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Today

Talk about Programming Assignment 1.

Inverted Indices.

Data Structures: Arrays vs. Linked Lists.

More about Big O.

New Reading: Read section 2.5.
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Reminders

• Prog #1 was due last night.

• Reading: up to sec 2.4 done.  

• Written Assignment 2:  problems           
1.8, 2.1, 2.2, 2.3, 2.4, 2.5*, 2.6, 2.7, 2.8+        
*:tricky.  +:challenging                             
Quiz: 2 next Thursday               
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Re Next Written Assn
Work together!

(a) in small groups, to come up with 
solutions

(b) online discussion, to check solutions, 
and test whether you know the 
difference between a right and wrong 
answer.

This assignment is long and hard!  Start 
early!
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Thoughts on P.A. #1
Checking solution vs Finding solution

Unrelated tasks?

Relative difficulty?

Methods used by both?

Object oriented design?

Overall difficulty?  Hardest tests?

Worked together?
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Resolving Proposals

Man m proposes to woman w.
w has fiance, m’.

winner: whichever of m, m’ comes first in 
preference list of w.

Want to computer winner in O(1) time.  
Can we do it?
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Inverted Indices
WomenPrefs[w] lists the men by ranking.

More helpful: WomenRankings[w][m] tells 
where w ranks man m.  0=best, n-1=worst.

Example of an Inverted Index (wikipedia).
Application: Search engines (Google).
Pre-computers: concordances.

Preprocessing: build up this array in O(n2) 
time before doing any proposals.
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Building an Inverted Index
WP: womens preference array
WR: womens rankings array.

for (w=0 to n-1)
  for (ranking=0 to n-1) {
     m = WP[w][ranking];
     WR[w][m] = ranking;
  }

WR[w] and WP[w] are each an inverted 
index of the other.
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Building an Inverted Index

wife[ ]: stores a matching, (male view)
husband[ ]: inverted index (female view)

for (m=0 to n-1) {
   w = wife[m];
   husband[w] = m;
}
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Inverted Indices

Making an inverted index is often a good 
idea.  Keep it in mind!

The cost is comparable to (ϴ) the cost of 
reading the original array.

Careful: if you modify the array, you will 
have to update the inverted index too!
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Arrays vs Linked Lists

Operations supported.  See Java API for 
Collections, List.

Collections Methods: add, addAll, clear, 
contains, containsAll, equals, hashCode, 
isEmpty, iterator, remove, removeAll, 
retainAll, size, toArray.
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Collections - Subclasses
AbstractCollection, AbstractList, AbstractQueue, 
AbstractSequentialList, AbstractSet, 
ArrayBlockingQueue, ArrayDeque, ArrayList, 
AttributeList, BeanContextServicesSupport, 
BeanContextSupport,ConcurrentLinkedQueue, 
ConcurrentSkipListSet, CopyOnWriteArrayList, 
CopyOnWriteArraySet, DelayQueue, EnumSet, 
HashSet, JobStateReasons, 
LinkedBlockingDeque, 
LinkedBlockingQueue,LinkedHashSet, 
LinkedList, PriorityBlockingQueue, PriorityQueue, 
RoleList, RoleUnresolvedList, Stack, 
SynchronousQueue, TreeSet, Vector
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http://download.oracle.com/javase/6/docs/api/java/util/AbstractCollection.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractCollection.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractList.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractList.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractSequentialList.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractSequentialList.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractSet.html
http://download.oracle.com/javase/6/docs/api/java/util/AbstractSet.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ArrayBlockingQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ArrayBlockingQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/ArrayDeque.html
http://download.oracle.com/javase/6/docs/api/java/util/ArrayDeque.html
http://download.oracle.com/javase/6/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/6/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/6/docs/api/javax/management/AttributeList.html
http://download.oracle.com/javase/6/docs/api/javax/management/AttributeList.html
http://download.oracle.com/javase/6/docs/api/java/beans/beancontext/BeanContextServicesSupport.html
http://download.oracle.com/javase/6/docs/api/java/beans/beancontext/BeanContextServicesSupport.html
http://download.oracle.com/javase/6/docs/api/java/beans/beancontext/BeanContextSupport.html
http://download.oracle.com/javase/6/docs/api/java/beans/beancontext/BeanContextSupport.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentSkipListSet.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentSkipListSet.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/CopyOnWriteArrayList.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/CopyOnWriteArrayList.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/CopyOnWriteArraySet.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/CopyOnWriteArraySet.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/DelayQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/DelayQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/EnumSet.html
http://download.oracle.com/javase/6/docs/api/java/util/EnumSet.html
http://download.oracle.com/javase/6/docs/api/java/util/HashSet.html
http://download.oracle.com/javase/6/docs/api/java/util/HashSet.html
http://download.oracle.com/javase/6/docs/api/javax/print/attribute/standard/JobStateReasons.html
http://download.oracle.com/javase/6/docs/api/javax/print/attribute/standard/JobStateReasons.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/LinkedBlockingDeque.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/LinkedBlockingDeque.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/LinkedBlockingQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/LinkedBlockingQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/LinkedHashSet.html
http://download.oracle.com/javase/6/docs/api/java/util/LinkedHashSet.html
http://download.oracle.com/javase/6/docs/api/java/util/LinkedList.html
http://download.oracle.com/javase/6/docs/api/java/util/LinkedList.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/PriorityBlockingQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/PriorityBlockingQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/PriorityQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/PriorityQueue.html
http://download.oracle.com/javase/6/docs/api/javax/management/relation/RoleList.html
http://download.oracle.com/javase/6/docs/api/javax/management/relation/RoleList.html
http://download.oracle.com/javase/6/docs/api/javax/management/relation/RoleUnresolvedList.html
http://download.oracle.com/javase/6/docs/api/javax/management/relation/RoleUnresolvedList.html
http://download.oracle.com/javase/6/docs/api/java/util/Stack.html
http://download.oracle.com/javase/6/docs/api/java/util/Stack.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/SynchronousQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/SynchronousQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/TreeSet.html
http://download.oracle.com/javase/6/docs/api/java/util/TreeSet.html
http://download.oracle.com/javase/6/docs/api/java/util/Vector.html
http://download.oracle.com/javase/6/docs/api/java/util/Vector.html


Arrays vs Linked Lists

See wikipedia on Linked Lists for 
comparisons with Arrays.

Main differences: get(index), put(val, index) 
run in O(1) time for Array, linear time for LL.
insert, delete in middle takes linear time for 
Array, O(1) time for LL.
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Practice with big-O
Suppose f = O(g) and g = O(H).  

Prove: f = O(H).

Reasoning:   Goal:   f(n) ≤ C H(n).

f = O(g) means:  There is C1, n1 such that 
as long as n≥n1 we have f(n) ≤ C1 g(n).

g = O(H) means:  There is C2, n2 such that 
as long as n≥n2 we have g(n) ≤ C2 H(n).

f(n) ≤ C1 g(n) ≤ C1 (C2 H(n)) = (C1 C2) H(n)
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Practice with big-O
f = O(g) means:  There is C1, n1 such that 
as long as n≥n1 we have f(n) ≤ C1 g(n).

g = O(H) means:  There is C2, n2 such that 
as long as n≥n2 we have g(n) ≤ C2 H(n).

f(n) ≤ C1 g(n) ≤ C1 (C2 H(n)) = (C1 C2) H(n)

Guess C = C1 C2

n0 = ?.  Need: f(n) ≤ C1 g(n).  From top, 
need n ≥ n1.   Need: g(n) ≤ C2 H(n).  Thus 
need n ≥ n2.  Choose n0 = max{n1, n2}.
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Practice with big-O
Suppose f = O(g) and g = O(h).  

Prove: f = O(h).

Proof: f = O(g) means:  There is C1, n1 such 
that as long as n≥n1 we have f(n) ≤ C1 g(n).

g = O(H) means:  There is C2, n2 such that 
as long as n≥n2 we have g(n) ≤ C2 H(n).

Choose C = C1 C2, and n0 = max{n1, n2}.

Then  
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Proof: f = O(g) means:  There is C1, n1 such 
that as long as n≥n1 we have f(n) ≤ C1 g(n).

g = O(H) means:  There is C2, n2 such that 
as long as n≥n2 we have g(n) ≤ C2 H(n).

Choose C = C1 C2, and n0 = max{n1, n2}.

Suppose n ≥ n0

Then  

f(n) ≤ C1 g(n) ≤ C1 (C2 H(n)) = (C1 C2) H(n)

      = C H(n).

Thus f = O(H).
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Choose C = C1 C2, and n0 = max{n1, n2}.

Suppose n ≥ n0

Then  

f(n) ≤ C1 g(n)   (since n ≥ n0 ≥ n1 and above)

≤ C1 (C2 H(n))  (since n ≥ n0 ≥ n2 and above)

= (C1 C2) H(n)  (arithmetic)

      = C H(n).   (def of C)

Thus f = O(H).
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Choose C = C1 C2, and n0 = max{n1, n2}.

Suppose n ≥ n0

Then  

f(n) ≤ C1 g(n)   (since n ≥ n0 ≥ n1 and above)

≤ C1 (C2 H(n))  (since n ≥ n0 ≥ n2 and above)

= (C1 C2) H(n)  (arithmetic)

      = C H(n).   (def of C)

Thus f = O(H).
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Test your understanding

True or False:

When f, g  are positive functions, “f = O(g)” 
means there is some constant C such that, 
for all n, f(n)/g(n) ≤ C.
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Test your understanding

True or False:

When f, g  are positive functions, “f = O(g)” 
means there is some constant C such that, 
for all n, f(n)/g(n) ≤ C.

True!

Same as f(n) ≤ C g(n).

But, what about n0?
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Test your understanding
True or False:

When f, g  are positive functions, “f = O(g)” 
means 

lim
n→∞

f(n)
g(n)

= C
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Test your understanding
True or False:

When f, g  are positive functions, “f = O(g)” 
means 

lim
n→∞

f(n)
g(n)

= C

False.  f(n)/g(n) does not have to converge 
to a particular value.  C is only an upper 
bound.  See board.
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Test your understanding
True or False:

When f, g  are positive functions, “f = ϴ(g)” 
means 

lim
n→∞

f(n)
g(n)

= C
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Test your understanding
True or False:

When f, g  are positive functions, “f = ϴ(g)” 
means 

lim
n→∞

f(n)
g(n)

= C

False.  f(n)/g(n) does not have to converge 
to a particular value.  For instance, f(n)/g(n) 
may oscillate between a lower bound, L, 
and an upper bound U.
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Test your understanding
True or False:

                                    implies f = O(g)lim
n→∞

f(n)
g(n)

= C

True.  Existence of this limit implies that, for 
large n, f(n)/g(n) is arbitrarily close to C.  In 
particular, f(n)/g(n) is between 0 and 2C.  
But this implies f(n) ≤ 2C g(n), so f = O(g).
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Test your understanding
True or False:

                                    implies f = O(g)lim
n→∞

f(n)
g(n)

= C

True.  Existence of this limit implies that, for 
large n, f(n)/g(n) is arbitrarily close to C.  In 
particular, f(n)/g(n) is between 0 and 2C.  
But this implies f(n) ≤ 2C g(n), so f = O(g).

Same proof shows f = Ω(g).  Hence f=ϴ(g)
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