
CS 361
Data Structures & Algs

Lecture 6

Prof. Tom Hayes
University of New Mexico

09-09-2010

1Friday, September 10, 2010

To do:

• Quizzes from Tuesday

• Reading: up to sec 2.4 done.

• Programming Assignment 1 - due Monday

• Written Assignment 2: problems
1.8, 2.1, 2.2, 2.3, 2.4, 2.5*, 2.6, 2.7, 2.8*
*:tricky. +:challenging
Quiz: 2 weeks from today.

2Friday, September 10, 2010

Quizzes
Grade distribution: one 20, sixteen 10’s,
two 9’s, one 6, fourteen ≤2. (three absent)

The problem?

(a) almost nobody got anywhere on
problem 2.

(b) Fallacy: proof by example.

(c) assignment was not done.

Let’s go over the correct answers now.

3Friday, September 10, 2010

Re Programming Assn
(1) You must not modify the test.sh file.

(2) Your code must work with the existing
test.sh file.

(3) Ditto for GSTest.java

(4) problems with test.sh?

(a) ssh to brown.cs.unm.edu

(b) diagnose & fix

4Friday, September 10, 2010

Re Next Written Assn
Work together!

(a) in small groups, to come up with
solutions

(b) online discussion, to check solutions,
and test whether you know the
difference between a right and wrong
answer.

This assignment is long and hard! Start
early!

5Friday, September 10, 2010

Implementing the Gale-
Shapley algorithm

Goal: loop iterations run in O(1) time.

Not a practical issue for the programming
assignment, but perhaps for a large dating
service.

2nd goal: learn to choose data structures.

6Friday, September 10, 2010

Initially, all men and women are free
While (exists m in {free men})

Let w = “top” woman in m’s pref list
If (w is free): (m,w) become engaged
else if (w engaged to m’ but prefers m) {

 m’ becomes free again.
 m’ removes w from his pref list.
(m,w) become engaged.

} else { // w engaged to m’, prefers m’
 m stays free, removes w from pref list

} // (see page 6 in text).

Gale-Shapley, pseudocode

7Friday, September 10, 2010

Implementation issues
Broad considerations:

What should be the Objects? What
should be the Methods?

Having decided this, how should these
be implemented?

How is data stored?

Algorithms for the Methods

Efficiency: bottlenecks

8Friday, September 10, 2010

Objects 1

free_men: the men who are not engaged.

Operations supported:

take_next(): get one free man, remove
from free_men.

add(m): adds m to free_men

hasNext(): true if free_men is not
empty

9Friday, September 10, 2010

Objects 2

fiance(w): which man is w engaged to?
Initially null.

M_pref(m): supports operations:

take_first(): removes top-ranked woman
(un-proposed to) from list, and passes
her as return-value.

w_pref(w,m1,m2): does w prefer m1 to m2?

10Friday, September 10, 2010

Init: free_men = all men. fiance = all null.
M_pref, w_pref initialized using input.
While (free_men.hasNext())

m = free_men.take_next() // removed
w = M_pref(m).take_first()
if (fiance(w)==null): make-engaged(w,m)
else {

 m’ = fiance(w)
 if (w_pref(w,m,m’))

{winner = m, loser = m’}
else {winner = m’, loser = m}
make-engaged(w,winner)
free_men.add(loser)
}

11Friday, September 10, 2010

free_men
Data: stores a bunch of men

Operations:

take_next(): get one free man, remove
from free_men.

add(m): adds m to free_men

hasNext(): true if free_men is not empty

Look at Collection<E> interface in Java.
But, which Collection should we use?

12Friday, September 10, 2010

Init: free_men = all men. fiance = all null.
M_pref, w_pref initialized using input.
While (free_men.hasNext())

m = free_men.take_next() // removed
w = M_pref(m).take_first()
if (fiance(w)==null): make-engaged(w,m)
else {

 m’ = fiance(w)
 if (w_pref(w,m,m’))

{winner = m, loser = m’}
else {winner = m’, loser = m}
make-engaged(w,winner)
free_men.add(loser)
}

Only Once!

roughly n2 times each
(equal importance)

13Friday, September 10, 2010

Arrays vs Linked Lists

Array: Fixed size. (well...)

Linked List: Dynamically resizeable.

Array: Get i’th element in O(1) time.

LL: Takes i steps to get i’th element.

Delete/add at middle: perhaps faster for LL

Delete/add at end: O(1) time for both,
UNLESS exceed size of the array.

14Friday, September 10, 2010

(Singly) Linked Lists

Two fields:

Data: stores list element

Next: points to next item in list

For example, to store the (ordered) list 25,
16, 32, we would have:

nextData

 25 16 null32

15Friday, September 10, 2010

Concatenating Lists

How would we concatenate List2 on the
end of List1?

(a) Find end of List1

 25 16 null32

 81 23 null70

List1

List2

16Friday, September 10, 2010

Concatenating Lists

How would we concatenate List2 on the
end of List1?

(a) Find end of List1

 25 16 null32

 81 23 null70

List1

List2

17Friday, September 10, 2010

Concatenating Lists

How would we concatenate List2 on the
end of List1?

(a) Find end of List1

 25 16 null32

 81 23 null70

List1

List2

18Friday, September 10, 2010

Concatenating Lists

How would we concatenate List2 on the
end of List1?

(a) Find end of List1

 25 16 null32

 81 23 null70

List1

List2

19Friday, September 10, 2010

Concatenating Lists

How would we concatenate List2 on the
end of List1?

(a) Find end of List1

 25 16 null32

 81 23 null70

List1

List2

20Friday, September 10, 2010

Concatenating Lists

How would we concatenate List2 on the
end of List1?

(a) Find end of List1

(b) Make it point to start of List2

 25 16 null32

 81 23 null70

List1

List2

21Friday, September 10, 2010

Concatenating Lists

How would we concatenate List2 on the
end of List1?

(a) Find end of List1

(b) Make it point to start of List2

 25 16 32

 81 23 null70

List1

List2

22Friday, September 10, 2010

Implementing G-S

Use a LinkedList for free_men.

(Alternatively, could use a Stack or Queue,
etc)

Why? It gives a guaranteed O(1) time for
the operations we need: add or delete one
element from the front of the list.

No such guarantee for Array class.

23Friday, September 10, 2010

Implementing G-S
Use an array for fiance.

Why? We want fast “random access.”
That is, we want to be able to look up
fiance(w) in time O(1).

This is exactly what arrays are good for.

Note: the size of array is not going to
change during the algorithm. So we can
use a regular [] array rather than an Array
object.

24Friday, September 10, 2010

Implementing G-S
Use a linked list for M_pref(m).

Why? Want to “extract from front” in time
O(1).

Can do this with an array too: just keep a
pointer to where we are in the array.

(see board)

Question: Why would we prefer one or the
other?

25Friday, September 10, 2010

Implementing G-S
Use a linked list for M_pref(m).

Why? Want to “extract from front” in time
O(1).

Can do this with an array too: just keep a
pointer to where we are in the array.

(see board)

Question: Why would we prefer one or the
other? Answer: Whichever one is already
coded for us! (i.e. LinkedList, or Stack, etc)

26Friday, September 10, 2010

Implementing G-S

Use a linked list for M_pref(m).

M_pref should be an array of linked lists,
indexed by men.

Why?

27Friday, September 10, 2010

Implementing G-S

Use a linked list for M_pref(m).

M_pref should be an array of linked lists,
indexed by men.

Why? Want fast “random access” to the
list for man m. For “fast,” read O(1).

28Friday, September 10, 2010

Implementing G-S

What about w_pref(w,m1,m2)?
(“true” if w prefers m1 to m2.)

We could just build up a triply-indexed
array of booleans! Cost? (see code)

29Friday, September 10, 2010

Init: free_men = all men. fiance = all null.
M_pref, w_pref initialized using input.
While (free_men.hasNext())

m = free_men.take_next() // removed
w = M_pref(m).take_first()
if (fiance(w)==null): make-engaged(w,m)
else {

 m’ = fiance(w)
 if (w_pref(w,m,m’))

{winner = m, loser = m’}
else {winner = m’, loser = m}
make-engaged(w,winner)
free_men.add(loser)
}

Only Once!

roughly n2 times

30Friday, September 10, 2010

Implementing G-S

What about w_pref(w,m1,m2)?
(“true” if w prefers m1 to m2.)

We could just build up a triply-indexed
array of booleans! Cost? (see code)

ϴ(1) cost per lookup. So O(n2) cost in loop
body.

Initialization cost: ϴ(n3). Too much!

31Friday, September 10, 2010

Implementing G-S

What about w_pref(w,m1,m2)?
(“true” if w prefers m1 to m2.)

Idea 2: Could just keep the ordered list of
preferences. Cost? (see code)

32Friday, September 10, 2010

Init: free_men = all men. fiance = all null.
M_pref, w_pref initialized using input.
While (free_men.hasNext())

m = free_men.take_next() // removed
w = M_pref(m).take_first()
if (fiance(w)==null): make-engaged(w,m)
else {

 m’ = fiance(w)
 if (w_pref(w,m,m’))

{winner = m, loser = m’}
else {winner = m’, loser = m}
make-engaged(w,winner)
free_men.add(loser)
}

Only Once!

roughly n2 times

33Friday, September 10, 2010

Implementing G-S

What about w_pref(w,m1,m2)?
(“true” if w prefers m1 to m2.)

Idea 2: Could just keep the ordered list of
preferences. Cost? (see code)

Initialization cost: O(n2). cool.

O(n) cost per lookup, since have to search
through the list. So O(n3) cost in loop body.
Not good enough!

34Friday, September 10, 2010

Implementing G-S
What about w_pref(w,m1,m2)?
(“true” if w prefers m1 to m2.)

Idea 2: Could just keep the ordered list of
preferences. Cost? (see code)

Initialization cost: O(n2). cool.

O(n) cost per lookup, since have to search
through the list. So O(n3) cost in loop body.
Not good enough!

Q: why can’t we do binary search?
35Friday, September 10, 2010

Implementing G-S

What about w_pref(w,m1,m2)?
(“true” if w prefers m1 to m2.)

Idea 3: Store w’s “ranking” of each man in
an array. Cost?

36Friday, September 10, 2010

Implementing G-S
What about w_pref(w,m1,m2)?
(“true” if w prefers m1 to m2.)

Idea 3: Store w’s “ranking” of each man in
an array. Cost?

Per lookup: O(1). Testing:

is (w_ranking[w][m1] < w_ranking[w][m2]) ?

Initialization: O(n) per woman, so O(n2).
Can do in one pass through the input.

37Friday, September 10, 2010

Summary

free_men: LinkedList (or Stack)

fiance: array of men, indexed by women

M_pref: array of LinkedList (or Stack, etc)

w_pref: instead, replace with

w_ranking: array of ints, indexed by [w][m].

Related reading: Section 2.3

38Friday, September 10, 2010

