CS 361 Data Structures & Algs Lecture 15

Prof. Tom Hayes
University of New Mexico
10-12-2010

Last Time

Identifying BFS vs. DFS trees

Can they be the same?

Problems 3.6, 3.9, 3.2

details left as homework. email.

DFS: recursive vs iterative. 2 kinds of stack

Digraphs, directed paths, oriented cycles, DAGs, topological ordering, DFS in digraph

Today

strongly and weakly connected digraphs

new equivalence relation: "strongly connected to". Strongly connected components. Structure Theorem.

DFS for digraphs. Applications.

An undirected graph is connected when?

Undirected graph G=(V,E). "Connected"?

For every u, v in V, there exists a path from u to v.

Undirected graph G=(V,E). "Connected"?

For every u, v in V, exists path from u to v.

Directed graph G=(V,E). What should "connected" mean?

Undirected graph G=(V,E). "Connected"?

For every u, v in V, exists path from u to v.

Directed graph G=(V,E). What should "connected" mean?

2 versions: "Strongly connected"

"Weakly connected"

Undirected graph G=(V,E). "Connected"?

For every u, v in V, exists path from u to v.

Directed graph G=(V,E). "Strongly connected" means for every u, v in V, there exists an oriented path from u to v, and an oriented path from v to u.

"Weakly connected" means, ignoring edge directions, the undirected graph is connected.

Undirected G=(V,E). "Component of v"?

Undirected G=(V,E). "Component of v"? All vertices that have a path to/from v. Recall: "a has a path to b" is an equivalence relation on V.

Undirected G=(V,E). "Component of v"? All vertices that have a path to/from v. Recall: "a has a path to b" is an equivalence relation on V.

Directed G = (V,E). "Strong component of v"?

Undirected G=(V,E). "Component of v"? All vertices that have a path to/from v. Recall: "a has a path to b" is an equivalence relation on V.

Directed G = (V,E). "Strong component of v"? All vertices w such that w has both an oriented path to v, and from v. "a is in the same strong component as b" is an equivalence relation too.

Example

Example

Structure Theorem

The Strong Components graph of G is obtained by "contracting" each strong component of G to a single vertex. Selfloops and multiple edges may result, and are discarded.

- 1: Strong Components graph is acyclic.
- 2: G has an oriented path from u to v iff scg(G) has an oriented path from [u] to [v]. (paths of length 0 count).
- 3: G is acyclic iff G = scg(G).

One Technicality

In an undirected graph, the shortest a cycle can be is length 3. Why? No edge or node may be repeated.

In a directed graph, there can be cycles of length 2, or even 1. Why? Edges in opposite directions don't count as repeats

DAGs

A directed graph is called acyclic if it has no oriented cycles.

Meaning: you can't get back where you start if you always follow arrows.

The "underlying graph" (just lose all the orientation info) may have cycles.

DAGs

Q: How do we tell if a graph is a DAG? Alternatively, how do we find an oriented cycle if there is one?

Look at the Left example. The nodes are in a line, all the edges go left-to-right. This is called a topological sort.

DAGs

Q: How do we tell if a graph is a DAG? Alternatively, how do we find an oriented cycle if there is one?

Look at the Left example. The nodes are in a line, all the edges go left-to-right. This is called a topological sort.

Thm: G has a topological sort iff G is a DAG

Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example. The leftmost node has no in-edges. Is this always the case?

Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example. The leftmost node has no in-edges. Is this always the case? Yes.

Idea: Find the leftmost node. Recurse!

Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example. The leftmost node has no in-edges. Is this always the case? Yes.

Idea: Find the leftmost node. Recurse!

Implementation issues?

Searching DiGraphs

Question: Find all nodes reachable from s in a directed graph G.

Searching DiGraphs

Question: Find all nodes reachable from s in a directed graph G.

Idea: Slightly modify BFS and DFS algorithms: they should only "find" nodes along out-edges.

Suppose we run DFS on a directed graph. What can we say about a node v when we mark it as INACTIVE?

Suppose we run DFS on a directed graph. What can we say about a node v when we mark it as INACTIVE?

Did we fully explore all nodes reachable from v?

Suppose we run DFS on a directed graph. What can we say about a node v when we mark it as INACTIVE?

Did we fully explore all nodes reachable from v? (to whiteboard)

Suppose we run DFS on a directed graph. What can we say about a node v when we mark it as INACTIVE?

Did we fully explore all nodes reachable from v? YES, unless there is a back-edge to an active node (an ancestor of the current node). In this case there is an oriented cycle!.

Suppose we run DFS on a directed graph. What can we say about a node v when we mark it as INACTIVE?

Did we fully explore all nodes reachable from v? YES, unless there is a back-edge to an active node (an ancestor of the current node). In this case there is an oriented cycle!

So: IF we ever find a back-edge to an active node, output the cycle. Otherwise, we know all nodes reachable from v were marked INACTIVE before v was.

Start at a node s. Begin the DFS algorithm, following only out-edges.

Start at a node s. Begin the DFS algorithm, following only out-edges.

If we ever find an edge to an active node, there is a cycle. Each time we mark a node inactive, pre-pend it to the output.

Start at a node s. Begin the DFS algorithm, following only out-edges.

If we ever find an edge to an active node, there is a cycle. Each time we mark a node inactive, pre-pend it to the output.

If graph is a DAG, output will be a topological sort of the nodes reachable from s.

Start at a node s. Begin the DFS algorithm, following only out-edges.

If we ever find an edge to an active node, there is a cycle. Each time we mark a node inactive, pre-pend it to the output.

If graph is a DAG, output will be a topological sort of the nodes reachable from s.

If not given s: start by finding a source (node with no in-edges). A DAG always has one.

Start at a node s. Begin the DFS algorithm, following only out-edges.

If we ever find an edge to an active node, there is a cycle. Each time we mark a node inactive, pre-pend it to the output.

If graph is a DAG, output will be a topological sort of the nodes reachable from s.

If not given s: start by finding a source (node with no in-edges). A DAG always has one.

If not all nodes reached, go to next component.