
CS 361
Data Structures & Algs

Lecture 12

Prof. Tom Hayes
University of New Mexico

09-30-2010

1

Last Time
Terminology for graphs:

vertex, edge, path, cycle, connected,
component, tree, forest, empty graph

Also: equivalence relation, equivalence
class, rooting trees

Adjacency lists vs adjacency matrix

of edges, # of components

returned Quiz #2

2

Today

Spanning Trees

BFS

DFS

Testing Bipartiteness

3

Suppose G is a graph, with N vertices. What is
the fewest edges G can have?

Zero.

Suppose G is a connected graph with N vertices.
What is the fewest edges G can have?

N-1. Proof? Induction: Start with empty graph.
Then there are N connected components. Each
edge we add can reduce the number of
components by 0 or by 1. So it takes at least N-1
edges to make G connected.

How many edges?

4

Input: A graph G, and vertices s,t.

Output: A path from s to t, if one exists, and

otherwise output “Disconnected”

How do we proceed?

Start at s, and “search outward”

Testing Connectivity

5

Input: A graph G, and vertices s,t.

Output: A path from s to t, if one exists, and

otherwise output “Disconnected”

How do we proceed?

Start at s, and “search outward”

Build up a tree, rooted at s, as we go.

Eventually, we will find all nodes in the
component of s. If t is there, the path from t to
s is t, parent(t), parent(parent(t)), ..., s

Testing Connectivity

6

Spanning Trees
Given any connected graph G=(V,E),
there exists a subset E’ of E, such that T
= (V,E’) is a tree. Such a tree is called a
spanning tree of G.

“spanning” because it “spans” across
all the nodes of G, not just a subset.

Ex:

7

Spanning Trees
Given any connected graph G=(V,E),
there exists a subset E’ of E, such that T
= (V,E’) is a tree. Such a tree is called a
spanning tree of G.

“spanning” because it “spans” all the
nodes of G, not just a subset.

Ex:

8

Spanning Forests
More generally, for any graph, G=(V,E),
there exists a subset E’ of E, such that
F = (V,E’) is a forest. Such a tree is called
a spanning forest of G.

“spanning” because it “spans” all the
nodes of G, not just a subset.

Ex:

9

Spanning Forests
More generally, for any graph, G=(V,E),
there exists a subset E’ of E, such that
F = (V,E’) is a forest. Such a tree is called
a spanning forest of G.

“spanning” because it “spans” all the
nodes of G, not just a subset.

Ex:

10

Finding a Component

INPUT: Graph G, vertex s:

OUTPUT: The set of vertices reachable
from s (i.e. the connected component of
G containing s)

Idea: Start with s. While there is an
active node v, add its neighbors to the
set. Then v becomes inactive. (Adding a
node already in the set has no effect.)

11

Finding All Components
INPUT: Graph G.

Find: All components of G.

Idea: Initially, no vertices are found. All
are active. While there is a found active
vertex, add its neighbors to the current
component, then make it inactive.

If there are no found active vertices, use
any unfound vertex to start a new
component.

12

Search Trees
Each time we “find” a new vertex, it is
because it is a neighbor of a particular
previously found vertex (or we are
starting on a new component).

By saving this as the “parent” of the
newly found vertex, we build up a rooted
forest (tree if the graph is connected).

This is a spanning tree. We often call it a
“search tree” because of the way it arose

13

Breadth-First Search

BFS finds the vertices in the connected
component of the start vertex s one
“level” at a time.

Level Li = {vertices whose “distance” to s
equals i}

distance(v,w) = number of edges in the
shortest path from v to w.

Question: how to implement?

14

Edges in BFS

Theorem: Each time BFS looks at an
edge, it is either:

(a) joining a found node (level Li) to an
unfound node (level Li+1). Becomes an
edge in the tree, or

(b) joining a found node (level Li) to an
already found node (level Li or Li+1).

Why only these?

15

Rephrased:

Theorem: If T is a BFS tree for a graph
G, then every edge in G either:

(a) is in T, and joins adjacent levels, or

(b) is not in T, and joins nodes in the
same or adjacent levels.

Level: equal distance from the root.

16

Depth-First Search

DFS: explores fully from each vertex,
before backing up to try another one.

DFS(s): Mark s as found.

For each unfound neighbor v of s:

add edge (v,s) to T.

DFS(v)

17

Bipartite Graphs
In a bipartite graph, the nodes can be
colored RED and BLUE so that every
edge joins 1 red and 1 blue node.

Examples: Every tree is bipartite.

The boolean cube is bipartite.

Even cycles.

NOT: odd cycles

any graph containing an odd cycle

18

Checking Bipartiteness
Input: A connected graph (for simplicity)

Output: True if bipartite. False if not.

Algorithm:

(1) Build a search tree (spanning).
BFS or DFS are both ok for this.

(2) Root: blue. Make each new node the
opposite color from its parent.

(3) For “back edges” joining 2 old nodes,
check that both are opposite colors.

19

Why does it work?
(1) Obviously, if it returns true, then there
is a 2-coloring.

(2) Suppose it returns false. Then it
found an edge between 2 same-colored
nodes {v,w} in the graph. This means
there is a loop of odd length in the graph:

v to root, root to w, then edge {v,w}.

A bipartite graph cannot have such a
loop. After any odd number of steps,
must be at a different color than start.

20

