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Today

Orderings

Searching

Sorting

Priority Queues & Heaps
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Order Relation

We say a binary relation R is an “order 
relation” if it is 

(1) transitive  a R b  and b R c implies a R c

and (2) antisymmetric a R b implies not(b R 
a).

example: <    >    “is a prefix of”                
“is younger than”    “is a descendent of”  
“is a superclass of”
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Total Ordering

An order relation R is total if, for every a, b, 
either a=b, a R b or b R a.  “trichotomy”

Example: < on real numbers.

Otherwise: partial ordering.  example: “is an 
ancestor of”.  “came to class before”.    
(Why are these orderings only partial?)
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Sorting

Prerequisites: a total ordering, R.

Input: an unordered collection of things.

Output: a list containing the same things, 
now in order 

      (A[0] R A[1] R A[2] R ... R A[n-1])
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How to Sort
Basic idea: Divide and Conquer!

(a) QuickSort.  Choose a “pivot” P = A[i].  
Split the rest of A into 2 sides: less than P, 
and more than P.  Place these sides in the 
correct order:  (< P)  P (> P).  Finally, 
recursively sort the two sides.

(b) MergeSort.  Split the list into two equal 
parts.  Recursively sort each part.  Finally, 
“splice” them together in O(n) time.
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Analysis of MergeSort

Let T(n) denote the (worst case) running 
time on an array of length n.

T(n) ≤ 2T(n/2) + C n  (recurrence relation)
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Analysis of MergeSort
Let T(n) denote the (worst case) running 
time on an array of length n.

T(n) ≤ 2T(n/2) + C n  (recurrence relation)

       ≤ 2(2T(n/4) + C(n/2)) + C n)

       = 4 T(n/4) + 2 C n

       ≤ 4(2T(n/8) + C(n/4)) + 2 C n

       = 8 T(n/8) + 3 C n

       ...  = n T(1) + log(n) C n  = O(n log n).
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“Analysis” of QuickSort

How big do we expect the side “< P” to be, 
typically?
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“Analysis” of QuickSort
How big do we expect the side “< P” to be, 
typically?

If it were always close to (n/2), then we 
would expect to get the same recurrence 
as for MergeSort:

T(n) ≤ 2 T(n/2) + C n.

So, the solution would be the same,         
O(n log n)       “nearly linear time”

10Wednesday, September 22, 2010



Analysis of QuickSort
Let T(n) = worst-case running time of 
QuickSort.

T(n) ≤ C n + T(left side) + T(right side).

left side + right side = n-1.  So, T(left side) + 
T(right side) ≤ T(n-1).  This case can 
happen!  (Pivot could be max or min elt.)

T(n) ≤ C n + T(n-1).  Unroll this recurrence.

T(n) = O(n2).  (Actually, also Ω(n2).)
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QuickSort Rmks

Although worst-case performance is 
quadratic, QuickSort tends to perform very 
well in practice.

(a) With randomized pivot, average running 
time is provably O(n log n).

(b) Practical advantages over MergeSort: 
sorting in place, improved locality of 
reference (good for memory caching).
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Searching

Say we want to store a set of data, such as 
UNM student names.  How quickly can we 
check whether an input equals the name of 
a student?
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Searching

Say we want to store a set of data, such as 
UNM student names.  How quickly can we 
check whether an input equals the name of 
a student?

Goal: O(log N), where N is the total number 
of students.

Method: Binary search!
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Binary Search

Prerequisite: Totally Ordered Data.

Store Data in a Sorted Array.

Let T(N) = worst-case time to test a name.

Recurrence: T(N) ≤ C + T(N/2).

unroll!
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Binary Search
Prerequisite: Totally Ordered Data.

Store Data in a Sorted Array.

Let T(N) = worst-case time to test a name.

Recurrence: T(N) ≤ C + T(N/2).

≤ 2 C + T(N/4)

≤ 3 C + T(N/8) ≤ ... ≤ (log N) C + T(1)

 = O(log N).
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Summary

With a total ordering, can sort in time O(N 
log N).  In a sorted list, can search in time 
O(log N).
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Variant: Binary Search Tree

BST is a data structure providing the 
following operations:

add

remove

is_element

Goal: These 3 operations run fast!
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Variant: Binary Search Tree
Data structure:  

 class Node<T> {

      T data;

      Node leftChild, rightChild;

}

Recall: these are “references” or “pointers”

Invariant: leftChild.data < data < 
rightChild.data
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Variant: Binary Search Tree
Time for these operations:

add

remove

is_element

All proportional to depth(tree).

Ideally, log(N).  “complete” binary tree.

Problem: may become unbalanced.
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Stores a collection of data

Each data has a numeric “key value”

operations supported: add, delete, 
extract_min.

guarantees: O(log n) time per operation

n = current size of collection.

Where does the name come from?

Priority Queues
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Queue: operations add, delete, get_next

first-in, first-out (FIFO) data flow.

Often implemented as linked list.

Priority Queue: whenever-in, highest-priority 
first-out (WHiPFO) data flow.

(A priority queue is not a kind of queue, in the 
standard sense)

The Name
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java.util.PriorityQueue

(look at API)

In Java
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Idea 1: Maintain a sorted list

Then, to extract_min, just need to grab the 
first element, and point to the second one.

What will it cost to insert an element?

Implementing a PQ
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Idea 1: Maintain a sorted list

Takes Ω(n) time to find/add/delete.  No good.

Idea 2: Maintain a sorted array.

Implementing a PQ
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Idea 1: Maintain a sorted list

Takes Ω(n) time to find/add/delete.  No good.

Idea 2: Maintain a sorted array.

Can use binary search to find, but add/delete 
still take Ω(n) time.  No good!

Implementing a PQ
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Idea 1: Maintain a sorted list

Takes Ω(n) time to find/add/delete.  No good.

Idea 2: Maintain a sorted array.

Can use binary search to find, but add/delete 
still take Ω(n) time.  No good!

Idea 3: Special kind of tree called a “heap”

Implementing a PQ
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Data is stored in “nodes”.  

Each node has 4 fields: 

data

parent  (either a ref to a node, or “null”)

left_child (reference to a node or null)

right_child (reference to a node or null)

Binary Trees
“root”

“leaf”

“leaf”“leaf”“leaf”
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We say a tree storing “key” values satisfies 
the (min-) heap order property if it is always 
the case that the parent of a node stores a 
value ≤ than the node does.

Heap Order Property
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We say a tree storing “key” values satisfies 
the (min-) heap order property if it is always 
the case that the parent of a node stores a 
value ≤ than the node does.

Such a tree is called a “heap.”

Heap Order Property
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We say a tree storing “key” values satisfies 
the (min-) heap order property if it is always 
the case that the parent of a node stores a 
value ≤ than the node does.

Such a tree is called a “heap.”

A heap is called “balanced” if every layer 
except perhaps the bottom one, has the 
maximum possible number of nodes.

Heap Order Property
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We say a tree storing “key” values satisfies 
the (min-) heap order property if it is always 
the case that the parent of a node stores a 
value ≤ than the node does.

Such a tree is called a “heap.”

A heap is called “balanced” if every layer 
except perhaps the bottom one, has the 
maximum possible number of nodes.

Q: What is this number?

Heap Order Property
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We say a tree storing “key” values satisfies the 
(min-) heap order property if it is always the case 
that the parent of a node stores a value ≤ than 
the node does.

Such a tree is called a “heap.”

A heap is called “balanced” if every layer except 
perhaps the bottom one, has the maximum 
possible number of nodes.

Q: What is this number?  2L for the L’th level 
away from the root. (“depth L”)

Heap Order Property
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What can we do with a heap?

Can we search it quickly?

Heap Order Property
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What can we do with a heap?

Can we search it quickly?

No.  (whiteboard)

Heap Order Property
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What can we do with a heap?

Can we search it quickly?

No.  (whiteboard)

Can we extract_min quickly?

Heap Order Property
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What can we do with a heap?

Can we search it quickly?

No.  (whiteboard)

Can we extract_min quickly?

Well, we can find_min quickly.  But if we extract 
it, we will have to replace the root.

Heap Order Property
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What can we do with a heap?

Can we search it quickly?

No.  (whiteboard)

Can we extract_min quickly?

Well, we can find_min quickly.  But if we extract 
it, we will have to replace the root.

What about adding an element?

Heap Order Property
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What can we do with a heap?

Can we search it quickly?

No.  (whiteboard)

Can we extract_min quickly?

Well, we can find_min quickly.  But if we extract 
it, we will have to replace the root.

What about adding an element?  Stick it in a 
leaf.

Heap Order Property
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What can we do with a heap?

Can we search it quickly?

No.  (whiteboard)

Can we extract_min quickly?

Well, we can find_min quickly.  But if we extract 
it, we will have to replace the root.

What about adding an element?  Stick it in a 
leaf.  But it might violate the order property!

Heap Order Property
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Goal: Fix a near-heap that has just one value 
out of place.

If it’s smaller than its parent, swap it with its 
parent.  Recurse!  (Heapify-up)

If it’s bigger than a child, swap it with the 
smaller child.  Recurse!  (Heapify-down)

Applet at http://people.ksp.sk/~kuko/bak/
index.html

Reading: Heapify-Up, 
Heapify-Down
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A 2-sided Priority Queue.

Can extract_min and extract_max, both in time 
O(log N).

Design: How can this be achieved?

Don’t Forget: Quiz on Thursday.  Finish HW!

Next P.A.
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