How to Implement a Peer Instruction-designed CS Principles Course

Beth Simon, University of California, San Diego
Quintin Cutts, University of Glasgow

Abstract

The CS Principles curriculum framework includes explicit learning goals regarding
student abilities in communication and collaboration. Computing majors need these
skills, but what kinds of activities support the development of these skills, especially
in a large lecture course? This paper describes Peer Instruction—a pedagogy
developed to support students in developing deep understanding in a lecture
environment—and its use in the pilot offering of CS Principles in 2010-11 at the
University of California at San Diego.

Peer instruction for deep understanding

One of the exciting things about CS Principles is that it has explicit learning goals
regarding student abilities in communication and collaboration. Both of these are
skills that we seek to develop in computing majors - but it seems a hard thing to
implement in the (large) university lecture. How can we provide students
experience in developing these skills? One good approach is to use pair
programming in introductory programming courses — which has been shown to
have benefits for learning and retention. However, pair programming involves a
fairly complex process and may not even be “visible” to the instructor (e.g., if
assignments are done outside of a closed lab).

Peer Instruction is a pedagogy developed to support students in developing deep
understanding (versus more shallow plug-and-chug abilities) in the standard (and
possibly large) lecture environment. Developed by Harvard physicist Eric Mazur
after realizing that students could pass his exam but still not “understand” core
concepts about forces, the hallmark of peer instruction is that students work in
teams talking about challenging questions posed by the instructor.

What does this look like in a CS Principles course? Consider Figure 1—a slide from
the second lecture at UCSD. Before class, students are guided in completing
preparation for the lecture—that is, we get them exposed to the basic concepts by
having them read and follow along in the book developing small Alice programs. In
this scenario, we plan that they have basic knowledge of what a “DoTogether” tile
should do—and we don’t have a slide “defining” or “teaching” it in the lecture.
Instead, we pose this question that engages students in applying their
understanding of the “DoTogether” concept in a situation where the answer is far
from obvious (note: in Alice the “move up” and “move down” instructions will
effectively cancel each other out). Do we really want that, after taking this class,

students can tell us that instructions What does this code do?

on a DoTogether tile can cancel each =IDo in order

other out if they cause “opposite” =IDo together

behaviors? No. If these students SsiamoGin — fsay Hollo — | more=

never take another Computing course, eskimoGirl move up 0.5 meters more...
eskimoGirl move down 0.5 meters more...

this wouldn’t possibly have any value
to them. However, in the process of
discussing this question with peers in up and down

a gr9up, students can be engaged in B. Makes the eskimo girl say Hello WHILE
talking about how programs jumping up and down

“normally” execute one instruction at
a time, they can prompt each other to
attend to small details such as the

A. Makes the eskimo girl say Hello, then jump

C. Makes the eskimo girl say Hello
D. None of the above

values of parameters, and they can

form arsuments and provide Figure 1. A first clicker question designed to prompt explanation and
. g p | discussion, not just finding the right answer.
rationales for why they believe the

code behaves a certain way. Additionally, the simple direction to spend class time
analyzing and rationalizing about code conveys the key that software (and
technology) is something that CAN be understood - that they might have an option
other than asking someone else for help or rebooting.

Good questions engage students in discussion

There is a specified algorithm by which the Peer Instruction question-asking
process occurs (Figure 2). First, students silently consider a question for
themselves, and vote using a clicker device. Getting students to commit to an
individual answer first not only discourages “free-riding” (or just waiting for your
neighbor to do it) and actually prepares the brain to learn by retrieving necessary
information to understand the question and try to put together a process for
determining a response. At the point (preferably without showing the results of the
vote), students can be directed to discuss in their “teams”. For CS Principles
specifically, we assigned students to fixed groups of 3 - allowing them to be able to
talk to each other in fixed lecture theater seats and enabling them to develop a sense
of community and comfort with their team members. Students have told us that
they really valued these fixed teams. One student reflected that even though he
knows he should attend his (large) lectures, it can be hard to get motivated to do so,
when no one will even know if he’s there or not. However, in the CS Principles
course he said he came to every lecture - because if he didn’t then his team “would
be down one third of their brain” - and he didn’t want to let them down. Post-
discussion, students are asked (all) to vote again, perhaps changing their vote based
on the discussion. The instructor can ask for volunteers to explain how they
thought about the question and then show the results of the graph (the ordering of
these steps might vary - depending on the desire to hear explanations of more than
just one answer). At this point, the instructor can provide a model of how they

would think about or analyze such a question, or, if necessary clarify any confusion
with further explanation or a live-coding demonstration.

Pre-Class preparation
Quiz/Incentive/Feedback

1) Individual Thinking, Vote
2) Group Discussion (with 1-2 other students)
3) Group Vote

Class-wide discussion
Student-led/Instructor Modeling/Mini-lecture

Figure 2: The algorithm for the peer instruction process.

Critical analysis in the context of
debugging is a particularly useful skill
in CS Principles since the mindset and
process can be applied in many
technology and software contexts.
Figure 4 shows one example of this.

It is critical to develop questions that
really engage students in deep and
meaningful discussion - rather than in
just finding or confirming an answer with
their peers. This is where the expertise of
the instructor comes into play.

Questions can be devised with a number
of goals in mind. One source of good
questions is common misconceptions or
misunderstandings students have when
learning, for example nested loops.

| |OuterLoop count __|Inner Loop count | Turn parameter |
.25

4 5

4 5 1
5 4 .25
5 4 1

O 0O @ >

| Goal: Hop in a square, 5 hops on each side |

IO World.my first method _
World.my first method o parame!

create new variable

No variables

ElLoop times
ELoop times | show complicate...
bunny.hop

bunny - turn left I:levolulions more...

Figure 3. A question to tease out the differences between an
instruction in the inner loop and an instruction in the outer loop.
Here the fact that the execution of an Alice program is a visual
animation supports students in discussing what actually happens
- even in the incorrect cases.

A. No, but you could make it better if you include a speed
parameter

B. No, it’s perfect as it is
C. Yes, you have created the wrong parameters
D. Yes, you have incorrectly used a parameter

@ world.my first method [0 world.ﬂy_

world.fly |13 howHigh , 123 howFarForward

create new parameter

Figure 4: This question is presented in the context of
talking with someone about some code that they
have written. We ask “Do you have any comments
for Maria about the code she wrote late last night?”
Not only does this question prompt them to consider
looking at programs with an eye to “what might be

No variables create new variable
[=IDo together |1
goldfish ~ move up — 0.5 meters =~ more...
goldfish — move forward — 0.3 meters = more...
[=IDo together
goldfish move down 0.5 meters more...
goldfish move forward 0.3 meters more...

wrong here” but also to double check their
understanding of how to use parameters.

Questions can be developed to both check to see that students are thinking about a
problem the way we want them to, or that they see the point of a particular concept
- perhaps after working a specific problem where they used that concept.

Which of the following is the best explanation of what
makes a good parameter:

A. It's something that supports common variation in how
the method is done

B. It's got a meaningful name

C. It can be either an Object or a number

D. It helps manage complexity in large programs

Figure 5. A clicker question posed after several questions involving creating parameters and identifying bugs in using parameters.

Even questions that may not have one “right” answer can be used. The question in
Figure 6 naturally prompts students to discuss various scenarios where an answer
might make sense - and the justification for why.

If we write a method called drive, which
would not make sense as a parameter to

control how drive occurs?
. Destination

. How fast
Which car
. Car color

oo w P>

Figure 6. A question of design where multiple answers could be defended.

Finally, a major goal of CS Principles is not to create “programmers,” but to use
programming to strip away (as much as possible) the complexities inherent in using
“real” software applications. At the end of the day, it is through the practice of
analysis and justification of answers that Peer Instruction supports that we hope
students gain a new approach to dealing with computers and a new confidence in
their ability to figure out software and computation in the world around them. This
is an outcome that will serve them their entire lives - regardless of career and
regardless of the next great app.

Which best describes the process
implemented by VLOOKUP?

A. Two nested loop tiles

B. Aloop tile with an if statement in it
C. An if statement with a loop in it

D. A series of if statements

Figure 7. Applying concepts learned in programming to the software and technology around you.

For a more general treatment of peer instruction, see [1]. For further detailed advice
on getting started using Peer Instruction in computing courses see [2].

References
1. B. Simon and Q. Cutts, “Peer Instruction: A Teaching Method to Foster Deep

Understanding,” Communications of the ACM, Vol. 55 No. 2, Pages 27-29.
2. http://cs.ucsd.edu/~bsimon /PI

Author information

Elizabeth Simon

Department of Computer Science and Engineering
University of California, San Diego

LaJolla, CA 92093

bsimon@cs.ucsd.edu

Quintin Cutts

Department of Computing Science
University of Glasgow

Glasgow G12 8QQ

Scotland
Quintin.Cutts@glasgow.ac.uk

Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and
Information Science Education — Computer science education, Curriculum
General Terms: Experimentation, Human Factors, Design

Keywords: Computer science education, pedagogy, CS Principles, peer instruction

© ACM, 2012. This is the author's version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The
definitive version was published in ACM Inroads, {VOL 3, ISS 2, (June
2012)} http://doi.acm.org/10.1145/ 2189835.2189858

