
CS 361
Data Structures & Algs

Lecture 7

Prof. Tom Hayes
University of New Mexico

09-14-2010

1Thursday, September 16, 2010

Today

Talk about Programming Assignment 1.

Inverted Indices.

Data Structures: Arrays vs. Linked Lists.

More about Big O.

New Reading: Read section 2.5.

2Thursday, September 16, 2010

Reminders

• Prog #1 was due last night.

• Reading: up to sec 2.4 done.

• Written Assignment 2: problems
1.8, 2.1, 2.2, 2.3, 2.4, 2.5*, 2.6, 2.7, 2.8+
*:tricky. +:challenging
Quiz: 2 next Thursday

3Thursday, September 16, 2010

Re Next Written Assn
Work together!

(a) in small groups, to come up with
solutions

(b) online discussion, to check solutions,
and test whether you know the
difference between a right and wrong
answer.

This assignment is long and hard! Start
early!

4Thursday, September 16, 2010

Thoughts on P.A. #1
Checking solution vs Finding solution

Unrelated tasks?

Relative difficulty?

Methods used by both?

Object oriented design?

Overall difficulty? Hardest tests?

Worked together?

5Thursday, September 16, 2010

Resolving Proposals

Man m proposes to woman w.
w has fiance, m’.

winner: whichever of m, m’ comes first in
preference list of w.

Want to computer winner in O(1) time.
Can we do it?

6Thursday, September 16, 2010

Inverted Indices
WomenPrefs[w] lists the men by ranking.

More helpful: WomenRankings[w][m] tells
where w ranks man m. 0=best, n-1=worst.

Example of an Inverted Index (wikipedia).
Application: Search engines (Google).
Pre-computers: concordances.

Preprocessing: build up this array in O(n2)
time before doing any proposals.

7Thursday, September 16, 2010

Building an Inverted Index
WP: womens preference array
WR: womens rankings array.

for (w=0 to n-1)
 for (ranking=0 to n-1) {
 m = WP[w][ranking];
 WR[w][m] = ranking;
 }

WR[w] and WP[w] are each an inverted
index of the other.

8Thursday, September 16, 2010

Building an Inverted Index

wife[]: stores a matching, (male view)
husband[]: inverted index (female view)

for (m=0 to n-1) {
 w = wife[m];
 husband[w] = m;
}

9Thursday, September 16, 2010

Inverted Indices

Making an inverted index is often a good
idea. Keep it in mind!

The cost is comparable to (ϴ) the cost of
reading the original array.

Careful: if you modify the array, you will
have to update the inverted index too!

10Thursday, September 16, 2010

Arrays vs Linked Lists

Operations supported. See Java API for
Collections, List.

Collections Methods: add, addAll, clear,
contains, containsAll, equals, hashCode,
isEmpty, iterator, remove, removeAll,
retainAll, size, toArray.

11Thursday, September 16, 2010

Collections - Subclasses
AbstractCollection, AbstractList, AbstractQueue,
AbstractSequentialList, AbstractSet,
ArrayBlockingQueue, ArrayDeque, ArrayList,
AttributeList, BeanContextServicesSupport,
BeanContextSupport,ConcurrentLinkedQueue,
ConcurrentSkipListSet, CopyOnWriteArrayList,
CopyOnWriteArraySet, DelayQueue, EnumSet,
HashSet, JobStateReasons,
LinkedBlockingDeque,
LinkedBlockingQueue,LinkedHashSet,
LinkedList, PriorityBlockingQueue, PriorityQueue,
RoleList, RoleUnresolvedList, Stack,
SynchronousQueue, TreeSet, Vector

12Thursday, September 16, 2010

http://download.oracle.com/javase/6/docs/api/java/util/AbstractCollection.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractCollection.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractList.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractList.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractSequentialList.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractSequentialList.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractSet.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractSet.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ArrayBlockingQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ArrayBlockingQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/ArrayDeque.html
http://download.oracle.com/javase/6/docs/api/java/util/ArrayDeque.html
http://download.oracle.com/javase/6/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/6/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/6/docs/api/javax/management/AttributeList.html
http://download.oracle.com/javase/6/docs/api/javax/management/AttributeList.html
http://download.oracle.com/javase/6/docs/api/java/beans/beancontext/BeanContextServicesSupport.html
http://download.oracle.com/javase/6/docs/api/java/beans/beancontext/BeanContextServicesSupport.html
http://download.oracle.com/javase/6/docs/api/java/beans/beancontext/BeanContextSupport.html
http://download.oracle.com/javase/6/docs/api/java/beans/beancontext/BeanContextSupport.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentSkipListSet.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentSkipListSet.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/CopyOnWriteArrayList.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/CopyOnWriteArrayList.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/CopyOnWriteArraySet.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/CopyOnWriteArraySet.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/DelayQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/DelayQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/EnumSet.html
http://download.oracle.com/javase/6/docs/api/java/util/EnumSet.html
http://download.oracle.com/javase/6/docs/api/java/util/HashSet.html
http://download.oracle.com/javase/6/docs/api/java/util/HashSet.html
http://download.oracle.com/javase/6/docs/api/javax/print/attribute/standard/JobStateReasons.html
http://download.oracle.com/javase/6/docs/api/javax/print/attribute/standard/JobStateReasons.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/LinkedBlockingDeque.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/LinkedBlockingDeque.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/LinkedBlockingQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/LinkedBlockingQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/LinkedHashSet.html
http://download.oracle.com/javase/6/docs/api/java/util/LinkedHashSet.html
http://download.oracle.com/javase/6/docs/api/java/util/LinkedList.html
http://download.oracle.com/javase/6/docs/api/java/util/LinkedList.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/PriorityBlockingQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/PriorityBlockingQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/PriorityQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/PriorityQueue.html
http://download.oracle.com/javase/6/docs/api/javax/management/relation/RoleList.html
http://download.oracle.com/javase/6/docs/api/javax/management/relation/RoleList.html
http://download.oracle.com/javase/6/docs/api/javax/management/relation/RoleUnresolvedList.html
http://download.oracle.com/javase/6/docs/api/javax/management/relation/RoleUnresolvedList.html
http://download.oracle.com/javase/6/docs/api/java/util/Stack.html
http://download.oracle.com/javase/6/docs/api/java/util/Stack.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/SynchronousQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/SynchronousQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/TreeSet.html
http://download.oracle.com/javase/6/docs/api/java/util/TreeSet.html
http://download.oracle.com/javase/6/docs/api/java/util/Vector.html
http://download.oracle.com/javase/6/docs/api/java/util/Vector.html

Arrays vs Linked Lists

See wikipedia on Linked Lists for
comparisons with Arrays.

Main differences: get(index), put(val, index)
run in O(1) time for Array, linear time for LL.
insert, delete in middle takes linear time for
Array, O(1) time for LL.

13Thursday, September 16, 2010

Practice with big-O
Suppose f = O(g) and g = O(H).

Prove: f = O(H).

Reasoning: Goal: f(n) ≤ C H(n).

f = O(g) means: There is C1, n1 such that
as long as n≥n1 we have f(n) ≤ C1 g(n).

g = O(H) means: There is C2, n2 such that
as long as n≥n2 we have g(n) ≤ C2 H(n).

f(n) ≤ C1 g(n) ≤ C1 (C2 H(n)) = (C1 C2) H(n)

14Thursday, September 16, 2010

Practice with big-O
f = O(g) means: There is C1, n1 such that
as long as n≥n1 we have f(n) ≤ C1 g(n).

g = O(H) means: There is C2, n2 such that
as long as n≥n2 we have g(n) ≤ C2 H(n).

f(n) ≤ C1 g(n) ≤ C1 (C2 H(n)) = (C1 C2) H(n)

Guess C = C1 C2

n0 = ?. Need: f(n) ≤ C1 g(n). From top,
need n ≥ n1. Need: g(n) ≤ C2 H(n). Thus
need n ≥ n2. Choose n0 = max{n1, n2}.

15Thursday, September 16, 2010

Practice with big-O
Suppose f = O(g) and g = O(h).

Prove: f = O(h).

Proof: f = O(g) means: There is C1, n1 such
that as long as n≥n1 we have f(n) ≤ C1 g(n).

g = O(H) means: There is C2, n2 such that
as long as n≥n2 we have g(n) ≤ C2 H(n).

Choose C = C1 C2, and n0 = max{n1, n2}.

Then

16Thursday, September 16, 2010

Proof: f = O(g) means: There is C1, n1 such
that as long as n≥n1 we have f(n) ≤ C1 g(n).

g = O(H) means: There is C2, n2 such that
as long as n≥n2 we have g(n) ≤ C2 H(n).

Choose C = C1 C2, and n0 = max{n1, n2}.

Suppose n ≥ n0

Then

f(n) ≤ C1 g(n) ≤ C1 (C2 H(n)) = (C1 C2) H(n)

 = C H(n).

Thus f = O(H).
17Thursday, September 16, 2010

Choose C = C1 C2, and n0 = max{n1, n2}.

Suppose n ≥ n0

Then

f(n) ≤ C1 g(n) (since n ≥ n0 ≥ n1 and above)

≤ C1 (C2 H(n)) (since n ≥ n0 ≥ n2 and above)

= (C1 C2) H(n) (arithmetic)

 = C H(n). (def of C)

Thus f = O(H).

18Thursday, September 16, 2010

Choose C = C1 C2, and n0 = max{n1, n2}.

Suppose n ≥ n0

Then

f(n) ≤ C1 g(n) (since n ≥ n0 ≥ n1 and above)

≤ C1 (C2 H(n)) (since n ≥ n0 ≥ n2 and above)

= (C1 C2) H(n) (arithmetic)

 = C H(n). (def of C)

Thus f = O(H).

19Thursday, September 16, 2010

Test your understanding

True or False:

When f, g are positive functions, “f = O(g)”
means there is some constant C such that,
for all n, f(n)/g(n) ≤ C.

20Thursday, September 16, 2010

Test your understanding

True or False:

When f, g are positive functions, “f = O(g)”
means there is some constant C such that,
for all n, f(n)/g(n) ≤ C.

True!

Same as f(n) ≤ C g(n).

But, what about n0?

21Thursday, September 16, 2010

Test your understanding
True or False:

When f, g are positive functions, “f = O(g)”
means

lim
n→∞

f(n)
g(n)

= C

22Thursday, September 16, 2010

Test your understanding
True or False:

When f, g are positive functions, “f = O(g)”
means

lim
n→∞

f(n)
g(n)

= C

False. f(n)/g(n) does not have to converge
to a particular value. C is only an upper
bound. See board.

23Thursday, September 16, 2010

Test your understanding
True or False:

When f, g are positive functions, “f = ϴ(g)”
means

lim
n→∞

f(n)
g(n)

= C

24Thursday, September 16, 2010

Test your understanding
True or False:

When f, g are positive functions, “f = ϴ(g)”
means

lim
n→∞

f(n)
g(n)

= C

False. f(n)/g(n) does not have to converge
to a particular value. For instance, f(n)/g(n)
may oscillate between a lower bound, L,
and an upper bound U.

25Thursday, September 16, 2010

Test your understanding
True or False:

 implies f = O(g)lim
n→∞

f(n)
g(n)

= C

True. Existence of this limit implies that, for
large n, f(n)/g(n) is arbitrarily close to C. In
particular, f(n)/g(n) is between 0 and 2C.
But this implies f(n) ≤ 2C g(n), so f = O(g).

26Thursday, September 16, 2010

Test your understanding
True or False:

 implies f = O(g)lim
n→∞

f(n)
g(n)

= C

True. Existence of this limit implies that, for
large n, f(n)/g(n) is arbitrarily close to C. In
particular, f(n)/g(n) is between 0 and 2C.
But this implies f(n) ≤ 2C g(n), so f = O(g).

Same proof shows f = Ω(g). Hence f=ϴ(g)

27Thursday, September 16, 2010

