
CS 361
Data Structures & Algs

Lecture 10

Prof. Tom Hayes
University of New Mexico

09-23-2010

1Tuesday, September 28, 2010

Last Time
Order Relations

Sorting

Analysis of MergeSort, QuickSort

“Unrolling” recurrences to solve them

Binary search

Problem: Ω(n) time to insert/delete

Priority Queues

2Tuesday, September 28, 2010

Today

Priority Queues & Heaps

Quiz #2

New Reading: secs 3.1 thru 3.4

3Tuesday, September 28, 2010

Stores a collection of data

Each data has a numeric “key value”

operations supported: add, delete,
extract_min.

guarantees: O(log n) time per operation

n = current size of collection.

WHiPFO, not FIFO.

Priority Queues

4Tuesday, September 28, 2010

Data is stored in “nodes”.

Each node has 4 fields:

data

parent (either a ref to a node, or “null”)

left_child (reference to a node or null)

right_child (reference to a node or null)

Binary Trees
“root”

“leaf”

“leaf”“leaf”“leaf”

5Tuesday, September 28, 2010

We say a tree storing “key” values satisfies the
(min-) heap order property if it is always the case
that the parent of a node stores a value ≤ than
the node does.

Such a tree is called a “heap.”

A heap is called “balanced” if every layer except
perhaps the bottom one, has the maximum
possible number of nodes.

Q: What is this number? 2L for the L’th level
away from the root. (“depth L”)

Heap Order Property

6Tuesday, September 28, 2010

What can we do with a heap?

Can we search it quickly?

No. (whiteboard)

Can we extract_min quickly?

Well, we can find_min quickly. But if we extract
it, we will have to replace the root.

What about adding an element? Stick it in a
leaf. But it might violate the order property!

Heap Order Property

7Tuesday, September 28, 2010

Goal: Fix a near-heap that has just one value
out of place.

If it’s smaller than its parent, swap it with its
parent. Recurse! (Heapify-up)

If it’s bigger than a child, swap it with the
smaller child. Recurse! (Heapify-down)

Applet at http://people.ksp.sk/~kuko/bak/
index.html

Reading: Heapify-Up,
Heapify-Down

8Tuesday, September 28, 2010

http://people.ksp.sk/~kuko/bak/index.html
http://people.ksp.sk/~kuko/bak/index.html
http://people.ksp.sk/~kuko/bak/index.html
http://people.ksp.sk/~kuko/bak/index.html

Place new item in leftmost unfilled spot in
bottom level of tree. (Start new row if full.)

Run Heapify-Up to restore heap order prop.

Note 1: Heapify-up only does swaps, so it
preserves the shape of the tree. Thus, tree
remains balanced.

Note 2: “Wrong” key only moves up, so
terminates in ≤ log n iterations.

Adding to Heap

9Tuesday, September 28, 2010

Grab item from root. Now root is “empty.” Replace it
with the rightmost item in bottom row of tree (remove
this leaf).

Now the tree is the desired shape, but may violate
H.O.P. at the root node (key too big).

Run Heapify-Down to restore H.O.P.

Note 1: Heapify-down only does swaps, so it preserves
the shape of the tree. Thus, tree remains balanced.

Note 2: “Wrong” key only moves down, so terminates in
≤ log n iterations.

Extract-min

10Tuesday, September 28, 2010

Heapify-down(Node v) { // key(v) may be too big.

if (key(v) ≤ keys(all existing children of v))

return // nothing more to do.

else {

swap v with (child with smaller key)

Heapify-down(that child)

}

Heapify-down

11Tuesday, September 28, 2010

To delete an arbitrary data item, we need some
way to locate it quickly in the heap.

Delete

12Tuesday, September 28, 2010

To delete an arbitrary data item, we need some
way to locate it quickly in the heap.

1) The heap itself is not going to let us do this.

Delete

13Tuesday, September 28, 2010

To delete an arbitrary data item, we need some
way to locate it quickly in the heap.

1) The heap itself is not going to help us do this.

Example:

Delete

0

0 0

0 0 00

2 17 3 4 6 8

14Tuesday, September 28, 2010

To delete an arbitrary data item, we need some
way to locate it quickly in the heap.

1) The heap itself is not going to help us do this.

Thus, we need to store some additional data.
Let’s keep an index array, that, for each element,
keeps a reference to the node storing it in the
heap.

* Extra bookkeeping. When doing swap
operations, must update this array.

Delete

15Tuesday, September 28, 2010

To delete an arbitrary data item, we need some
way to locate it quickly in the heap.

1) The heap itself is not going to help us do this.

Thus, we need to store some additional data.
Let’s keep an index array, that, for each element,
keeps a reference to the node storing it in the
heap.

* Extra bookkeeping. When doing swap
operations, must update this array.

Assumes: items come from a small set. Why?

Delete

16Tuesday, September 28, 2010

Delete(item i) {

Node v = Position[i]

Remove rightmost leaf from bottom row, placing
its item in node v;

Update Position array;

Heapify-up(v);

Heapify-down(v); // why both?

}

Delete

17Tuesday, September 28, 2010

These 3 operations: Add, Extract-min, Delete,
always run in time O(log n) for heap of size n.

Why? Would be time O(1) except for the calls to
Heapify-Up and Heapify-Down. For these, the
function body runs in time O(1), but this needs to
be multiplied by the number of recursive calls that
might occur.

Since the “bad node” always moves in the same
up/down direction, and the tree is balanced, this is
≤ log n times.

Running Times

18Tuesday, September 28, 2010

Find-min: (peek) Returns value of minimum key,
but doesn’t remove it. Runs in ?

Additional Operations

19Tuesday, September 28, 2010

Find-min: (peek) Returns value of minimum key,
but doesn’t remove it. Runs in O(1) time.

Additional Operations

20Tuesday, September 28, 2010

Find-min: (peek) Returns value of minimum key,
but doesn’t remove it. Runs in O(1) time.

Change-key(item i): give item i a new key value.
Runs in ?

Additional Operations

21Tuesday, September 28, 2010

Find-min: (peek) Returns value of minimum key,
but doesn’t remove it. Runs in O(1) time.

Change-key(item i): give item i a new key value.
Runs in O(log n) time. We can just Delete item i,
then Add it again.

Additional Operations

22Tuesday, September 28, 2010

Find-min: (peek) Returns value of minimum key,
but doesn’t remove it. Runs in O(1) time.

Change-key(item i): give item i a new key value.
Runs in O(log n) time. We can just Delete item i,
then Add it again.

Faster: change its key, then run Heapify-up and
Heapify-down on it again. Need to use Position[]
to find it quickly in the first place.

Additional Operations

23Tuesday, September 28, 2010

We’ve been thinking of a tree in an Object-
Oriented way. Each Node stores its:

parent, left-child, right-child, data.

Here’s a slick hack that works when:

(a) we know the tree is going to be balanced,

and (b) we know how big it will be.

Hack: Tree in an Array

24Tuesday, September 28, 2010

For a tree of depth ≤ d, store in an array of
length 2^(d+1).

Root is in array position 0.

Left-child of i is in position (2*i + 1).

Right-child of i is in position (2*i + 2).

Parent of i is in position (i-1)/2 (integer division),
except for root.

Null data corresponds to “node not present”

(see whiteboard)

Hack: Tree in an Array

25Tuesday, September 28, 2010

Read Sections 3.1 to 3.4

Topics: Graphs, Trees (unrooted),
Connectedness, Criteria for Being a Tree,

Graph Traversal (DFS, BFS),

Implementation of Graph Traversal using
Queues and Stacks

Testing Bipartiteness

Reading Assignment:

26Tuesday, September 28, 2010

