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Last Time
Terminology for graphs:

vertex, edge, path, cycle, connected, 
component, tree, forest, empty graph

Also: equivalence relation, equivalence 
class, rooting trees

Adjacency lists vs adjacency matrix

# of edges, # of components

returned Quiz #2
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Today

Spanning Trees

BFS

DFS

Testing Bipartiteness
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Suppose G is a graph, with N vertices.  What is 
the fewest edges G can have?

Zero.

Suppose G is a connected graph with N vertices.  
What is the fewest edges G can have?

N-1.  Proof?  Induction: Start with empty graph.  
Then there are N connected components.  Each 
edge we add can reduce the number of 
components by 0 or by 1.  So it takes at least N-1 
edges to make G connected.

How many edges?
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Input: A graph G, and vertices s,t.

Output: A path from s to t, if one exists, and

otherwise output “Disconnected”

How do we proceed?

Start at s, and “search outward”

Testing Connectivity
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Input: A graph G, and vertices s,t.

Output: A path from s to t, if one exists, and

otherwise output “Disconnected”

How do we proceed?

Start at s, and “search outward”

Build up a tree, rooted at s, as we go.

Eventually, we will find all nodes in the 
component of s.  If t is there, the path from t to 
s is   t, parent(t), parent(parent(t)), ..., s

Testing Connectivity
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Spanning Trees
Given any connected graph G=(V,E), 
there exists a subset E’ of E, such that T 
= (V,E’) is a tree.  Such a tree is called a 
spanning tree of G.

“spanning” because it “spans” across 
all the nodes of G, not just a subset.

Ex:
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Spanning Trees
Given any connected graph G=(V,E), 
there exists a subset E’ of E, such that T 
= (V,E’) is a tree.  Such a tree is called a 
spanning tree of G.

“spanning” because it “spans” all the 
nodes of G, not just a subset.

Ex:
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Spanning Forests
More generally, for any graph, G=(V,E), 
there exists a subset E’ of E, such that     
F = (V,E’) is a forest.  Such a tree is called 
a spanning forest of G.

“spanning” because it “spans” all the 
nodes of G, not just a subset.

Ex:
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Spanning Forests
More generally, for any graph, G=(V,E), 
there exists a subset E’ of E, such that     
F = (V,E’) is a forest.  Such a tree is called 
a spanning forest of G.

“spanning” because it “spans” all the 
nodes of G, not just a subset.

Ex:
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Finding a Component

INPUT: Graph G, vertex s:

OUTPUT: The set of vertices reachable 
from s   (i.e. the connected component of 
G containing s)

Idea: Start with s.  While there is an 
active node v, add its neighbors to the 
set.  Then v becomes inactive.  (Adding a 
node already in the set has no effect.)
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Finding All Components
INPUT: Graph G.

Find: All components of G.

Idea: Initially, no vertices are found.  All 
are active.  While there is a found active 
vertex, add its neighbors to the current 
component, then make it inactive.

If there are no found active vertices, use 
any unfound vertex to start a new 
component.
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Search Trees
Each time we “find” a new vertex, it is 
because it is a neighbor of a particular 
previously found vertex (or we are 
starting on a new component).

By saving this as the “parent” of the 
newly found vertex, we build up a rooted 
forest (tree if the graph is connected).

This is a spanning tree.  We often call it a 
“search tree” because of the way it arose
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Breadth-First Search

BFS finds the vertices in the connected 
component of the start vertex s one 
“level” at a time.

Level Li = {vertices whose “distance” to s 
equals i}

distance(v,w) = number of edges in the 
shortest path from v to w.

Question: how to implement?
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Edges in BFS

Theorem: Each time BFS looks at an 
edge, it is either: 

(a) joining a found node (level Li) to an 
unfound node (level Li+1).  Becomes an 
edge in the tree, or

(b) joining a found node (level Li) to an 
already found node (level Li or Li+1). 

Why only these?
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Rephrased:

Theorem: If T is a BFS tree for a graph 
G, then every edge in G either:

(a) is in T, and joins adjacent levels, or

(b) is not in T, and joins nodes in the 
same or adjacent levels.

Level: equal distance from the root.
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Depth-First Search

DFS: explores fully from each vertex, 
before backing up to try another one.

DFS(s): Mark s as found.

For each unfound neighbor v of s:

add edge (v,s) to T. 

DFS(v)
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Bipartite Graphs
In a bipartite graph, the nodes can be 
colored RED and BLUE so that every 
edge joins 1 red and 1 blue node.

Examples: Every tree is bipartite.

The boolean cube is bipartite.

Even cycles.

NOT: odd cycles

any graph containing an odd cycle
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Checking Bipartiteness
Input: A connected graph (for simplicity)

Output: True if bipartite.  False if not.

Algorithm:

(1) Build a search tree (spanning).                 
BFS or DFS are both ok for this.

(2) Root: blue.  Make each new node the 
opposite color from its parent.

(3) For “back edges” joining 2 old nodes, 
check that both are opposite colors.
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Why does it work?
(1) Obviously, if it returns true, then there 
is a 2-coloring.

(2) Suppose it returns false.  Then it 
found an edge between 2 same-colored 
nodes {v,w} in the graph.  This means 
there is a loop of odd length in the graph:

v to root, root to w, then edge {v,w}.

A bipartite graph cannot have such a 
loop.  After any odd number of steps, 
must be at a different color than start. 
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