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Last Time
Order Relations

Sorting

Analysis of MergeSort, QuickSort

“Unrolling” recurrences to solve them

Binary search

Problem: Ω(n) time to insert/delete

Priority Queues
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Today

Priority Queues & Heaps

Quiz #2

New Reading: secs 3.1 thru 3.4
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Stores a collection of data

Each data has a numeric “key value”

operations supported: add, delete, 
extract_min.

guarantees: O(log n) time per operation

n = current size of collection.

WHiPFO, not FIFO.

Priority Queues
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Data is stored in “nodes”.  

Each node has 4 fields: 

data

parent  (either a ref to a node, or “null”)

left_child (reference to a node or null)

right_child (reference to a node or null)

Binary Trees
“root”

“leaf”

“leaf”“leaf”“leaf”

5Tuesday, September 28, 2010



We say a tree storing “key” values satisfies the 
(min-) heap order property if it is always the case 
that the parent of a node stores a value ≤ than 
the node does.

Such a tree is called a “heap.”

A heap is called “balanced” if every layer except 
perhaps the bottom one, has the maximum 
possible number of nodes.

Q: What is this number?  2L for the L’th level 
away from the root. (“depth L”)

Heap Order Property
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What can we do with a heap?

Can we search it quickly?

No.  (whiteboard)

Can we extract_min quickly?

Well, we can find_min quickly.  But if we extract 
it, we will have to replace the root.

What about adding an element?  Stick it in a 
leaf.  But it might violate the order property!

Heap Order Property
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Goal: Fix a near-heap that has just one value 
out of place.

If it’s smaller than its parent, swap it with its 
parent.  Recurse!  (Heapify-up)

If it’s bigger than a child, swap it with the 
smaller child.  Recurse!  (Heapify-down)

Applet at http://people.ksp.sk/~kuko/bak/
index.html

Reading: Heapify-Up, 
Heapify-Down
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Place new item in leftmost unfilled spot in 
bottom level of tree.  (Start new row if full.)

Run Heapify-Up to restore heap order prop.

Note 1: Heapify-up only does swaps, so it 
preserves the shape of the tree.  Thus, tree 
remains balanced.

Note 2: “Wrong” key only moves up, so 
terminates in ≤ log n iterations.

Adding to Heap
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Grab item from root.  Now root is “empty.”  Replace it 
with the rightmost item in bottom row of tree (remove 
this leaf).

Now the tree is the desired shape, but may violate 
H.O.P. at the root node (key too big).

Run Heapify-Down to restore H.O.P.

Note 1: Heapify-down only does swaps, so it preserves 
the shape of the tree.  Thus, tree remains balanced.

Note 2: “Wrong” key only moves down, so terminates in 
≤ log n iterations.

Extract-min
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Heapify-down(Node v) { // key(v) may be too big.

if (key(v) ≤ keys(all existing children of v))

return    // nothing more to do.

else {

swap v with (child with smaller key)

Heapify-down(that child)

}

Heapify-down
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To delete an arbitrary data item, we need some 
way to locate it quickly in the heap.

Delete
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To delete an arbitrary data item, we need some 
way to locate it quickly in the heap.

1) The heap itself is not going to let us do this.

Delete
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To delete an arbitrary data item, we need some 
way to locate it quickly in the heap.

1) The heap itself is not going to help us do this.

Example:

Delete

0

0 0

0 0 00

2 17 3 4 6 8
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To delete an arbitrary data item, we need some 
way to locate it quickly in the heap.

1) The heap itself is not going to help us do this.

Thus, we need to store some additional data.  
Let’s keep an index array, that, for each element, 
keeps a reference to the node storing it in the 
heap.

* Extra bookkeeping.  When doing swap 
operations, must update this array.

Delete
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To delete an arbitrary data item, we need some 
way to locate it quickly in the heap.

1) The heap itself is not going to help us do this.

Thus, we need to store some additional data.  
Let’s keep an index array, that, for each element, 
keeps a reference to the node storing it in the 
heap.

* Extra bookkeeping.  When doing swap 
operations, must update this array.

Assumes: items come from a small set.  Why?

Delete
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Delete(item i) {

Node v = Position[i]

Remove rightmost leaf from bottom row, placing 
its item in node v;

Update Position array;

Heapify-up(v);

Heapify-down(v);   // why both?

}

Delete
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These 3 operations: Add, Extract-min, Delete, 
always run in time O(log n) for heap of size n.

Why?  Would be time O(1) except for the calls to 
Heapify-Up and Heapify-Down.  For these, the 
function body runs in time O(1), but this needs to 
be multiplied by the number of recursive calls that 
might occur.

Since the “bad node” always moves in the same 
up/down direction, and the tree is balanced, this is 
≤ log n times.

Running Times
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Find-min: (peek)  Returns value of minimum key, 
but doesn’t remove it.  Runs in ?

Additional Operations
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Find-min: (peek)  Returns value of minimum key, 
but doesn’t remove it.  Runs in O(1) time.

Additional Operations
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Find-min: (peek)  Returns value of minimum key, 
but doesn’t remove it.  Runs in O(1) time.

Change-key(item i): give item i a new key value.  
Runs in ?

Additional Operations
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Find-min: (peek)  Returns value of minimum key, 
but doesn’t remove it.  Runs in O(1) time.

Change-key(item i): give item i a new key value.  
Runs in O(log n) time.  We can just Delete item i, 
then Add it again.

Additional Operations
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Find-min: (peek)  Returns value of minimum key, 
but doesn’t remove it.  Runs in O(1) time.

Change-key(item i): give item i a new key value.  
Runs in O(log n) time.  We can just Delete item i, 
then Add it again.

Faster: change its key, then run Heapify-up and 
Heapify-down on it again.  Need to use Position[ ] 
to find it quickly in the first place.

Additional Operations
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We’ve been thinking of a tree in an Object-
Oriented way.  Each Node stores its:

parent, left-child, right-child, data.

Here’s a slick hack that works when:

(a) we know the tree is going to be balanced,

and (b) we know how big it will be.

Hack: Tree in an Array
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For a tree of depth ≤ d, store in an array of 
length 2^(d+1).

Root is in array position 0.

Left-child of i is in position (2*i + 1).

Right-child of i is in position (2*i + 2).

Parent of i is in position (i-1)/2  (integer division), 
except for root.

Null data corresponds to “node not present”

(see whiteboard)

Hack: Tree in an Array
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Read Sections 3.1 to 3.4

Topics: Graphs, Trees (unrooted), 
Connectedness, Criteria for Being a Tree, 

Graph Traversal (DFS, BFS), 

Implementation of Graph Traversal using 
Queues and Stacks

Testing Bipartiteness

Reading Assignment:
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