the proof of
Lemma 13. O

WhenBAD(T,.) holds we are using the basic coupling
for the T}, steps. The following Lemma bounds the dis-
tance in this case.

Lemma 14. For everye > 0 there existC,., Cq such that
wheneveiG has maximum degret > Cylogn and girth
9>9,k> (14 €A, Ty = Cpenthen

E (H(Xr,.,Yr,.) | BAD(T.))Pr (BAD(T,.)) < 1/4.

Proof. If we had (unconditionally) used the basic coupling

for all T,.-steps, then we claim, for ald > 0,
Pr (H(Xr,,,Yr,.)>D) < exp(—Dexp(—Cpc)). (3)

The proof is the same as for (2).
For Dy > 0, we have

E (H(Xr,.,Yr,.) | BAD(Ty))Pr (BAD(T)e))

< Y Pr(H(Xg,,Yr,)>D) + DoPr (BAD(T.))
D>Dy

< Z exp(—D exp(—Ch.)) + 4Dg exp(—5Cp.)
D>Dy
exp(—Dy exp(—Cpc))

= 4D —95Cpe
1 — exp(—exp(—Cpe)) 400 exp(=5G;)

< exp(Cpc — Dy exp(—Cle)) + 4Dg exp(—5Che),

where the second inequality follows by (3) and Lemma 13.
SettingDy = exp(2C,.), the above quantity is clearly
< 1/4 for all sufficiently largeC,.. O

It remains to bound the expected Hamming distance ﬁ(t+ 1)

when the good eve@fOOD(Ty.) holds.

Lemma 15. For everye, C,, > 0 there existC,,., Cy such
that wheneveG has maximum degred > Cjlogn and
girthg > 9,k > (14 €)A, Tpe = Cpen, then

E (H(X7,..Y1,.) | 9(Tpe))Pr(G(Tpe)) < 1/4
Proof of Lemma 15For0 < ¢ < T}, Ietf{((t) be defined
by

()

H(X:,Y:) ifG(t)
0 otherwise.

Note thatH (0) = 1, and

Er(TpC) =E (H(XTpcvyTpc) | Q(Tpc))Pr (G(Tpe))-

The broad outline of our proof is as follows. For the
initial 7,,, steps of the coupling, where we are not consider-
ing any non-Markovian updates, we use the following easy
bound (see, e.g., [10]). For arbitraky, Y; € €,

E (Er(t + 1))
< (14 BA—k)/nk)H(t) < (1+2/n)H(t). (4)

For the finalT,,, steps of our coupling, it is possible that
the auxiliary vertices used for non-Markovian updates re-
main disagreements at ting,.. (However, we are still
guaranteed that these disagreements will not spread.) Given
that a non-Markovian update occurs at timéhe expected
number of auxiliary vertices involved is less than 20 (see
the full version of this paper), conditioned dfy_,,Y; 1,
with high probability. A pessimistic bound is thus

E (ﬁf(t n 1)) < (14 21(3A — k) /nk)H(t)
< (1+42/n)H(t). (5)

For the middI€T . — 277, steps of our coupling, we will
prove that, whert’; is chosen sufficiently large,

E (ﬁ(t + 1)) <(1-6/n)E (ff(t)), )

for a suitable constant (of the same order of magnitude
ase). From (4), (5) and (6) we then have

E (H(T;.))
< (1+2/n)Tm(1+42/n)m (1 — 6 /n)Tee=2Tm
< 1/4, )

whendC,,. is sufficiently large relative t6 andC,,.

Now letT,, <t < T, — 1), and condition on the good
eventG(t). In case a bad event occurs at time 1, such as
traversing a cycle, or a non-Markovian update failing, then
= 0, which would be the best possible outcome.
We will more or less ignore this possibility. Observe that
a disagreement propagates with no swap possible or a non-
blocking swap possible exactly when the attempted update
(v(t), c(t)) for X, satisfies:

1. The colorc(t) is the same as the color of the parent of
v(t) in Y

2. The parent ofu(¢) is colored differently in the two
chains; and

3. No neighbors of(t), excluding its parent, have color

c(t).



4. G(t+ 1) holds. [2] R. Bubley and M. Dyer. Path coupling, Dobrushin
unigueness, and approximate counting.Phoceedings
By part 2 of Theorem 11, the rate of this event is at most of the 38th Annual Symposium on Foundations of Com-
Aexp(—p) + ¢A with high probability. puter Science223-231, 1997.
On the other hand, by part 1 of Theorem 11, disagree-
ments are recolored to the same color in both chains with[3] G. R. Brightwell and P. Winkler. Random colorings of a

rate at leask exp(—3) — 6A with high probability (again, CanIey tree. InContemporary combinatoric247-276,
ignoring the possibility thag (¢ + 1) fails to hold, which Janos Bolyai Math. Soc., Budapest, 2002
would be even better). Collecting terms, we now have the

[4] W. Doeblin. Expog de lat theorie des cimes sim-
ples constantes de Markawun nombre fini cBtats.Rev.
Math. Union Interbalkanique?:77-105, 1938.

desired bound stated in inequality 6. O

Lemma 8 now follows by combining the results of Lem-

mas 14 and 15 with Inequality (1). O [5] D. Dubhashi and D. Ranjan. Balls and bins: a study
in negative dependencdRandom Structures and Algo-
5.2 Finishing off the proof rithms; 13(2):99-124, 1998.
) i [6] M. Dyer and A. Frieze. Randomly colouring graphs
We can now easily prove our main theorem. with lower bounds on girth and maximum degree. In
Proceedings of the 42nd Annual Symposium on Founda-
Proof of Theorem 1Given any two initial colorings tions of Computer Sciencg79-587, 2001.

Xo, Yo € Q, we begin by “burning in” both colorings for
T, = Cnlogn steps. We now apply the path coupling [7] M. Dyer and C. Greenhill On Markov chains for inde-
technique (see [2]). Consider an arbitrary canonical —pendent setsl. Algorithms35(1):17-49, 2000.

gdﬁ:r}{r:}g onV,q};}ayV =t < v <o <un andlet [8] M. Dyer, A. Sinclair, E. Vigoda, and D. Weitz. Mixing
fo W T in Time and Space for Lattice Spin Systems: A Combi-

tiorllzgre':/\? gggxé ;nﬁym vV\\//i?hdrizniftTf’ disstgz Ign;z;?t?éi- natorial View. InProceedings of RANDOM 200249-
T Ty P % 163, Lecture Notes in Computer Science 2483.

7. The pach%b7 ..+, Z7, (with self-loops removed) is of
length H (X, Yr,), where neighboring colorings on this  [9] T. P. Hayes. Randomly coloring graphs with girth at
path differ at a single vertex. least five. InProceedings of the 35th Annual ACM Sym-

Compose the Tj,.-step couplings guaranteed by  posium on Theory of Computer Scien269-278, 2003.
Lemma 8 along this path. By the triangle inequality
[10] M. R. Jerrum. A very simple algorithm for estimating
the number ofc-colorings of a low-degree graphRan-
E(H(X Y. Xr,,Y.
HEX ( YT”;T‘“’ n47,.) | X, Y7, ) dom Structures and Algorithmg(2):157-165, 1995.
Ty YTy,
< Z E (H (ZE}J vZ%erpc) | 2;21, Zﬁ)' [11] M. Luby and E. Vigoda Approximately counting up to
i—1 N ' four. In Proceedings of the 29th Annual ACM Symposium

_ o _ on Theory of Computer Sciend&82-687, 1997.
By Lemma 8, this expectation is at mast2 with prob-

ability > 1 — n~1° over the random choice ofr,, Y7, . [12] M. Molloy. The Glauber dynamics on colorings of a
Hence the unconditional expectation®{ X1, .7, Yz, 1 7) graph with high girth and maximum degree.Rroceed-

is upper bounded by /2 + n~°. Repeating this process of ings of the 34th Annual ACM Symposium on Theory of
interpolation and composing partial couplings flog n) Computer Scienc®1-98, 2002.

iterations, the result easily follows by standard techniques

(e.g., see the proof of the path coupling theorem in [2]). [13] J. Salas and A. Sokal Absence of phase transition

for antiferromagnetic Potts models via the Dobrushin
uniqueness theoreml. Statist. Phys86(3-4):551-579,
1997.

References . :
[14] E. Vigoda. Improved bounds for sampling colorings.

J. Math. Phys41(3):1555-1569, 2000.
[1] D. J. Aldous. Random walks on finite groups and ysal(3)

rapidly mixing Markov chains. Irféminaire de Prob-
abilities XVII, 243-297. Springer-Verlag, 1983. Lecture
Notes in Mathematics 986.

10



