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To do:

• Quizzes from Tuesday

• Reading: up to sec 2.4 done.  

• Programming Assignment 1 - due Monday

• Written Assignment 2:  problems           
1.8, 2.1, 2.2, 2.3, 2.4, 2.5*, 2.6, 2.7, 2.8*        
*:tricky.  +:challenging                             
Quiz: 2 weeks from today.               
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Quizzes
Grade distribution: one 20, sixteen 10’s, 
two 9’s, one 6, fourteen ≤2. (three absent)

The problem? 

(a) almost nobody got anywhere on 
problem 2.

(b) Fallacy: proof by example.

(c) assignment was not done.

Let’s go over the correct answers now.
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Re Programming Assn
(1) You must not modify the test.sh file.

(2) Your code must work with the existing 
test.sh file.

(3) Ditto for GSTest.java

(4) problems with test.sh?

(a) ssh to brown.cs.unm.edu

(b) diagnose & fix 
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Re Next Written Assn
Work together!

(a) in small groups, to come up with 
solutions

(b) online discussion, to check solutions, 
and test whether you know the 
difference between a right and wrong 
answer.

This assignment is long and hard!  Start 
early!
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Implementing the Gale-
Shapley algorithm

Goal: loop iterations run in O(1) time.

Not a practical issue for the programming 
assignment, but perhaps for a large dating 
service.

2nd goal: learn to choose data structures.
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Initially, all men and women are free
While (exists m in {free men})

Let w = “top” woman in m’s pref list
If (w is free):  (m,w) become engaged
else if (w engaged to m’ but prefers m) {

 m’ becomes free again.
 m’ removes w from his pref list.
(m,w) become engaged.

} else {  // w engaged to m’, prefers m’
 m stays free, removes w from pref list

}    // (see page 6 in text).

Gale-Shapley, pseudocode
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Implementation issues
Broad considerations:

What should be the Objects?  What 
should be the Methods?

Having decided this, how should these 
be implemented?

How is data stored?

Algorithms for the Methods

Efficiency: bottlenecks
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Objects 1

free_men: the men who are not engaged.

Operations supported:

take_next(): get one free man, remove 
from free_men.

add(m): adds m to free_men

hasNext(): true if free_men is not 
empty
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Objects 2

fiance(w): which man is w engaged to?  
Initially null.

M_pref(m): supports operations:

take_first(): removes top-ranked woman 
(un-proposed to) from list, and passes 
her as return-value.

w_pref(w,m1,m2): does w prefer m1 to m2?
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Init:  free_men = all men.  fiance = all null.  
M_pref, w_pref initialized using input.
While (free_men.hasNext())

m = free_men.take_next()  // removed 
w = M_pref(m).take_first()
if (fiance(w)==null): make-engaged(w,m)
else {

 m’ = fiance(w)
 if (w_pref(w,m,m’))

{winner = m, loser = m’}
else {winner = m’, loser = m}
make-engaged(w,winner)
free_men.add(loser)
}
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free_men
Data: stores a bunch of men

Operations:

take_next(): get one free man, remove 
from free_men.

add(m): adds m to free_men

hasNext(): true if free_men is not empty

Look at Collection<E> interface in Java.  
But, which Collection should we use?
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Init:  free_men = all men.  fiance = all null.  
M_pref, w_pref initialized using input.
While (free_men.hasNext())

m = free_men.take_next()  // removed 
w = M_pref(m).take_first()
if (fiance(w)==null): make-engaged(w,m)
else {

 m’ = fiance(w)
 if (w_pref(w,m,m’))

{winner = m, loser = m’}
else {winner = m’, loser = m}
make-engaged(w,winner)
free_men.add(loser)
}

Only Once!

roughly n2 times each
(equal importance)
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Arrays vs Linked Lists

Array: Fixed size.  (well...)

Linked List: Dynamically resizeable.

Array: Get i’th element in O(1) time.

LL: Takes i steps to get i’th element.

Delete/add at middle: perhaps faster for LL

Delete/add at end: O(1) time for both, 
UNLESS exceed size of the array.
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(Singly) Linked Lists

Two fields:

Data: stores list element

Next: points to next item in list

For example, to store the (ordered) list 25, 
16, 32, we would have:

nextData

    25     16 null32
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Concatenating Lists

How would we concatenate List2 on the 
end of List1?

(a) Find end of List1

 

    25     16 null32

    81     23 null70

List1

List2
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Concatenating Lists

How would we concatenate List2 on the 
end of List1?

(a) Find end of List1

 

    25     16 null32

    81     23 null70

List1

List2
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Concatenating Lists

How would we concatenate List2 on the 
end of List1?

(a) Find end of List1

 

    25     16 null32

    81     23 null70

List1

List2
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Concatenating Lists

How would we concatenate List2 on the 
end of List1?

(a) Find end of List1

 

    25     16 null32

    81     23 null70

List1

List2
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Concatenating Lists

How would we concatenate List2 on the 
end of List1?

(a) Find end of List1

 

    25     16 null32

    81     23 null70

List1

List2
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Concatenating Lists

How would we concatenate List2 on the 
end of List1?

(a) Find end of List1

(b) Make it point to start of List2

    25     16 null32

    81     23 null70

List1

List2
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Concatenating Lists

How would we concatenate List2 on the 
end of List1?

(a) Find end of List1

(b) Make it point to start of List2

    25     16      32

    81     23 null70

List1

List2
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Implementing G-S

Use a LinkedList for free_men.

(Alternatively, could use a Stack or Queue, 
etc)

Why?  It gives a guaranteed O(1) time for 
the operations we need: add or delete one 
element from the front of the list.

No such guarantee for Array class.
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Implementing G-S
Use an array for fiance.

Why?  We want fast “random access.”  
That is, we want to be able to look up 
fiance(w) in time O(1).

This is exactly what arrays are good for.

Note: the size of array is not going to 
change during the algorithm.  So we can 
use a regular [ ] array rather than an Array 
object.
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Implementing G-S
Use a linked list for M_pref(m).

Why?  Want to “extract from front” in time 
O(1).  

Can do this with an array too: just keep a 
pointer to where we are in the array.

(see board)

Question: Why would we prefer one or the 
other?
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Implementing G-S
Use a linked list for M_pref(m).

Why?  Want to “extract from front” in time 
O(1).  

Can do this with an array too: just keep a 
pointer to where we are in the array.

(see board)

Question: Why would we prefer one or the 
other?  Answer: Whichever one is already 
coded for us!  (i.e. LinkedList, or Stack, etc)
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Implementing G-S

Use a linked list for M_pref(m).

M_pref should be an array of linked lists, 
indexed by men.

Why?
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Implementing G-S

Use a linked list for M_pref(m).

M_pref should be an array of linked lists, 
indexed by men.

Why?  Want fast “random access” to the 
list for man m.  For “fast,” read O(1).
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Implementing G-S

What about w_pref(w,m1,m2)?               
(“true” if w prefers m1 to m2.)

We could just build up a triply-indexed 
array of booleans!  Cost?  (see code)
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Init:  free_men = all men.  fiance = all null.  
M_pref, w_pref initialized using input.
While (free_men.hasNext())

m = free_men.take_next()  // removed 
w = M_pref(m).take_first()
if (fiance(w)==null): make-engaged(w,m)
else {

 m’ = fiance(w)
 if (w_pref(w,m,m’))

{winner = m, loser = m’}
else {winner = m’, loser = m}
make-engaged(w,winner)
free_men.add(loser)
}

Only Once!

roughly n2 times
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Implementing G-S

What about w_pref(w,m1,m2)?               
(“true” if w prefers m1 to m2.)

We could just build up a triply-indexed 
array of booleans!  Cost?  (see code)

ϴ(1) cost per lookup.  So O(n2) cost in loop 
body.

Initialization cost: ϴ(n3).  Too much!
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Implementing G-S

What about w_pref(w,m1,m2)?               
(“true” if w prefers m1 to m2.)

Idea 2: Could just keep the ordered list of 
preferences.  Cost? (see code)
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Init:  free_men = all men.  fiance = all null.  
M_pref, w_pref initialized using input.
While (free_men.hasNext())

m = free_men.take_next()  // removed 
w = M_pref(m).take_first()
if (fiance(w)==null): make-engaged(w,m)
else {

 m’ = fiance(w)
 if (w_pref(w,m,m’))

{winner = m, loser = m’}
else {winner = m’, loser = m}
make-engaged(w,winner)
free_men.add(loser)
}

Only Once!

roughly n2 times
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Implementing G-S

What about w_pref(w,m1,m2)?               
(“true” if w prefers m1 to m2.)

Idea 2: Could just keep the ordered list of 
preferences.  Cost? (see code)

Initialization cost: O(n2).  cool.

O(n) cost per lookup, since have to search 
through the list.  So O(n3) cost in loop body.  
Not good enough!
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Implementing G-S
What about w_pref(w,m1,m2)?               
(“true” if w prefers m1 to m2.)

Idea 2: Could just keep the ordered list of 
preferences.  Cost? (see code)

Initialization cost: O(n2).  cool.

O(n) cost per lookup, since have to search 
through the list.  So O(n3) cost in loop body.  
Not good enough!

Q: why can’t we do binary search?
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Implementing G-S

What about w_pref(w,m1,m2)?               
(“true” if w prefers m1 to m2.)

Idea 3: Store w’s “ranking” of each man in 
an array.  Cost?
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Implementing G-S
What about w_pref(w,m1,m2)?               
(“true” if w prefers m1 to m2.)

Idea 3: Store w’s “ranking” of each man in 
an array.  Cost?

Per lookup: O(1).  Testing: 

is (w_ranking[w][m1] < w_ranking[w][m2]) ?

Initialization: O(n) per woman, so O(n2).  
Can do in one pass through the input.
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Summary

free_men: LinkedList (or Stack)

fiance: array of men, indexed by women

M_pref: array of LinkedList (or Stack, etc)

w_pref: instead, replace with

w_ranking: array of ints, indexed by [w][m].

Related reading: Section 2.3
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