
CS 361
Data Structures & Algs

Lecture 9

Prof. Tom Hayes
University of New Mexico

09-21-2010

1Wednesday, September 22, 2010



Today

Orderings

Searching

Sorting

Priority Queues & Heaps

2Wednesday, September 22, 2010



Order Relation

We say a binary relation R is an “order 
relation” if it is 

(1) transitive  a R b  and b R c implies a R c

and (2) antisymmetric a R b implies not(b R 
a).

example: <    >    “is a prefix of”                
“is younger than”    “is a descendent of”  
“is a superclass of”

3Wednesday, September 22, 2010



Total Ordering

An order relation R is total if, for every a, b, 
either a=b, a R b or b R a.  “trichotomy”

Example: < on real numbers.

Otherwise: partial ordering.  example: “is an 
ancestor of”.  “came to class before”.    
(Why are these orderings only partial?)

4Wednesday, September 22, 2010



Sorting

Prerequisites: a total ordering, R.

Input: an unordered collection of things.

Output: a list containing the same things, 
now in order 

      (A[0] R A[1] R A[2] R ... R A[n-1])

5Wednesday, September 22, 2010



How to Sort
Basic idea: Divide and Conquer!

(a) QuickSort.  Choose a “pivot” P = A[i].  
Split the rest of A into 2 sides: less than P, 
and more than P.  Place these sides in the 
correct order:  (< P)  P (> P).  Finally, 
recursively sort the two sides.

(b) MergeSort.  Split the list into two equal 
parts.  Recursively sort each part.  Finally, 
“splice” them together in O(n) time.

6Wednesday, September 22, 2010



Analysis of MergeSort

Let T(n) denote the (worst case) running 
time on an array of length n.

T(n) ≤ 2T(n/2) + C n  (recurrence relation)

7Wednesday, September 22, 2010



Analysis of MergeSort
Let T(n) denote the (worst case) running 
time on an array of length n.

T(n) ≤ 2T(n/2) + C n  (recurrence relation)

       ≤ 2(2T(n/4) + C(n/2)) + C n)

       = 4 T(n/4) + 2 C n

       ≤ 4(2T(n/8) + C(n/4)) + 2 C n

       = 8 T(n/8) + 3 C n

       ...  = n T(1) + log(n) C n  = O(n log n).

8Wednesday, September 22, 2010



“Analysis” of QuickSort

How big do we expect the side “< P” to be, 
typically?

9Wednesday, September 22, 2010



“Analysis” of QuickSort
How big do we expect the side “< P” to be, 
typically?

If it were always close to (n/2), then we 
would expect to get the same recurrence 
as for MergeSort:

T(n) ≤ 2 T(n/2) + C n.

So, the solution would be the same,         
O(n log n)       “nearly linear time”

10Wednesday, September 22, 2010



Analysis of QuickSort
Let T(n) = worst-case running time of 
QuickSort.

T(n) ≤ C n + T(left side) + T(right side).

left side + right side = n-1.  So, T(left side) + 
T(right side) ≤ T(n-1).  This case can 
happen!  (Pivot could be max or min elt.)

T(n) ≤ C n + T(n-1).  Unroll this recurrence.

T(n) = O(n2).  (Actually, also Ω(n2).)

11Wednesday, September 22, 2010



QuickSort Rmks

Although worst-case performance is 
quadratic, QuickSort tends to perform very 
well in practice.

(a) With randomized pivot, average running 
time is provably O(n log n).

(b) Practical advantages over MergeSort: 
sorting in place, improved locality of 
reference (good for memory caching).

12Wednesday, September 22, 2010



Searching

Say we want to store a set of data, such as 
UNM student names.  How quickly can we 
check whether an input equals the name of 
a student?

13Wednesday, September 22, 2010



Searching

Say we want to store a set of data, such as 
UNM student names.  How quickly can we 
check whether an input equals the name of 
a student?

Goal: O(log N), where N is the total number 
of students.

Method: Binary search!

14Wednesday, September 22, 2010



Binary Search

Prerequisite: Totally Ordered Data.

Store Data in a Sorted Array.

Let T(N) = worst-case time to test a name.

Recurrence: T(N) ≤ C + T(N/2).

unroll!

15Wednesday, September 22, 2010



Binary Search
Prerequisite: Totally Ordered Data.

Store Data in a Sorted Array.

Let T(N) = worst-case time to test a name.

Recurrence: T(N) ≤ C + T(N/2).

≤ 2 C + T(N/4)

≤ 3 C + T(N/8) ≤ ... ≤ (log N) C + T(1)

 = O(log N).

16Wednesday, September 22, 2010



Summary

With a total ordering, can sort in time O(N 
log N).  In a sorted list, can search in time 
O(log N).

17Wednesday, September 22, 2010



Variant: Binary Search Tree

BST is a data structure providing the 
following operations:

add

remove

is_element

Goal: These 3 operations run fast!

18Wednesday, September 22, 2010



Variant: Binary Search Tree
Data structure:  

 class Node<T> {

      T data;

      Node leftChild, rightChild;

}

Recall: these are “references” or “pointers”

Invariant: leftChild.data < data < 
rightChild.data

19Wednesday, September 22, 2010



Variant: Binary Search Tree
Time for these operations:

add

remove

is_element

All proportional to depth(tree).

Ideally, log(N).  “complete” binary tree.

Problem: may become unbalanced.

20Wednesday, September 22, 2010



Stores a collection of data

Each data has a numeric “key value”

operations supported: add, delete, 
extract_min.

guarantees: O(log n) time per operation

n = current size of collection.

Where does the name come from?

Priority Queues

21Wednesday, September 22, 2010



Queue: operations add, delete, get_next

first-in, first-out (FIFO) data flow.

Often implemented as linked list.

Priority Queue: whenever-in, highest-priority 
first-out (WHiPFO) data flow.

(A priority queue is not a kind of queue, in the 
standard sense)

The Name

22Wednesday, September 22, 2010



java.util.PriorityQueue

(look at API)

In Java

23Wednesday, September 22, 2010



Idea 1: Maintain a sorted list

Then, to extract_min, just need to grab the 
first element, and point to the second one.

What will it cost to insert an element?

Implementing a PQ

24Wednesday, September 22, 2010



Idea 1: Maintain a sorted list

Takes Ω(n) time to find/add/delete.  No good.

Idea 2: Maintain a sorted array.

Implementing a PQ

25Wednesday, September 22, 2010



Idea 1: Maintain a sorted list

Takes Ω(n) time to find/add/delete.  No good.

Idea 2: Maintain a sorted array.

Can use binary search to find, but add/delete 
still take Ω(n) time.  No good!

Implementing a PQ

26Wednesday, September 22, 2010



Idea 1: Maintain a sorted list

Takes Ω(n) time to find/add/delete.  No good.

Idea 2: Maintain a sorted array.

Can use binary search to find, but add/delete 
still take Ω(n) time.  No good!

Idea 3: Special kind of tree called a “heap”

Implementing a PQ

27Wednesday, September 22, 2010



Data is stored in “nodes”.  

Each node has 4 fields: 

data

parent  (either a ref to a node, or “null”)

left_child (reference to a node or null)

right_child (reference to a node or null)

Binary Trees
“root”

“leaf”

“leaf”“leaf”“leaf”

28Wednesday, September 22, 2010



We say a tree storing “key” values satisfies 
the (min-) heap order property if it is always 
the case that the parent of a node stores a 
value ≤ than the node does.

Heap Order Property

29Wednesday, September 22, 2010



We say a tree storing “key” values satisfies 
the (min-) heap order property if it is always 
the case that the parent of a node stores a 
value ≤ than the node does.

Such a tree is called a “heap.”

Heap Order Property

30Wednesday, September 22, 2010



We say a tree storing “key” values satisfies 
the (min-) heap order property if it is always 
the case that the parent of a node stores a 
value ≤ than the node does.

Such a tree is called a “heap.”

A heap is called “balanced” if every layer 
except perhaps the bottom one, has the 
maximum possible number of nodes.

Heap Order Property

31Wednesday, September 22, 2010



We say a tree storing “key” values satisfies 
the (min-) heap order property if it is always 
the case that the parent of a node stores a 
value ≤ than the node does.

Such a tree is called a “heap.”

A heap is called “balanced” if every layer 
except perhaps the bottom one, has the 
maximum possible number of nodes.

Q: What is this number?

Heap Order Property

32Wednesday, September 22, 2010



We say a tree storing “key” values satisfies the 
(min-) heap order property if it is always the case 
that the parent of a node stores a value ≤ than 
the node does.

Such a tree is called a “heap.”

A heap is called “balanced” if every layer except 
perhaps the bottom one, has the maximum 
possible number of nodes.

Q: What is this number?  2L for the L’th level 
away from the root. (“depth L”)

Heap Order Property

33Wednesday, September 22, 2010



What can we do with a heap?

Can we search it quickly?

Heap Order Property

34Wednesday, September 22, 2010



What can we do with a heap?

Can we search it quickly?

No.  (whiteboard)

Heap Order Property

35Wednesday, September 22, 2010



What can we do with a heap?

Can we search it quickly?

No.  (whiteboard)

Can we extract_min quickly?

Heap Order Property

36Wednesday, September 22, 2010



What can we do with a heap?

Can we search it quickly?

No.  (whiteboard)

Can we extract_min quickly?

Well, we can find_min quickly.  But if we extract 
it, we will have to replace the root.

Heap Order Property

37Wednesday, September 22, 2010



What can we do with a heap?

Can we search it quickly?

No.  (whiteboard)

Can we extract_min quickly?

Well, we can find_min quickly.  But if we extract 
it, we will have to replace the root.

What about adding an element?

Heap Order Property

38Wednesday, September 22, 2010



What can we do with a heap?

Can we search it quickly?

No.  (whiteboard)

Can we extract_min quickly?

Well, we can find_min quickly.  But if we extract 
it, we will have to replace the root.

What about adding an element?  Stick it in a 
leaf.

Heap Order Property

39Wednesday, September 22, 2010



What can we do with a heap?

Can we search it quickly?

No.  (whiteboard)

Can we extract_min quickly?

Well, we can find_min quickly.  But if we extract 
it, we will have to replace the root.

What about adding an element?  Stick it in a 
leaf.  But it might violate the order property!

Heap Order Property

40Wednesday, September 22, 2010



Goal: Fix a near-heap that has just one value 
out of place.

If it’s smaller than its parent, swap it with its 
parent.  Recurse!  (Heapify-up)

If it’s bigger than a child, swap it with the 
smaller child.  Recurse!  (Heapify-down)

Applet at http://people.ksp.sk/~kuko/bak/
index.html

Reading: Heapify-Up, 
Heapify-Down

41Wednesday, September 22, 2010

http://people.ksp.sk/~kuko/bak/index.html
http://people.ksp.sk/~kuko/bak/index.html
http://people.ksp.sk/~kuko/bak/index.html
http://people.ksp.sk/~kuko/bak/index.html


A 2-sided Priority Queue.

Can extract_min and extract_max, both in time 
O(log N).

Design: How can this be achieved?

Don’t Forget: Quiz on Thursday.  Finish HW!

Next P.A.

42Wednesday, September 22, 2010


