
CS 361
Data Structures & Algs

Lecture 8

Prof. Tom Hayes
University of New Mexico

09-16-2010

1Wednesday, September 22, 2010

Today

More about Big O.

Online Hiring and Selling.

Sorting and Searching.

next: Priority Queues

2Wednesday, September 22, 2010

Reminders

• Reading: finish Chapter 2 (sec 2.5 on PQs)

• Written Assignment 2: problems
1.8, 2.1, 2.2, 2.3, 2.4, 2.5*, 2.6, 2.7, 2.8+
*:tricky. +:challenging
Quiz: 2 next Thursday

• Work together!

3Wednesday, September 22, 2010

Test your understanding
True or False:

 implies f = O(g)lim
n→∞

f(n)
g(n)

= C

True. Existence of this limit implies that, for
large n, f(n)/g(n) is arbitrarily close to C. In
particular, f(n)/g(n) is between 0 and 2C.
But this implies f(n) ≤ 2C g(n), so f = O(g).

Same proof shows f = Ω(g). Hence f=ϴ(g)

4Wednesday, September 22, 2010

Setting up a proof

Given: f = O(g). f, g are positive.

Prove: f2 = O(g2)

Proof:

5Wednesday, September 22, 2010

Setting up a proof
Given: f = O(g). f, g are positive.

Prove: f2 = O(g2)

Proof: From the hypothesis, there exists C
such that, for every n, f(n) ≤ C g(n).

...

Therefore, for every n, f2(n) ≤ C’ g2(n),
where C’ = Thus f2 = O(g2).

6Wednesday, September 22, 2010

Setting up a proof
Given: f = O(g). f, g are positive.

Prove: f2 = O(g2)

Proof: From the hypothesis, there exists C
such that, for every n, f(n) ≤ C g(n).

Square both sides. f2(n) ≤ C2 g2(n).

Therefore, for every n, f2(n) ≤ C’ g2(n),
where C’ = C2. Thus f2 = O(g2).

7Wednesday, September 22, 2010

Sorting Functions
Problems 2.1, 2.2, 2.3

Useful principles:

(1) 2f = O(2g) means “2f does not exceed 2g
by more than a constant factor”. Same as
“f does not exceed g by more than an
additive constant”.

Why? 8 times 2g equals 2g+3

C times 2g equals 2g + log(C)

8Wednesday, September 22, 2010

Sorting Functions
(2) Look at the ratio, f/g. f = O(g) means
the ratio f/g is bounded. Try to simplify
this ratio and understand it.

(3) How do changes to the input affect the
output? Suppose f(n+1) = 2f(n)-1 and
g(n+1) = g(n) + sqrt(g(n)). Then f will
eventually grow faster than g.

(4) How fast does f double? Similar to (3).
The function that doubles faster grows
faster.

9Wednesday, September 22, 2010

Online Algorithms
Sometimes, you have to make decisions
before you know the whole input.

Examples:

Take local bus or wait for express?

Buy bread or wait for a sale?

Buy 1 loaf or stock up with 5?

Accept McDonalds job or keep hunting?

Price shareware at $10 or $20?
10Wednesday, September 22, 2010

Online Algorithms

Sometimes, you have to make decisions
before you know the whole input.

Reasons:

Information is not available, or

No time to read it. For example, a one-
pass algorithm (linear time).

11Wednesday, September 22, 2010

“Secretary problem”

100 applicants are coming to audition for
secretary job at CIA. After talking to each,
you must decide: hire, or shoot!

Goal: Hire the best of the 100. Once you
hire, send the rest away with no interview.

Difficulty: You don’t know how good the
ones you don’t interview are.

12Wednesday, September 22, 2010

“Secretary problem”
100 applicants are coming to audition for
secretary job at CIA. After talking to each,
you must decide: hire, or shoot!

Goal: Hire the best of the 100. Once you
hire, send the rest away with no interview.

Difficulty: You don’t know how good the
ones you don’t interview are.

Solution: Interview, then shoot, the first 37.
Then hire the next better one.

13Wednesday, September 22, 2010

Selling widgets online

You have 100 widgets to sell. 1000
customers come by, and each offers you
some money. Suppose the offers are
independent random values between $1
and $100. Which offers should you
accept?

14Wednesday, September 22, 2010

Selling widgets online

You have 100 widgets to sell. 1000
customers come by, and each offers you
some money. Suppose the offers are
independent random values between $1
and $100. Which offers should you
accept?

Accepting all offers above $90 is good, but
not best possible. Why not?

15Wednesday, September 22, 2010

Selling widgets online

You have 100 widgets to sell. 1000
customers come by, and each offers you
some money. Now, suppose we don’t
know what the distribution of offers will be.
What should we do?

16Wednesday, September 22, 2010

Selling widgets online

You have 100 widgets to sell. 1000
customers come by, and each offers you
some money. Now, suppose we don’t
know what the distribution of offers will be.
What should we do?

“Statistical Inference”: use the first few
offers to infer a guess as to how the
remaining offers will be distributed.

17Wednesday, September 22, 2010

Selling widgets online
You have 100 widgets to sell. 1000
customers come by, and each offers you
some money. Now, suppose we don’t
know what the distribution of offers will be.
What should we do?

“Statistical Inference”: use the first few
offers to infer a guess as to how the
remaining offers will be distributed.

Then try to sell to roughly the top 10% of
remaining customers.

18Wednesday, September 22, 2010

Combinatorial auction
In practice, one may have a more
complicated setting, where customers offer
money for “bundles” of several different
kinds of widgets. For example, the active
TopCoder contest on CuttingFigures.

Such settings may be very difficult to solve
optimally, as they combine several different
difficult aspects.

For instance, the FCC’s recent sale of radio
station bandwidth.

19Wednesday, September 22, 2010

Sorting and Searching

Sorting: Given an array of N numbers.
Output the same array in increasing order.
Running time?

Search: Maintain a set of N numbers, so
that you can quickly find the i’th biggest
one. How quickly can this be done?

20Wednesday, September 22, 2010

Sorting and Searching

Sorting: Given an array of N numbers.
Output the same array in increasing order.
Running time?

Search: Maintain a set of N numbers, so
that you can quickly find the i’th biggest
one. How quickly can this be done?

21Wednesday, September 22, 2010

Sorting

Sorting an Array can be done in time
O(N log N). Several ways to do it:

1) MergeSort

2) QuickSort

3) with a Priority Queue (HeapSort)

4) other ways (e.g. CountingSort)

22Wednesday, September 22, 2010

