
CS 361
Data Structures & Algs

Lecture 15

Prof. Tom Hayes
University of New Mexico

10-12-2010

1



Last Time

Identifying BFS vs. DFS trees

Can they be the same?

Problems 3.6, 3.9, 3.2

details left as homework.  email.

DFS: recursive vs iterative.  2 kinds of stack

Digraphs, directed paths, oriented cycles, 
DAGs, topological ordering, DFS in digraph

2



Today

strongly and weakly connected digraphs

new equivalence relation: “strongly 
connected to”.  Strongly connected 
components.  Structure Theorem.

DFS for digraphs.  Applications.

3



Connected Digraphs

An undirected graph is connected when?

 

4



Connected Digraphs

Undirected graph G=(V,E).  “Connected”?

For every u, v in V, there exists a path 
from u to v.

 

5



Connected Digraphs

Undirected graph G=(V,E).  “Connected”?

For every u, v in V, exists path from u to v.

Directed graph G=(V,E).  What should 
“connected” mean?

 

6



Connected Digraphs
Undirected graph G=(V,E).  “Connected”?

For every u, v in V, exists path from u to v.

Directed graph G=(V,E).  What should 
“connected” mean?

2 versions: “Strongly connected”

“Weakly connected”
 

7



Connected Digraphs
Undirected graph G=(V,E).  “Connected”?

For every u, v in V, exists path from u to v.

Directed graph G=(V,E).   “Strongly 
connected” means for every u, v in V, 
there exists an oriented path from u to v, 
and an oriented path from v to u.

“Weakly connected” means, ignoring 
edge directions, the undirected graph is 
connected.

 

8



Components

Undirected  G=(V,E).  “Component of v”?

 

9



Components

Undirected  G=(V,E).  “Component of v”?  
All vertices that have a path to/from v.   
Recall: “a has a path to b” is an 
equivalence relation on V.

 

10



Components

Undirected  G=(V,E).  “Component of v”?  
All vertices that have a path to/from v.   
Recall: “a has a path to b” is an 
equivalence relation on V.

Directed G = (V,E).  “Strong component of 
v”?

 

11



Components
Undirected  G=(V,E).  “Component of v”?  
All vertices that have a path to/from v.   
Recall: “a has a path to b” is an 
equivalence relation on V.

Directed G = (V,E).  “Strong component of 
v”?  All vertices w such that w has both 
an oriented path to v, and from v.  “a is in 
the same strong component as b” is an 
equivalence relation too.

 

12



Example

 

13



Example

 

3 Strongly 
Connected 

Components

14



Structure Theorem

 

The Strong Components graph of G is 
obtained by “contracting” each strong 
component of G to a single vertex.  Self-
loops and multiple edges may result, and 
are discarded.

1: Strong Components graph is acyclic.

2: G has an oriented path from u to v iff 
scg(G) has an oriented path from [u] to [v].  
(paths of length 0 count).

3: G is acyclic iff G = scg(G).
15



 

3 Strongly 
Connected 

Components

contracted 
version:

16



One Technicality

 

In an undirected graph, the shortest a 
cycle can be is length 3.  Why?  No edge 
or node may be repeated.

In a directed graph, there can be cycles of 
length 2, or even 1.  Why?  Edges in 
opposite directions don’t count as repeats                            

17



DAGs
A directed graph is called acyclic if it has 
no oriented cycles.  

Meaning: you can’t get back where you 
start if you always follow arrows.

The “underlying graph” (just lose all the 
orientation info) may have cycles. 

18



DAGs
Q: How do we tell if a graph is a DAG?  
Alternatively, how do we find an oriented 
cycle if there is one?

Look at the Left example.  The nodes are 
in a line, all the edges go left-to-right.  
This is called a topological sort. 

19



DAGs
Q: How do we tell if a graph is a DAG?  
Alternatively, how do we find an oriented cycle 
if there is one?

Look at the Left example.  The nodes are in a 
line, all the edges go left-to-right.  This is called 
a topological sort.

Thm: G has a topological sort iff G is a DAG 

20



Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example.  The leftmost node 
has no in-edges.  Is this always the case?

 

21



Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example.  The leftmost node 
has no in-edges.  Is this always the case?  Yes.

Idea: Find the leftmost node.  Recurse!

 

22



Topological Sorting

Q: How do we tell if a graph has a topo. sort?

Look at the left example.  The leftmost node 
has no in-edges.  Is this always the case?  Yes.

Idea: Find the leftmost node.  Recurse!

Implementation issues?  

23



Searching DiGraphs

Question: Find all nodes reachable from s in a 
directed graph G.

 

24



Searching DiGraphs

Question: Find all nodes reachable from s in a 
directed graph G.

Idea: Slightly modify BFS and DFS algorithms: 
they should only “find” nodes along out-edges.

 

25



DFS and topo sort

Suppose we run DFS on a directed graph.  
What can we say about a node v when we mark 
it as INACTIVE?

 

26



DFS and topo sort

Suppose we run DFS on a directed graph.  
What can we say about a node v when we mark 
it as INACTIVE?

Did we fully explore all nodes reachable from v?
 

27



DFS and topo sort

Suppose we run DFS on a directed graph.  
What can we say about a node v when we mark 
it as INACTIVE?

Did we fully explore all nodes reachable from v? 
(to whiteboard)  

28



DFS and topo sort

 

Suppose we run DFS on a directed graph.  
What can we say about a node v when we mark 
it as INACTIVE?

Did we fully explore all nodes reachable from v? 
YES, unless there is a back-edge to an active 
node (an ancestor of the current node).  In this 
case there is an oriented cycle!.

29



Suppose we run DFS on a directed graph.  
What can we say about a node v when we mark 
it as INACTIVE?

Did we fully explore all nodes reachable from v? 
YES, unless there is a back-edge to an active 
node (an ancestor of the current node).  In this 
case there is an oriented cycle!

So: IF we ever find a back-edge to an active 
node, output the cycle.  Otherwise, we know all 
nodes reachable from v were marked INACTIVE 
before v was.

DFS and topo sort

 

30



Start at a node s.  Begin the DFS algorithm, 
following only out-edges.

Algorithm

31



Start at a node s.  Begin the DFS algorithm, 
following only out-edges.

If we ever find an edge to an active node, there 
is a cycle.  Each time we mark a node inactive, 
pre-pend it to the output.

Algorithm

32



Start at a node s.  Begin the DFS algorithm, 
following only out-edges.

If we ever find an edge to an active node, there 
is a cycle.  Each time we mark a node inactive, 
pre-pend it to the output.

If graph is a DAG, output will be a topological 
sort of the nodes reachable from s.

Algorithm

33



Start at a node s.  Begin the DFS algorithm, 
following only out-edges.

If we ever find an edge to an active node, there 
is a cycle.  Each time we mark a node inactive, 
pre-pend it to the output.

If graph is a DAG, output will be a topological 
sort of the nodes reachable from s.

If not given s: start by finding a source (node 
with no in-edges).  A DAG always has one.

Algorithm

34



Start at a node s.  Begin the DFS algorithm, 
following only out-edges.

If we ever find an edge to an active node, there 
is a cycle.  Each time we mark a node inactive, 
pre-pend it to the output.

If graph is a DAG, output will be a topological 
sort of the nodes reachable from s.

If not given s: start by finding a source (node 
with no in-edges).  A DAG always has one.

If not all nodes reached, go to next component.

Algorithm

35


