CS 361
Data Structures & Algs
Lecture |5

Prof. Tom Hayes

University of New Mexico
10-12-2010




Last [ime

ldentifying BFS vs. DFS trees
Can they be the same?
Problems 3.6, 3.9, 3.2
details left as homework. email.
DFS: recursive vs iterative. 2 kinds of stack

Digraphs, directed paths, oriented cycles,
DAGs, topological ordering, DFS in digraph




Today

strongly and weakly connected digraphs

new equivalence relation: “strongly
connected to”. Strongly connected
components. Structure Theorem.

DFS for digraphs. Applications.




Connected Digraphs

An undirected graph is connected when?




Connected Digraphs

Undirected graph G=(V,E). “Connected”?

For every u, v In V, there exists a path
from u to v.




Connected Digraphs

Undirected graph G=(V,E). “Connected”?
For every u, v In V, exists path from u to v.

Directed graph G=(V,E). What should
“connected” mean?




Connected Digraphs

Undirected graph G=(V,E). “Connected”?
For every u, v In V, exists path from u to v.

Directed graph G=(V,E). What should
“connected” mean?

2 versions: “Strongly connected”

“*Weakly connected”




Connected Digraphs

Undirected graph G=(V,E). “Connected”?

For every u, v In V, exists path from u to v.

Directed graph G=(V,E). “Strongly
connected” means for every u, vin 'V,
there exists an oriented path from u to v,
and an oriented path from v to u.

“Weakly connected” means, ignoring
edge directions, the undirected graph is
connected.




Components

Undirected G=(V,E). “Component of v’?




Components

Undirected G=(V,E). “Component of v’?
All vertices that have a path to/from v.
Recall: “a has a path to b” is an
equivalence relation on V.




Components

Undirected G=(V,E). “Component of v’?
All vertices that have a path to/from v.
Recall: “a has a path to b” is an
equivalence relation on V.

Directed G = (V,E). “Strong component of
v’




Components

Undirected G=(V,E). “Component of v’?
All vertices that have a path to/from v.

Recall: “a has a path to b” is an
equivalence relation on V.

Directed G = (V,E). “Strong component of
v’? All vertices w such that w has both

an oriented path to v, and from v. “ais in
the same strong component as b” is an
equivalence relation too.




Example




Example

3 Strongly
Connected
Components




Structure Theorem

The Strong Components graph of G is
obtained by “contracting” each strong
component of G to a single vertex. Self-

loops and multiple edges may result, and
are discarded.

1: Strong Components graph is acyclic.

2: G has an oriented path from u to v Iff
scg(QG) has an oriented path from [u] to [V].
(paths of length O count).

3: G is acyclic iff G = scg(Q).




3 Strongly
Connected
Components

contracted
version:

16



One Technicality

In an undirected graph, the shortest a
cycle can be is length 3. Why? No edge
or node may be repeated.

In a directed graph, there can be cycles of

length 2, or even 1. Why? Edges In
opposite directions don’t count as repeats




DAGs

A directed graph is called acyclic if it has
no oriented cycles.

Meaning: you can’t get back where you
start if you always follow arrows.

The “underlying graph” (just lose all the
orientation info) may have cycles.




DAGs

Q: How do we tell if a graph is a DAG?

Alternatively, how do we find an oriented
cycle if there is one?

Look at the Left example. The nodes are
in a line, all the edges go left-to-right.
This is called a topological sort.




DAGs

Q: How do we tell if a graph is a DAG?
Alternatively, how do we find an oriented cycle
If there is one?

Look at the Left example. The nodes are in a
line, all the edges go left-to-right. This is called
a topological sort.

Thm: G has a topological sort iff G is a DAG




Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example. The leftmost node
has no in-edges. Is this always the case?




Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example. The leftmost node
has no in-edges. Is this always the case? Yes.

ldea: Find the leftmost node. Recurse!




Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example. The leftmost node
has no in-edges. Is this always the case? Yes.

ldea: Find the leftmost node. Recursel

Implementation issues?

o=




Searching DiGraphs

Question: Find all nodes reachable from s in a
directed graph G.




Searching DiGraphs

Question: Find all nodes reachable from s in a
directed graph G.

ldea: Slightly modify BFS and DFS algorithms:
they should only “find” nodes along out-edges.




DFS and topo sort

Suppose we run DFS on a directed graph.

What can we say about a node v when we mark
it as INACTIVE?




DFS and topo sort

Suppose we run DFS on a directed graph.

What can we say about a node v when we mark
it as INACTIVE?

Did we fully explore all nodes reachable from v?




DFS and topo sort

Suppose we run DFS on a directed graph.

What can we say about a node v when we mark
it as INACTIVE?

Did we fully explore all nodes reachable from v?
(to whiteboard)




DFS and topo sort

Suppose we run DFS on a directed graph.
What can we say about a node v when we mark
it as INACTIVE?

Did we fully explore all nodes reachable from v?
YES, unless there is a back-edge to an active
node (an ancestor of the current node). In this
case there IS an oriented cyclel.

SR AR ARER (E)




DFS and topo sort

Suppose we run DFS on a directed graph.

What can we say about a node v when we mark
it as INACTIVE?

Did we fully explore all nodes reachable from v?
YES, unless there is a back-edge to an active
node (an ancestor of the current node). In this
case there is an oriented cycle!

So: IF we ever find a back-edge to an active
node, output the cycle. Otherwise, we know all
nodes reachable from v were marked INACTIVE
before v was.




Algorithm

Start at a node s. Begin the DFS algorithm,
following only out-edges.




Algorithm

Start at a node s. Begin the DFS algorithm,
following only out-edges.

If we ever find an edge to an active node, there
IS a cycle. Each time we mark a node inactive,
pre-pend it to the output.




Algorithm

Start at a node s. Begin the DFS algorithm,
following only out-edges.

If we ever find an edge to an active node, there
IS a cycle. Each time we mark a node inactive,

pre-pend it to the output.

If graph is a DAG, output will be a topological
sort of the nodes reachable from s.




Algorithm

Start at a node s. Begin the DFS algorithm,
following only out-edges.

If we ever find an edge to an active node, there
IS a cycle. Each time we mark a node inactive,
pre-pend it to the output.

If graph is a DAG, output will be a topological
sort of the nodes reachable from s.

If not given s: start by finding a source (nhode
with no in-edges). A DAG always has one.




Algorithm

Start at a node s. Begin the DFS algorithm,
following only out-edges.

If we ever find an edge to an active node, there
IS a cycle. Each time we mark a node inactive,
pre-pend it to the output.

If graph is a DAG, output will be a topological
sort of the nodes reachable from s.

If not given s: start by finding a source (nhode
with no in-edges). A DAG always has one.

If not all nodes reached, go to next component.




