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Last [ime

ldentifying BFS vs. DFS trees
Can they be the same?
Problems 3.6, 3.9, 3.2
details left as homework. email.
DFS: recursive vs iterative. 2 kinds of stack

Digraphs, directed paths, oriented cycles,
DAGs, topological ordering, DFS in digraph




Today

strongly and weakly connected digraphs

new equivalence relation: “strongly
connected to”. Strongly connected
components. Structure Theorem.

DFS for digraphs. Applications.




Connected Digraphs

An undirected graph is connected when?
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Connected Digraphs

Undirected graph G=(V,E). “Connected”?
For every u, v In V, exists path from u to v.

Directed graph G=(V,E). What should
“connected” mean?

2 versions: “Strongly connected”

“*Weakly connected”




Connected Digraphs

Undirected graph G=(V,E). “Connected”?

For every u, v In V, exists path from u to v.

Directed graph G=(V,E). “Strongly
connected” means for every u, vin 'V,
there exists an oriented path from u to v,
and an oriented path from v to u.

“Weakly connected” means, ignoring
edge directions, the undirected graph is
connected.
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Components

Undirected G=(V,E). “Component of v’?
All vertices that have a path to/from v.

Recall: “a has a path to b” is an
equivalence relation on V.

Directed G = (V,E). “Strong component of
v’? All vertices w such that w has both

an oriented path to v, and from v. “ais in
the same strong component as b” is an
equivalence relation too.
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Example

3 Strongly
Connected
Components




Structure Theorem

The Strong Components graph of G is
obtained by “contracting” each strong
component of G to a single vertex. Self-

loops and multiple edges may result, and
are discarded.

1: Strong Components graph is acyclic.

2: G has an oriented path from u to v Iff
scg(QG) has an oriented path from [u] to [V].
(paths of length O count).

3: G is acyclic iff G = scg(Q).




3 Strongly
Connected
Components

contracted
version:

16



One Technicality

In an undirected graph, the shortest a
cycle can be is length 3. Why? No edge
or node may be repeated.

In a directed graph, there can be cycles of

length 2, or even 1. Why? Edges In
opposite directions don’t count as repeats




DAGs

A directed graph is called acyclic if it has
no oriented cycles.

Meaning: you can’t get back where you
start if you always follow arrows.

The “underlying graph” (just lose all the
orientation info) may have cycles.




DAGs

Q: How do we tell if a graph is a DAG?

Alternatively, how do we find an oriented
cycle if there is one?

Look at the Left example. The nodes are
in a line, all the edges go left-to-right.
This is called a topological sort.




DAGs

Q: How do we tell if a graph is a DAG?
Alternatively, how do we find an oriented cycle
If there is one?

Look at the Left example. The nodes are in a
line, all the edges go left-to-right. This is called
a topological sort.

Thm: G has a topological sort iff G is a DAG
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Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example. The leftmost node
has no in-edges. Is this always the case? Yes.

ldea: Find the leftmost node. Recursel

Implementation issues?

o=




Searching DiGraphs

Question: Find all nodes reachable from s in a
directed graph G.




Searching DiGraphs

Question: Find all nodes reachable from s in a
directed graph G.

ldea: Slightly modify BFS and DFS algorithms:
they should only “find” nodes along out-edges.
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it as INACTIVE?
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DFS and topo sort

Suppose we run DFS on a directed graph.
What can we say about a node v when we mark
it as INACTIVE?

Did we fully explore all nodes reachable from v?
YES, unless there is a back-edge to an active
node (an ancestor of the current node). In this
case there IS an oriented cyclel.
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DFS and topo sort

Suppose we run DFS on a directed graph.

What can we say about a node v when we mark
it as INACTIVE?

Did we fully explore all nodes reachable from v?
YES, unless there is a back-edge to an active
node (an ancestor of the current node). In this
case there is an oriented cycle!

So: IF we ever find a back-edge to an active
node, output the cycle. Otherwise, we know all
nodes reachable from v were marked INACTIVE
before v was.
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If we ever find an edge to an active node, there
IS a cycle. Each time we mark a node inactive,
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Algorithm

Start at a node s. Begin the DFS algorithm,
following only out-edges.

If we ever find an edge to an active node, there
IS a cycle. Each time we mark a node inactive,
pre-pend it to the output.

If graph is a DAG, output will be a topological
sort of the nodes reachable from s.

If not given s: start by finding a source (nhode
with no in-edges). A DAG always has one.

If not all nodes reached, go to next component.




