Midterm Exam

CS 361, October 2010
This is a 75 -minute exam. No calculators, notes, books, internet, phones, pagers, or other devices may be used. Write your answers in the space provided. Be concise! There are 6 problems total, each worth 20 points. Your lowest score will be dropped. Put your name at the top right of this page!
Problem 1. Multiple Choice: +4 points for each right answer, 0 for wrong answers. Clearly indicate your choice. For this section only, you do not need to justify your work.

1. Which best defines "The algorithm runs in time $O\left(n^{3}\right)$ "?
(a) The running time is always $C n^{3}$ for some constant C.
(b) The running time is at least $C n^{3}$ for some constant C.
(c) The running time is at most $C n^{3}$ for some constant C.
(d) The running time is sometimes, but not always, $C n^{3}$, for some constant C.
2. Which of the following contradicts the statement, "The worst-case running time of the algorithm is $\Omega\left(n^{2}\right)$ "?
(a) The algorithm runs for $O(1)$ steps on some inputs.
(b) The algorithm runs for $O(n)$ steps on no inputs.
(c) The worst case running time is $O(n \log n)$.
(d) The worst case running time is $O\left(2^{n}\right)$.
(e) The worst case running time is $\Omega\left(n^{3}\right)$.
3. In defining the Stable Matchings problem, how did we proceed?
(a) We said a matching is stable if no man wants to propose to someone else's wife.
(b) We said a matching is stable if and only if every man and woman gets paired with their first choice.
(c) We first defined what an "instability" is, and said a stable matching is one with no instabilities.
(d) We defined the output of the Gale-Shapley algorithm to be a stable matching.
4. In the Gale-Shapley algorithm, run with n men and n women, what is the maximum number of times any woman can be proposed to?
(a) $\Theta(1)$
(b) $\Theta(n)$
(c) $\Theta(n \log n)$
(d) $\Theta\left(n^{2}\right)$
(e) $\Theta\left(2^{n}\right)$
5. What does it mean for a graph algorithm to run in linear time? Assume the graph has n vertices and m edges.
(a) The worst case running time is $O(n+m)$.
(b) The worst case running time is $O\left(n^{2}\right)$.
(c) The worst case running time is $O(n)$.
(d) The worst case running time is $O(m)$.

Problem 2. For each of the following, say whether f is $O(g), \Omega(g), \Theta(g)$, or none of the above. Justify your answers.

1. $f(n)=\frac{n(n-1)}{2}, g(n)=n^{2}+2 n$.
2. $f(n)=n^{\log (n)}, g(n)=(\log n)^{n}$.
3. $f(n)=2^{\sqrt{n}}, g(n)=n^{(\log n)^{2}}$.
4. State the formal mathematical definition of $f=O(g)$.

Problem 3.

1. What is the definition of an order relation?
2. Give an example from class of an order relation.
3. What is the definition of an equivalence relation?
4. Give an example from class of an equivalence relation.

Problem 4. Suppose we are given an instance of the stable matching problem for which there is a man m who is the first choice of all women. Prove or give a counterexample: In any stable matching, m must be paired with his first choice.

Problem 5. Consider the following piece of pseudocode:

```
Given: S, a set of n numbers
total = sum of all elements of S
For all subsets T of S:
    val = sum of all elements of T.
    if (val == total - val) return TRUE
end For
return FALSE
```

1. Give the best upper bound you can on its running time. Justify your answer.
2. How can the code be improved to get a $\Theta(n)$ factor of speedup? Justify.
3. Suppose we only have time to do about a trillion $\left(10^{12} \approx 2^{40}\right)$ operations. Roughly how large a value of n can we handle? Give answers for both the original code, and your improved version. (No, you don't need a calculator. I did say roughly.)

Problem 6. 1. Here is a drawing of a graph, G.

Find a spanning tree of G that is both a BFS tree and a DFS tree. Also, indicate where your tree has its root, as a BFS tree and as a DFS tree.
2. Suppose G is a complete graph on n nodes, that is, all $n(n-1) / 2$ possible edges are present. Prove that, assuming $n \geq 3$, breadth-first search and depth-first search on G cannot produce the same spanning tree.

