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Last Time

Inside BFS

Running Time

Implementation

Degrees & Degree sums

Properties of BFS and DFS trees

Identifying trees in the wild
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Today

More tree forensics

READING: Finish reading Chapter 3

3



identifying BFS & DFS trees

Where is the root?

Key: Edges left out of the tree:

in BFS, level difference is {-1, 0, 1}

not incident with the root.

in DFS, join a node to its ancestor
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Welcome to the morgue!

Somebody constructed this tree. 
Please help me identify it.
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BFS or DFS tree?
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BFS or DFS tree?

Not BFS
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Where is the root (DFS)?
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Where is the root (DFS)?

Not here.  
Why?
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Where is the root (DFS)?

Not here.  
Why?

edge not to 
ancestor
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Where is the root (DFS)?

None of these.
Why?
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Where is the root (DFS)?

None of these.
Why?

edge not to 
ancestor
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Where is the root (DFS)?

Not these.
Why?
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Where is the root (DFS)?

Not these.
Why?

edge not to 
ancestor
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The root?

omitted edges go 
to an ancestor

Where is the root (DFS)?
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The root

Where is the root (DFS)?

What order were 
the nodes found?
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The root

Where is the root (DFS)?

What order were 
the nodes found?

1

2 3

4

5

6
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The root

Where is the root (DFS)?

What order were 
the nodes found?

1

2 3

4

5

6
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Problem 3.6

Given: Connected graph G and vertex u.  
DFS and BFS, both started from u, give 
us the same tree, T.

Prove: G = T.
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Problem 3.6

Given: Connected graph G and vertex u.  
DFS and BFS, both started from u, give 
us the same tree, T.

Prove: G = T.

Proof by contradiction:  Suppose G≠T.
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Problem 3.6

Given: Connected graph G and vertex u.  
DFS and BFS, both started from u, give 
us the same tree, T.

Prove: G = T.

Proof by contradiction:  Suppose G≠T.  
Let e = {v,w} be an edge in G, not in T.
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Problem 3.6

Given: Connected graph G and vertex u.  
DFS and BFS, both started from u, give 
us the same tree, T.

Prove: G = T.

Proof by contradiction:  Suppose G≠T.  
Let e = {v,w} be an edge in G, not in T. 
Since T is a BFST, we know: ...................

Since T is a DFST, we know: ...................

22



Problem 3.6
Given: Connected graph G and vertex u.  
DFS and BFS, both started from u, give 
us the same tree, T.

Prove: G = T.

Proof by contradiction:  Suppose G≠T.  
Let e = {v,w} be an edge in G, not in T. 
Since T is a BFST, we know: ...................

Since T is a DFST, we know: ...................

Homework: Finish this proof.
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Problem 3.9

Given: Graph G with nodes s and t such 
that distance(s,t) = (n/2 +1).  (n = #nodes)

Prove: We can disconnect this graph if 
we are allowed to delete one node.
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Problem 3.9

Given: Graph G with nodes s and t such 
that distance(s,t) ≥ n/2.  (n = #nodes)

Prove: We can disconnect this graph if 
we are allowed to delete one node.

Proof: Let T be a BFS tree for G, rooted 
at s.  What can we say about the levels?
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Problem 3.9

Given: Graph G with nodes s and t such 
that distance(s,t) ≥ n/2.  (n = #nodes)

Prove: We can disconnect this graph if 
we are allowed to delete one node.

Proof: Let T be a BFS tree for G, rooted 
at s.  What can we say about the levels?

Level 0 = {s}.
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Problem 3.9

Given: Graph G with nodes s and t such 
that distance(s,t) = n/2 + 1.  (n = #nodes)

Prove: We can disconnect this graph if 
we are allowed to delete one node.

Proof: Let T be a BFS tree for G, rooted 
at s.  What can we say about the levels?

Level 0 = {s}.  Level(n/2 + 1) contains t.

27



Problem 3.9
Given: Graph G with nodes s and t such 
that distance(s,t) = n/2 + 1.  (n = #nodes)

Prove: We can disconnect this graph if 
we are allowed to delete one node.

Proof: Let T be a BFS tree for G, rooted 
at s.  What can we say about the levels?

Level 0 = {s}.  Level(n/2 + 1) contains t.

No two levels overlap.
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Problem 3.9
Given: Graph G with nodes s and t such 
that distance(s,t) = n/2 + 1.  (n = #nodes)

Prove: We can disconnect this graph if 
we are allowed to delete one node.

Proof: Let T be a BFS tree for G, rooted 
at s.  What can we say about the levels?

Level 0 = {s}.  Level(n/2 + 1) contains t.

No two levels overlap.  Some level i has 
size 1!
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Problem 3.9
Given: Graph G with nodes s and t such 
that distance(s,t) = n/2 + 1.  (n = #nodes)

Prove: We can disconnect this graph if 
we are allowed to delete one node.

Proof: Let T be a BFS tree for G, rooted 
at s.  What can we say about the levels?

Level 0 = {s}.  Level(n/2 + 1) contains t.

No two levels overlap.  Some level i has 
size 1!  (1 ≤ i ≤ n/2)  HW: Finish this proof.
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Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else 
throw new UnexpectedTreeException( )
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Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else 
throw new UnexpectedTreeException( )

BFS or DFS?
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Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else 
throw new UnexpectedTreeException( )

Let T be a DFS tree for G, rooted at u.  
Now what?
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Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else 
throw new UnexpectedTreeException( )

Let T be a DFS tree for G, rooted at u.  
Now what?  Suppose {v,w} is a back-
edge for T. 
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Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else 
throw new UnexpectedTreeException( )

Let T be a DFS tree for G, rooted at u.  
Now what?  Suppose {v,w} is a back-
edge for T.  w or v is ancestor of the other
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Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else 
throw new UnexpectedTreeException( )

Let T be a DFS tree for G, rooted at u.  
Now what?  Suppose {v,w} is a back-
edge for T.  Say w is ancestor of v.
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Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else 
throw new UnexpectedTreeException( )

Let T be a DFS tree for G, rooted at u.  
Now what?  Suppose {v,w} is a back-
edge for T.  Say w is ancestor of v.  
Found cycle: v, p(v), p(p(v)), ..., w, v.
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Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else 
throw new UnexpectedTreeException( )

Let T be a DFS tree for G, rooted at u.  
Now what?  Suppose {v,w} is a back-
edge for T.  Say w is ancestor of v.  
Found cycle: v, p(v), p(p(v)), ..., w, v.

What’s left?
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Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else 
throw new UnexpectedTreeException( )

Let T be a DFS tree for G, rooted at u.  
Now what?  Suppose {v,w} is a back-
edge for T.  Say w is ancestor of v.  
Found cycle: v, p(v), p(p(v)), ..., w, v.

What’s left?  1) Why is this cycle?            
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Problem 3.2
Input: An undirected graph G.

Output: A cycle in G, if one exists, else 
throw new UnexpectedTreeException( )

Let T be a DFS tree for G, rooted at u.  
Now what?  Suppose {v,w} is a back-
edge for T.  Say w is ancestor of v.  
Found cycle: v, p(v), p(p(v)), ..., w, v.

What’s left?  1) Why is this cycle?            
2) What if there is no back-edge?            
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Problem 3.2
Input: An undirected graph G.

Output: A cycle in G, if one exists, else 
throw new UnexpectedTreeException( )

Let T be a DFS tree for G, rooted at u.  
Now what?  Suppose {v,w} is a back-
edge for T.  Say w is ancestor of v.  
Found cycle: v, p(v), p(p(v)), ..., w, v.

What’s left?  1) Why is this cycle?            
2) What if there is no back-edge?            
3) What if G is not connected?
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Problem 3.2

Input: An undirected graph G.

Output: A cycle in G, if one exists, else 
throw new UnexpectedTreeException( )

Let T be a DFS tree for G, rooted at u.  
Now what?  Suppose {v,w} is a back-
edge for T.  Say w is ancestor of v.  
Found cycle: v, p(v), p(p(v)), ..., w, v.

HW: Finish proof
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DFS: recursive version

Initialize: Mark all nodes Unfound

DFS(v):

Mark v as Found

    For (w in Adj[v]):

If (w is Unfound)

{parent(w) = v;  DFS(w);}
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DFS: iterative version
Initialize:
Active = new stack with just s.
Mark all nodes Unfound
while (Active is nonempty) {

v = Active.pop( ); 
if (v is Unfound) {

Mark v Found;
For (w in Adj[v]):

Active.push(w);
}
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Compare: BFS
Initialize:
Active = new queue with just s.
Mark all nodes Unfound
while (Active is nonempty) {

v = Active.remove( ); 
if (v is Unfound) {

Mark v Found;
For (w in Adj[v]):

Active.add(w);
}
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Both versions of DFS are 
implemented using a Stack!
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Both versions of DFS are 
implemented using a Stack!

(Recursive version uses the

function-call stack)
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Next Topic: Directed 
Graphs  (aka “digraphs”)
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Directed Graphs
A directed graph is like a graph, but the 
edges are ORDERED pairs of vertices, 
rather than unordered pairs of vertices.

For normal graphs, we denote edges in 
curly braces: {u,v}    (unordered)

For directed graphs, parentheses:  (u,v)   
(ordered: “from u to v”).                   
Directed edges are also called “arcs”
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Directed Graphs

Example: V = {1,2,3,4}

E = { (1,2), (2,3), (3,4), (4,1)}.

This example is known as a “directed 
cycle” or “oriented                                  
cycle” (of length 4)

1

  2

3

4
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Representing DiGraphs
For directed graphs, we need 2 
adjacency lists for each node.          
edges INTO v, and OUT FROM v.

2 arrays of Lists:

in-neighbors[2] = {1}

out-neighbors[2] = {1,3}
1

  2

3

4

51



DAGs
A directed graph is called acyclic if it has 
no oriented cycles.  

Meaning: you can’t get back where you 
start if you always follow arrows.

The “underlying graph” (just lose all the 
orientation info) may have cycles. 
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DAGs
Q: How do we tell if a graph is a DAG?  
Alternatively, how do we find an oriented 
cycle if there is one?

Look at the Left example.  The nodes are 
in a line, all the edges go left-to-right.  
This is called a topological sort. 
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DAGs
Q: How do we tell if a graph is a DAG?  
Alternatively, how do we find an oriented cycle 
if there is one?

Look at the Left example.  The nodes are in a 
line, all the edges go left-to-right.  This is called 
a topological sort.

Thm: G has a topological sort iff G is a DAG 
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Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example.  The leftmost node 
has no in-edges.  Is this always the case?

 

55



Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example.  The leftmost node 
has no in-edges.  Is this always the case?  Yes.

Idea: Find the leftmost node.  Recurse!
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Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example.  The leftmost node 
has no in-edges.  Is this always the case?  Yes.

Idea: Find the leftmost node.  Recurse!

Implementation issues?  
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Searching DiGraphs

Question: Find all nodes reachable from s in a 
directed graph G.
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Searching DiGraphs

Question: Find all nodes reachable from s in a 
directed graph G.

Idea: Slightly modify BFS and DFS algorithms: 
they should only “find” nodes along out-edges.
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DFS and topo sort

Suppose we run DFS on a directed graph.  
What can we say about a node v when we mark 
it as INACTIVE?
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DFS and topo sort

Suppose we run DFS on a directed graph.  
What can we say about a node v when we mark 
it as INACTIVE?

Did we fully explore all nodes reachable from v?
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DFS and topo sort

Suppose we run DFS on a directed graph.  
What can we say about a node v when we mark 
it as INACTIVE?

Did we fully explore all nodes reachable from v? 
(to whiteboard)  
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DFS and topo sort

 

Suppose we run DFS on a directed graph.  
What can we say about a node v when we mark 
it as INACTIVE?

Did we fully explore all nodes reachable from v? 
YES, unless there is a back-edge to an active 
node (an ancestor of the current node).  In this 
case there is an oriented cycle!.
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Suppose we run DFS on a directed graph.  
What can we say about a node v when we mark 
it as INACTIVE?

Did we fully explore all nodes reachable from v? 
YES, unless there is a back-edge to an active 
node (an ancestor of the current node).  In this 
case there is an oriented cycle!

So: IF we ever find a back-edge to an active 
node, output the cycle.  Otherwise, we know all 
nodes reachable from v were marked INACTIVE 
before v was.

DFS and topo sort
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Start at a node s.  Begin the DFS algorithm, 
following only out-edges.

Algorithm
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Start at a node s.  Begin the DFS algorithm, 
following only out-edges.

If we ever find an edge to an active node, there 
is a cycle.  Each time we mark a node inactive, 
pre-pend it to the output.

Algorithm
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Start at a node s.  Begin the DFS algorithm, 
following only out-edges.

If we ever find an edge to an active node, there 
is a cycle.  Each time we mark a node inactive, 
pre-pend it to the output.

If graph is a DAG, output will be a topological 
sort of the nodes reachable from s.

Algorithm
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Start at a node s.  Begin the DFS algorithm, 
following only out-edges.

If we ever find an edge to an active node, there 
is a cycle.  Each time we mark a node inactive, 
pre-pend it to the output.

If graph is a DAG, output will be a topological 
sort of the nodes reachable from s.

If not given s: start by finding a source (node 
with no in-edges).  A DAG always has one.

Algorithm
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Start at a node s.  Begin the DFS algorithm, 
following only out-edges.

If we ever find an edge to an active node, there 
is a cycle.  Each time we mark a node inactive, 
pre-pend it to the output.

If graph is a DAG, output will be a topological 
sort of the nodes reachable from s.

If not given s: start by finding a source (node 
with no in-edges).  A DAG always has one.

If not all nodes reached, go to next component.

Algorithm
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