
CS 361
Data Structures & Algs

Lecture 14

Prof. Tom Hayes
University of New Mexico

10-7-2010

1

Last Time

Inside BFS

Running Time

Implementation

Degrees & Degree sums

Properties of BFS and DFS trees

Identifying trees in the wild

2

Today

More tree forensics

READING: Finish reading Chapter 3

3

identifying BFS & DFS trees

Where is the root?

Key: Edges left out of the tree:

in BFS, level difference is {-1, 0, 1}

not incident with the root.

in DFS, join a node to its ancestor

4

Welcome to the morgue!

Somebody constructed this tree.
Please help me identify it.

5

BFS or DFS tree?

6

BFS or DFS tree?

Not BFS

7

Where is the root (DFS)?

8

Where is the root (DFS)?

Not here.
Why?

9

Where is the root (DFS)?

Not here.
Why?

edge not to
ancestor

10

Where is the root (DFS)?

None of these.
Why?

11

Where is the root (DFS)?

None of these.
Why?

edge not to
ancestor

12

Where is the root (DFS)?

Not these.
Why?

13

Where is the root (DFS)?

Not these.
Why?

edge not to
ancestor

14

The root?

omitted edges go
to an ancestor

Where is the root (DFS)?

15

The root

Where is the root (DFS)?

What order were
the nodes found?

16

The root

Where is the root (DFS)?

What order were
the nodes found?

1

2 3

4

5

6

17

The root

Where is the root (DFS)?

What order were
the nodes found?

1

2 3

4

5

6

18

Problem 3.6

Given: Connected graph G and vertex u.
DFS and BFS, both started from u, give
us the same tree, T.

Prove: G = T.

19

Problem 3.6

Given: Connected graph G and vertex u.
DFS and BFS, both started from u, give
us the same tree, T.

Prove: G = T.

Proof by contradiction: Suppose G≠T.

20

Problem 3.6

Given: Connected graph G and vertex u.
DFS and BFS, both started from u, give
us the same tree, T.

Prove: G = T.

Proof by contradiction: Suppose G≠T.
Let e = {v,w} be an edge in G, not in T.

21

Problem 3.6

Given: Connected graph G and vertex u.
DFS and BFS, both started from u, give
us the same tree, T.

Prove: G = T.

Proof by contradiction: Suppose G≠T.
Let e = {v,w} be an edge in G, not in T.
Since T is a BFST, we know:

Since T is a DFST, we know:

22

Problem 3.6
Given: Connected graph G and vertex u.
DFS and BFS, both started from u, give
us the same tree, T.

Prove: G = T.

Proof by contradiction: Suppose G≠T.
Let e = {v,w} be an edge in G, not in T.
Since T is a BFST, we know:

Since T is a DFST, we know:

Homework: Finish this proof.
23

Problem 3.9

Given: Graph G with nodes s and t such
that distance(s,t) = (n/2 +1). (n = #nodes)

Prove: We can disconnect this graph if
we are allowed to delete one node.

24

Problem 3.9

Given: Graph G with nodes s and t such
that distance(s,t) ≥ n/2. (n = #nodes)

Prove: We can disconnect this graph if
we are allowed to delete one node.

Proof: Let T be a BFS tree for G, rooted
at s. What can we say about the levels?

25

Problem 3.9

Given: Graph G with nodes s and t such
that distance(s,t) ≥ n/2. (n = #nodes)

Prove: We can disconnect this graph if
we are allowed to delete one node.

Proof: Let T be a BFS tree for G, rooted
at s. What can we say about the levels?

Level 0 = {s}.

26

Problem 3.9

Given: Graph G with nodes s and t such
that distance(s,t) = n/2 + 1. (n = #nodes)

Prove: We can disconnect this graph if
we are allowed to delete one node.

Proof: Let T be a BFS tree for G, rooted
at s. What can we say about the levels?

Level 0 = {s}. Level(n/2 + 1) contains t.

27

Problem 3.9
Given: Graph G with nodes s and t such
that distance(s,t) = n/2 + 1. (n = #nodes)

Prove: We can disconnect this graph if
we are allowed to delete one node.

Proof: Let T be a BFS tree for G, rooted
at s. What can we say about the levels?

Level 0 = {s}. Level(n/2 + 1) contains t.

No two levels overlap.

28

Problem 3.9
Given: Graph G with nodes s and t such
that distance(s,t) = n/2 + 1. (n = #nodes)

Prove: We can disconnect this graph if
we are allowed to delete one node.

Proof: Let T be a BFS tree for G, rooted
at s. What can we say about the levels?

Level 0 = {s}. Level(n/2 + 1) contains t.

No two levels overlap. Some level i has
size 1!

29

Problem 3.9
Given: Graph G with nodes s and t such
that distance(s,t) = n/2 + 1. (n = #nodes)

Prove: We can disconnect this graph if
we are allowed to delete one node.

Proof: Let T be a BFS tree for G, rooted
at s. What can we say about the levels?

Level 0 = {s}. Level(n/2 + 1) contains t.

No two levels overlap. Some level i has
size 1! (1 ≤ i ≤ n/2) HW: Finish this proof.

30

Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else
throw new UnexpectedTreeException()

31

Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else
throw new UnexpectedTreeException()

BFS or DFS?

32

Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else
throw new UnexpectedTreeException()

Let T be a DFS tree for G, rooted at u.
Now what?

33

Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else
throw new UnexpectedTreeException()

Let T be a DFS tree for G, rooted at u.
Now what? Suppose {v,w} is a back-
edge for T.

34

Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else
throw new UnexpectedTreeException()

Let T be a DFS tree for G, rooted at u.
Now what? Suppose {v,w} is a back-
edge for T. w or v is ancestor of the other

35

Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else
throw new UnexpectedTreeException()

Let T be a DFS tree for G, rooted at u.
Now what? Suppose {v,w} is a back-
edge for T. Say w is ancestor of v.

36

Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else
throw new UnexpectedTreeException()

Let T be a DFS tree for G, rooted at u.
Now what? Suppose {v,w} is a back-
edge for T. Say w is ancestor of v.
Found cycle: v, p(v), p(p(v)), ..., w, v.

37

Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else
throw new UnexpectedTreeException()

Let T be a DFS tree for G, rooted at u.
Now what? Suppose {v,w} is a back-
edge for T. Say w is ancestor of v.
Found cycle: v, p(v), p(p(v)), ..., w, v.

What’s left?

38

Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else
throw new UnexpectedTreeException()

Let T be a DFS tree for G, rooted at u.
Now what? Suppose {v,w} is a back-
edge for T. Say w is ancestor of v.
Found cycle: v, p(v), p(p(v)), ..., w, v.

What’s left? 1) Why is this cycle?

39

Problem 3.2
Input: An undirected graph G.

Output: A cycle in G, if one exists, else
throw new UnexpectedTreeException()

Let T be a DFS tree for G, rooted at u.
Now what? Suppose {v,w} is a back-
edge for T. Say w is ancestor of v.
Found cycle: v, p(v), p(p(v)), ..., w, v.

What’s left? 1) Why is this cycle?
2) What if there is no back-edge?

40

Problem 3.2
Input: An undirected graph G.

Output: A cycle in G, if one exists, else
throw new UnexpectedTreeException()

Let T be a DFS tree for G, rooted at u.
Now what? Suppose {v,w} is a back-
edge for T. Say w is ancestor of v.
Found cycle: v, p(v), p(p(v)), ..., w, v.

What’s left? 1) Why is this cycle?
2) What if there is no back-edge?
3) What if G is not connected?

41

Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else
throw new UnexpectedTreeException()

Let T be a DFS tree for G, rooted at u.
Now what? Suppose {v,w} is a back-
edge for T. Say w is ancestor of v.
Found cycle: v, p(v), p(p(v)), ..., w, v.

HW: Finish proof

42

DFS: recursive version

Initialize: Mark all nodes Unfound

DFS(v):

Mark v as Found

 For (w in Adj[v]):

If (w is Unfound)

{parent(w) = v; DFS(w);}

43

DFS: iterative version
Initialize:
Active = new stack with just s.
Mark all nodes Unfound
while (Active is nonempty) {

v = Active.pop();
if (v is Unfound) {

Mark v Found;
For (w in Adj[v]):

Active.push(w);
}

44

Compare: BFS
Initialize:
Active = new queue with just s.
Mark all nodes Unfound
while (Active is nonempty) {

v = Active.remove();
if (v is Unfound) {

Mark v Found;
For (w in Adj[v]):

Active.add(w);
}

45

Both versions of DFS are
implemented using a Stack!

46

Both versions of DFS are
implemented using a Stack!

(Recursive version uses the

function-call stack)

47

Next Topic: Directed
Graphs (aka “digraphs”)

48

Directed Graphs
A directed graph is like a graph, but the
edges are ORDERED pairs of vertices,
rather than unordered pairs of vertices.

For normal graphs, we denote edges in
curly braces: {u,v} (unordered)

For directed graphs, parentheses: (u,v)
(ordered: “from u to v”).
Directed edges are also called “arcs”

49

Directed Graphs

Example: V = {1,2,3,4}

E = { (1,2), (2,3), (3,4), (4,1)}.

This example is known as a “directed
cycle” or “oriented
cycle” (of length 4)

1

 2

3

4
50

Representing DiGraphs
For directed graphs, we need 2
adjacency lists for each node.
edges INTO v, and OUT FROM v.

2 arrays of Lists:

in-neighbors[2] = {1}

out-neighbors[2] = {1,3}
1

 2

3

4

51

DAGs
A directed graph is called acyclic if it has
no oriented cycles.

Meaning: you can’t get back where you
start if you always follow arrows.

The “underlying graph” (just lose all the
orientation info) may have cycles.

52

DAGs
Q: How do we tell if a graph is a DAG?
Alternatively, how do we find an oriented
cycle if there is one?

Look at the Left example. The nodes are
in a line, all the edges go left-to-right.
This is called a topological sort.

53

DAGs
Q: How do we tell if a graph is a DAG?
Alternatively, how do we find an oriented cycle
if there is one?

Look at the Left example. The nodes are in a
line, all the edges go left-to-right. This is called
a topological sort.

Thm: G has a topological sort iff G is a DAG

54

Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example. The leftmost node
has no in-edges. Is this always the case?

55

Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example. The leftmost node
has no in-edges. Is this always the case? Yes.

Idea: Find the leftmost node. Recurse!

56

Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example. The leftmost node
has no in-edges. Is this always the case? Yes.

Idea: Find the leftmost node. Recurse!

Implementation issues?

57

Searching DiGraphs

Question: Find all nodes reachable from s in a
directed graph G.

58

Searching DiGraphs

Question: Find all nodes reachable from s in a
directed graph G.

Idea: Slightly modify BFS and DFS algorithms:
they should only “find” nodes along out-edges.

59

DFS and topo sort

Suppose we run DFS on a directed graph.
What can we say about a node v when we mark
it as INACTIVE?

60

DFS and topo sort

Suppose we run DFS on a directed graph.
What can we say about a node v when we mark
it as INACTIVE?

Did we fully explore all nodes reachable from v?

61

DFS and topo sort

Suppose we run DFS on a directed graph.
What can we say about a node v when we mark
it as INACTIVE?

Did we fully explore all nodes reachable from v?
(to whiteboard)

62

DFS and topo sort

Suppose we run DFS on a directed graph.
What can we say about a node v when we mark
it as INACTIVE?

Did we fully explore all nodes reachable from v?
YES, unless there is a back-edge to an active
node (an ancestor of the current node). In this
case there is an oriented cycle!.

63

Suppose we run DFS on a directed graph.
What can we say about a node v when we mark
it as INACTIVE?

Did we fully explore all nodes reachable from v?
YES, unless there is a back-edge to an active
node (an ancestor of the current node). In this
case there is an oriented cycle!

So: IF we ever find a back-edge to an active
node, output the cycle. Otherwise, we know all
nodes reachable from v were marked INACTIVE
before v was.

DFS and topo sort

64

Start at a node s. Begin the DFS algorithm,
following only out-edges.

Algorithm

65

Start at a node s. Begin the DFS algorithm,
following only out-edges.

If we ever find an edge to an active node, there
is a cycle. Each time we mark a node inactive,
pre-pend it to the output.

Algorithm

66

Start at a node s. Begin the DFS algorithm,
following only out-edges.

If we ever find an edge to an active node, there
is a cycle. Each time we mark a node inactive,
pre-pend it to the output.

If graph is a DAG, output will be a topological
sort of the nodes reachable from s.

Algorithm

67

Start at a node s. Begin the DFS algorithm,
following only out-edges.

If we ever find an edge to an active node, there
is a cycle. Each time we mark a node inactive,
pre-pend it to the output.

If graph is a DAG, output will be a topological
sort of the nodes reachable from s.

If not given s: start by finding a source (node
with no in-edges). A DAG always has one.

Algorithm

68

Start at a node s. Begin the DFS algorithm,
following only out-edges.

If we ever find an edge to an active node, there
is a cycle. Each time we mark a node inactive,
pre-pend it to the output.

If graph is a DAG, output will be a topological
sort of the nodes reachable from s.

If not given s: start by finding a source (node
with no in-edges). A DAG always has one.

If not all nodes reached, go to next component.

Algorithm

69

