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Reminders
• Written HW #1 is now past due.

• Late HW: 10% deduction per day late, 
except for valid emergencies.

• Written HW #2, due Thursday 9/20:

• problems 1.7, 1.8, 2.1, 2.2, 2.3, 2.4

• Programming:  Implement a Stable Matcher.  
Due Thursday 9/27.  

• Reading: Finish Chapter 2 this weekend.
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Programming #1

• Should be able to read preference lists 
from an input file specified on command 
line.

• Each line of the input file will be (n+1) 
names separated by whitespace.  For 
instance,  Alan  Betty Carol Dora          
means Alan ranks Betty first and Dora last.

• Output: any stable perfect matching.
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Last Time
A Yahtzee!-like problem (all red/black)

Traveling Salesman

Brute force: (n!) possible tours

DP: (n22n) subproblems

NP (Nice Proofs, may be hard to find)

Running times.

“Big O” notation.
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Traveling Salesman
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Find: Loop visiting each town exactly once.

Minimize total cost.
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Cost:  2700
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TSP Recap
Brute force: n! possible solutions.              

Better: Divide into two “halves” of size 
roughly n/2.  Find the shortest route 
through each half, recursively using the 
same idea.

Dynamic programming: keep track of 
solutions to all sub-problems, and re-use 
when possible.  (i.e., memoize)

n! ≈ 2n logn
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Analysis, DP solution
How many sub-problems will we look at, 
total? (i.e., throughout the entire recursion)

Each looks like this: start city, intermediate 
cities, end city.

≤ n2 2n possibilities

Time to solve one sub-problem?  Loop 
through all the ways to split it into 2 
subproblems.  Sum up the values for those, 
keeping the min.       constant * n2 2n
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TSP, final thoughts

Improved from (n!) brute force, to roughly 
n2 4n via our dynamic programming alg.  
How big an improvement?

log(n!) ≈ n log n

log(n24n) ≈ 2n
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NP
NP is the class of YES/NO decision 
problems, where, for every input of size n, if 
the correct output is YES, then there exists 
an efficiently checkable proof of that fact.

TSP asks, “Is there a tour of these cities 
that costs at most M?”

This is in NP, because, when the answer is 
YES, then, if I give you the tour, you can 
verify the YES answer.  This does not mean 
finding such a tour can be done quickly.
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NP

NP is the class of YES/NO decision 
problems, where, for every input of size n, if 
the correct output is YES, then there exists 
an efficiently checkable proof of that fact.

We say a problem is NP-hard if it could be 
used to solve every problem in NP.

Say a problem in NP-complete if it is NP-
hard and a member of NP.
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P vs NP
This multimillion-dollar problem asks, are 
there any problems in NP, for which it is not 
possible to efficiently determine the answer 
when a proof is NOT GIVEN?

In other words, is it easier to verify a proof 
than to come up with one on your own?

TSP is NP-complete.  This means, if you 
can find an efficient algorithm to solve it, 
you have proven every problem in NP is 
easy.
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Efficient Algorithms
Our Dynamic Programming algorithm for 
TSP was a big improvement, but is still not 
efficient.

To be efficient, when the input size is n, our 
algorithm should run in, say, time 10n, or 
perhaps 50n2, or 100n3 + 50n log(n).  To be 
general, let’s say any function that is less 
than some power of n, such as n10.  For 
short, poly(n).
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Big O notation
We want to be able to reason carefully 
about running times, but without “sweating 
irrelevant details.”

Who cares if the running time is n3 versus 
n3 + 10.5 n2 - 0.5n?  It can matter only for a 
few small values of n.  In the “big picture” 
what really matters is, approximately how 
big an input can I handle in the trillion or so 
steps I have time to do.

Big O helps us achieve these goals.
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Big O, formally

Suppose g is a function describing a 
running time.  g(n) tells us the amount of 
time our program runs on an input of length 
n.  The notation O(g) refers to the class of 
all functions that, for large inputs, do not 
grow faster than a constant times g.  In 
other words, a function f is in O(g) if there 
exists a constant C such that, for every n, f
(n) ≤ C g(n).  *see caveat in a few slides.
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Big O, informally
One generally writes “f = O(g)” to indicate 
that f is in the function class O(g).  This is 
just a shorthand, and can lead you into 
trouble if you try to use any laws of “=”.

For instance, it would be correct to write  
20n2 + 6 n = O(n3)  and also to write        
20n2 + 6 n = O(n2).  However, O(n2) and O
(n3) are not equal.  Exercises 2.5(ab) 
illustrate some further pitfalls.  Also, see 
wikipedia on Big-O (not the anime!)
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Caveat - zeros
10(n-1)3 = O(n4).  Why?

But, is  10n3 = O((n-1)4)?

We want it to be.

But, for n=1, there is no constant C that 
could work.  Why?  (1-1)4 = 0.

Fancier definition: f = O(g) means there 
exists C, n0, such that, for every n≥n0, f(n)
≤Cg(n).  
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Why define it like that?
f = O(g) means:

There exists C>0 and n0 such that, 
whenever n ≥ n0, we have f(n) ≤ C g(n).

(1) Simplifies analysis: A sequence of O(1) 
“atomic” steps (no recursive function 
calls or loops) can be replaced by a 
single “step” conceptually.

(2) Gets at big question: limiting growth 
rates for f and g.

17



More on Big-O

f = O(g) is a 1-sided guarantee!

We know “f is not much bigger than g (for 
large inputs)”  but we don’t know whether 
“g is much bigger than f (for large inputs)”

This is a good thing!  (Less to prove)

Q: What if we want a 2-sided guarantee?

A:  Ω, ϴ  notation
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Ω, ϴ  notation

Ω: Omega  ϴ: Theta  (Greek, upper case)

f = Ω(g) means g = O(f).  That is, g is (up 
to a constant factor, and for large inputs) 
a lower bound on f.  

f = ϴ(g) means both f = O(g) and f = Ω(g).  
That is, f and g “are of the same order”
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Practice with big-O

How to prove that 5 n + 2 = O(n)?

Reasoning:   5 n + 2 <= C n  (goal)

Try C = 6.  Plug in:  5 n + 2 ≤ 6 n  solve

2 ≤ (6 - 5) n = n.  Choose n0 = 2.

We’re now ready to fill in proof.
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Practice with big-O
How to prove that 5 n + 2 = O(n)?

Proof: Let C = 6.  Let n0 = 2.

Assume n >= n0.  Then 

            5 n + 2 

         = 5n + n0 (def of n0)

         <= 6 n   (since n ≥ n0)

         = C n.    (def of C)

Therefore, 5 n + 2 = O(n) by definition.
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Practice with big-O
How to prove that log(3n2) = O(log(n))?

Reasoning:  log(3n2) ≤ C log(n)  (goal)

LHS = log(3) + log(n2)  = log(3) + 2 log(n)

Goal:  log(3) + 2 log(n) ≤ C log(n).

Take C = 3 > 2.  Solve

log(3) + 2 log(n) ≤ 3 log(n)   for n, to find n0

log(3) ≤ log(n).  So n ≥ 3.  Take n0 = 3.
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Practice with big-O
How to prove that log(3n2) = O(log(n))?

Proof:  Choose C = 3 and n0 = 3.

Suppose n ≥ n0.  

      log(3n2) 

   = log(3) + 2 log(n)   (arithmetic)

   = log(n0) + 2 log(n)   (def of n0)

   ≤ log(n) + 2 log(n) = 3 log(n)   (since n≥n0)

   = C log(n)   (def of C).   Thus f = O(g)
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Practice with big-O
Suppose f = O(g) and g = O(H).  

Prove: f = O(H).

Reasoning:   Goal:   f(n) ≤ C H(n).

f = O(g) means:  There is C1, n1 such that 
as long as n≥n1 we have f(n) ≤ C1 g(n).

g = O(H) means:  There is C2, n2 such that 
as long as n≥n2 we have g(n) ≤ C2 H(n).

f(n) ≤ C1 g(n) ≤ C1 (C2 H(n)) = (C1 C2) H(n)
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Practice with big-O
f = O(g) means:  There is C1, n1 such that 
as long as n≥n1 we have f(n) ≤ C1 g(n).

g = O(H) means:  There is C2, n2 such that 
as long as n≥n2 we have g(n) ≤ C2 H(n).

f(n) ≤ C1 g(n) ≤ C1 (C2 H(n)) = (C1 C2) H(n)

Guess C = C1 C2

n0 = ?.  Need: f(n) ≤ C1 g(n).  From top, 
need n ≥ n1.   Need: g(n) ≤ C2 H(n).  Thus 
need n ≥ n2.  Choose n0 = max{n1, n2}.
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Practice with big-O
Suppose f = O(g) and g = O(h).  

Prove: f = O(h).

Proof: f = O(g) means:  There is C1, n1 such 
that as long as n≥n1 we have f(n) ≤ C1 g(n).

g = O(H) means:  There is C2, n2 such that 
as long as n≥n2 we have g(n) ≤ C2 H(n).

Choose C = C1 C2, and n0 = max{n1, n2}.

Then  
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Proof: f = O(g) means:  There is C1, n1 such 
that as long as n≥n1 we have f(n) ≤ C1 g(n).

g = O(H) means:  There is C2, n2 such that 
as long as n≥n2 we have g(n) ≤ C2 H(n).

Choose C = C1 C2, and n0 = max{n1, n2}.

Suppose n ≥ n0

Then  

f(n) ≤ C1 g(n) ≤ C1 (C2 H(n)) = (C1 C2) H(n)

      = C H(n).

Thus f = O(H).
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Choose C = C1 C2, and n0 = max{n1, n2}.

Suppose n ≥ n0

Then  

f(n) ≤ C1 g(n)   (since n ≥ n0 ≥ n1 and above)

≤ C1 (C2 H(n))  (since n ≥ n0 ≥ n2 and above)

= (C1 C2) H(n)  (arithmetic)

      = C H(n).   (def of C)

Thus f = O(H).
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Choose C = C1 C2, and n0 = max{n1, n2}.

Suppose n ≥ n0

Then  

f(n) ≤ C1 g(n)   (since n ≥ n0 ≥ n1 and above)

≤ C1 (C2 H(n))  (since n ≥ n0 ≥ n2 and above)

= (C1 C2) H(n)  (arithmetic)

      = C H(n).   (def of C)

Thus f = O(H).
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Test your understanding

True or False:

When f, g  are positive functions, “f = O(g)” 
means there is some constant C such that, 
for all n, f(n)/g(n) ≤ C.
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Test your understanding

True or False:

When f, g  are positive functions, “f = O(g)” 
means there is some constant C such that, 
for all n, f(n)/g(n) ≤ C.

True!

Same as f(n) ≤ C g(n).

But, what about n0?
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Test your understanding
True or False:

When f, g  are positive functions, “f = O(g)” 
means 

lim
n→∞

f(n)
g(n)

= C
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Test your understanding
True or False:

When f, g  are positive functions, “f = O(g)” 
means 

lim
n→∞

f(n)
g(n)

= C

False.  f(n)/g(n) does not have to converge 
to a particular value.  C is only an upper 
bound.  See board.
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Test your understanding
True or False:

When f, g  are positive functions, “f = ϴ(g)” 
means 

lim
n→∞

f(n)
g(n)

= C
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Test your understanding
True or False:

When f, g  are positive functions, “f = ϴ(g)” 
means 

lim
n→∞

f(n)
g(n)

= C

False.  f(n)/g(n) does not have to converge 
to a particular value.  For instance, f(n)/g(n) 
may oscillate between a lower bound, L, 
and an upper bound U.
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Test your understanding
True or False:

                                    implies f = O(g)lim
n→∞

f(n)
g(n)

= C

True.  Existence of this limit implies that, for 
large n, f(n)/g(n) is arbitrarily close to C.  In 
particular, f(n)/g(n) is between 0 and 2C.  
But this implies f(n) ≤ 2C g(n), so f = O(g).
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Test your understanding
True or False:

                                    implies f = O(g)lim
n→∞

f(n)
g(n)

= C

True.  Existence of this limit implies that, for 
large n, f(n)/g(n) is arbitrarily close to C.  In 
particular, f(n)/g(n) is between 0 and 2C.  
But this implies f(n) ≤ 2C g(n), so f = O(g).

Same proof shows f = Ω(g).  Hence f=ϴ(g)
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Setting up a proof

Given: f = O(g).  f, g are positive.

Prove: f2 = O(g2)

Proof: 
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Setting up a proof
Given: f = O(g).  f, g are positive.

Prove: f2 = O(g2)

Proof: From the hypothesis, there exists C 
such that, for every n, f(n) ≤ C g(n).

...

Therefore, for every n, f2(n) ≤ C’ g2(n), 
where C’ = ....  Thus f2 = O(g2).
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Setting up a proof
Given: f = O(g).  f, g are positive.

Prove: f2 = O(g2)

Proof: From the hypothesis, there exists C 
such that, for every n, f(n) ≤ C g(n).

Square both sides.  f2(n) ≤ C2 g2(n).

Therefore, for every n, f2(n) ≤ C’ g2(n), 
where C’ = C2.  Thus f2 = O(g2).
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