
CS 361
Algorithms & Data Structures

Lecture 1

Prof. Tom Hayes
University of New Mexico

8-21-2012

1

Who we are

Prof. Tom Hayes, hayes@cs.unm.edu
Office: FEC 149
Hours: TuW 2:00-2:50 and by appt
Phone: 277-9328 (deprecated)

TA: Matt Peterson, mpeterson@unm.edu
Office: FEC 126
Hours: MW 4:00-4:50 and by appt

2

mailto:mpeterson@unm.edu
mailto:mpeterson@unm.edu

Skill Objectives

• Learn how to learn

• How to think about a problem

• How to think about an algorithm

• Careful reasoning, reading, and writing

• Know lots of algorithms

- (and their diverse uses)

3

What about data structures?

• Just an algorithm(s) in a box

• Reminds us to keep information wisely

• Alternative viewpoint:

- Algorithms are just ways to modify data
structures

4

Learn how to learn
• Reading assignments

- Textbook: Algorithm Design by Kleinberg
& Tardos

- Read them before class

• Ask lots of questions.

- answer them yourself first, but not last

- Never stop asking and answering

• Make full use of professor, TA, study groups
5

Thinking about problems
• What is the input?

- Think of as many examples as you can.

- What are extreme/boundary cases?

• What is the output?

- Work examples by hand.

- Think about your process

• How is success (correctness) measured?

• How is efficiency measured?
6

Algorithm descriptions

• Algorithms can be given in

- one phrase or sentence

- one paragraph

- high-level pseudocode

- low-level pseudocode

- actual code

• Each level is essential!

7

Understanding an algorithm
• First, understand the problem

• Describe algorithm at ≥2 levels of detail

• Does the algorithm work? Why? Prove it!

• How long does it take? Why? Prove it!

- Input scaling? How big can it go?

• Can it be done faster?

- Yes: do it.

- No: Why not? Prove it!
8

Careful reasoning
• How can we prove the algorithm works?

- Run unit tests? No (but do it anyway)

- Try all possible inputs? No, impossible

- A carefully justified argument? Yes!

• What is the standard of proof?

- A jury of your peers. (or bosses/profs)

- Read and re-read the textbook.
Emulate its clarity and style.

9

Before we start...

• All students: email me, hayes@unm.edu
Tell me: your name, email (that you will
check), recent CS and math courses,
registered or not?, major/department,
year/grad/undergrad. Can you come to the
office hours? Are you a graduating senior?

10

First Assignments

Reading: Chapter 1, by Tuesday.
Sections 2.1-2.4, by the following Tuesday.

Written Assignment 1: due Thurs, Sept 6

Exercises 1.1, 1.2, 1.3, 1.4, 1.6

11

Assignments
Reading assignments: weekly. It is important
to do these before class.

Written assignments: mostly exercises from
the textbook. These are very important.

Programming assignments: in Java. Detailed
instructions, together with unit tests, will be
provided. Grading will be mostly
automated, so ensure that your code passes
all available tests (we hold some back)

12

What is Good Coding?

13

What is Good Coding?

Ultimately, it’s whatever works for you!

14

Scalability
Imagine: you write a function foo to find
the n’th term in this sequence:

0, 1, 1, 2, 3, 5, 8, 13, ...

int foo(int n) {

if (n<=1) return n; //else

return foo(n-1)+foo(n-2);

}

15

Scalability
Imagine: you write a function foo to find
the n’th term in this sequence:

0, 1, 1, 2, 3, 5, 8, 13, ...

Now, you’ve tested it up to n=20, and it
works great! But, in production code, you
need your solution to scale up to n=100.
Will it do so? How much will it cost? (in
extra time, memory, servers, ...)

16

Scalability
• The real question:

• as size(input) grows,

- is output correct?

- how fast does time grow? i.e. what is
the function T(n)? (T=time, n=input size)

Your codeInput Output

T I M E

17

Scalability
Imagine: you write a function foo to find
the n’th term in this sequence:

0, 1, 1, 2, 3, 5, 8, 13, ...
foo(10) = 55

foo(20) = 6765
foo(30) = 832040

foo(40) = 102334155
foo(47) = -1323752223 (mod 2^32)

18

What’s wrong
int foo(int n) {

if (n<=1) return n; //else

return foo(n-1)+foo(n-2);

}

• Values quickly exceed max_int

• T(n) is proportional to foo(n), which
grows fast. Why? Unroll the recursion.

19

The recursion, unrolled
foo

foofoo

foo foo foo foo

foo foo foo foofoo foo

foo foo

20

The recursion, unrolled
foo

foofoo

foo foo foo

foo

1

1 1 1

1

0 0

0

21

The recursion, unrolled

1

1 1 1

1

0 0

0

11

1

2

23

5

22

The recursion, unrolled

1

1 1 1

1

0 0

0

11

1

2

23

5

Duplication of Effort!
23

The recursion, unrolled

1

1 1 1

1

0 0

0

11

1

2

23

5

Multiply Wasted Effort!
24

The recursion, unrolled
• A lower bound on run-time: one clock

cycle per node in this tree.

• A lower bound on this: one clock cycle per
leaf of this tree.

• A lower bound on this: just count the
leaves that have a value of ONE.

• There are foo(n) of these. Why? foo(n) is
the sum of these ONEs. Thus T(n) ≥foo(n)

25

Fix: use memory!

int foo(int n) {
 static int answer[1000] = {0,1};
 static int top=1;
 if (n>top) {
 answer[n] = foo(n-1)+foo(n-2);
 top = n;
 }
return answer[n];
}

(Also, use BigInteger to avoid overflow!)

26

“Memoizing”

• For proper functions (no side effects)

• Use static array to keep a record of
previously computed values.

• Only compute new values when needed--
don’t forget to store them!

• Just look up previously computed values

27

That example was in C

int foo(int n) {
 static int answer[1000] = {0,1};
 static int top=1;
 if (n>top) {
 answer[n] = foo(n-1)+foo(n-2);
 top = n;
 }
return answer[n];
}

(Also, use BigInteger to avoid overflow!)

28

That example was in C

int foo(int n) {
 static int answer[1000] = {0,1};
 static int top=1;
 if (n>top) {
 answer[n] = foo(n-1)+foo(n-2);
 top = n;
 }
return answer[n];
}

(Also, use BigInteger to avoid overflow!)

Danger!

Annoying

29

Here it is in Java
ArrayList<BigInteger> answer=
 new ArrayList<BigInteger>();
answer.add(BigInteger.ZERO);
answer.add(BigInteger.ONE);
int foo(int n) {
 if (n>A.size())
 A.add(foo(n-1).add(foo(n-2)));
 return A.get(n);
 } Win: Safety, Cleaner Code

Why? Better Data Structures!

30

Data Structures
BigInteger: won’t silently
overflow. Will throw exception
only if you run out of memory.

ArrayList<BigInteger>: dynamically
resized array. No need to guess
the size or explicitly track it.

No C++-style operator overloading
(“syntactic sugar”) (oh, well!)

31

Sorting
Input: Sequence of things that can be
ordered

21, 3, 8, 6, 59 -40, 0

Bob, Carol, David, Alice, Aaron

Output: The input, but actually in order

-40, 0, 3, 6 ,8, 21, 59

Aaron, Alice, Bob, Carol, David

32

Comparable
A built-in Java Interface (with generic type)
that supports the notion of Total Ordering.

(look at the API)

Why use this?

Abstraction and Code Re-use

embodies a Fundamental Concept

See also: Comparator

33

Relations
Let S be a set.

Binary Relation on S:

(a) particular set of pairs (x,y) where x
and y are elements of S.

(b) If (x,y) in relation R, write “x R y”

“Total Order” Relation: transitive,
antisymmetric, total. Often denoted “<“

34

Order Relations
Let S be a set.

Let < be a Binary Relation on S:

Transitive: If a < b and b < c then a < c

Antisymmetric: At most one of (a<b),
(b<a) can be true.

We say the order relation is TOTAL if for
every a≠b, a<b or b<a. Otherwise, partial.

35

Order Relations
Example of a partial order:

S = {strings}. a “is a prefix of” b.

Example: tom is a prefix of tomato

mat, oat are not prefixes of tomato.

Transitive: check.

Antisymmetric: check.

Total? No: tomato, potato incomparable

36

Order Relations
Examples of total orders:

S = {strings}. Dictionary order (aka
lexicographical order).

an < angel < apricot < baa < baal < turkey

S = {real numbers}. “less than”

Any subset of the above S with the same
relation

37

Sorting Algorithms
Examples (3 of many):

MergeSort (split in half, recursively sort
each half, then merge results)

QuickSort (split into low and high “halves”
using a “pivot element”, recursively sort
each. No merge needed)

BubbleSort (keep swapping neighboring
pairs that are out of order)

38

Sorting: Performance
Run-time (in clock cycles) is extrinsic to
these algorithms.

Intrinsic: count the number of basic
operations done.

These include: comparing list elements,
comparing loop variable to end cond,
managing loop variables, swapping elts, data
structure internal costs, subroutine calls

39

Sorting: Performance
Run-time (in clock cycles) is extrinsic to
these algorithms.

Intrinsic: count the number of basic
operations done.

Focus: just comparisons of list items

Let CostA(x) = # comparisons done by
sorting algorithm A on input x

Only depends on the order of the list x

40

Sorting: Performance
Let CostA(x) = # comparisons done by
sorting algorithm A on input x

Only depends on the order of the list x

Still not good enough--I want to know
how many steps to sort a list of length 88
Answer: it depends

“Worst-case analysis”: Let CostA(n) = max
comparisons by A, over all x of size n

41

Sorting: Performance
Let CostA(x) = # comparisons done by
sorting algorithm A on input x

Only depends on the order of the list x

Still not good enough--I want to know
how many steps to sort a list of length 88
Answer: it depends

“Worst-case analysis”: Let CostA(n) = max
comparisons by A, over all x of size n

Hurray! We can graph it!
42

Comparing Graphs
Suppose I have two functions:

f(n) = max #ops for Alg A over inputsize n

g(n) = max #ops for Alg B over inputsize n

(go to whiteboard)

How do we compare them? Which alg has
a better guarantee?

Scalability: don’t focus on small n. What is
the trend for large n?

43

Fin

In class, we stopped after the previous slide.

There are a few more slides beyond, that
we will go through at the beginning of
Lecture 2.

44

45

little-oh notation

We say f = o(g) “f is little-oh of g” if

f(n)/g(n) ---> 0 as n grows to infinity.

Said another way: for every ε > 0, there
exists an n0 such that for all n ≥ n0, f
(n) ≤ ε g(n)

46

little-oh notation

We say f = o(g) “f is little-oh of g” if

f(n)/g(n) ---> 0 as n grows to infinity.

Said another way: for every ε > 0, there
exists an n0 such that for all n ≥ n0, f
(n) ≤ ε g(n)

little-oh is a partial order relation

47

little-oh notation

We say f = o(g) “f is little-oh of g” if

f(n)/g(n) ---> 0 as n grows to infinity.

Said another way: for every ε > 0, there
exists an n0 such that for all n ≥ n0, f
(n) ≤ ε g(n)

little-oh is a partial order relation
Note: It’s a letter o, not a zero!

48

Properties of little-oh

If f = o(g) and g = o(h) then f = o(h).

If f = o(g) and f ’ = o(g’) then the product
f . f ’ = o(g . g’). Also, the sum f + f ’ = o(g +
g’).

Why? (prove on whiteboard)

Don’t tell students: perfect QUIZ question!

49

Warning! Take heed!
We say f = o(g) “f is little-oh of g” if

f(n)/g(n) ---> 0 as n grows to infinity.

The notation “=” above is a “deliberate
abuse.” You cannot combine it with
properties of equality. For instance,

n2 = o(n4) and n3 = o(n4) but n2 ≠ n3

n2 = o(n3) and n2 = o(n4) but o(n3)≠o(n4)

Also, never write: o(g) = f

50

Asymptotic analysis
TA(n) = worst-case running time for alg A
on inputs of size n. We don’t know a
formula for this function.

Goal: Find an actual formula F(n) such that
TA(n) < F(n).

Asymptotic analysis: we’re satisfied if result
holds for all n>n0 (for some fixed n0)

51

Back to Sorting
TB(n) = worst-case #comparisons for
BubbleSort on list of length n.

Claim: TB(n) < n2

Why? Claim: we only compare any two
elements at most once. Since there are (n
choose 2) = n (n-1) / 2 < n2 pairs of
elements, this bounds the total number of
comparisons.

Why? Each swap only changes the relative

52

Back to Sorting

Claim: we only compare any two elements
at most once.

Why? Each swap only changes the relative
positions of the two elements we just
compared. So, after each comparison, we
put that pair in the right relative order, and
later swaps will never undo this.

53

Reminders: To Do!
• All students: email me, hayes@unm.edu

Tell me: your name, email (that you will
check), recent CS and math courses,
registered or not?, major/department,
year/grad/undergrad, can attend office
hours? graduating senior?

• Start on the reading and written
assignments!

• I will be out of town next week, so come
to this week’s office hours!

54

