
NetLogo Tutorial Series:
Introduction and Core Concepts

Nicholas Bennett
nickbenn@g-r-c.com

January 2013

Copyright and License

Copyright © 2013, Nicholas Bennett. “NetLogo Tutorial Series: Introduction and Core
Concepts” by Nicholas Bennett is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License. Permissions beyond the scope of
this license may be available; for more information, contact nickbenn@g-r-c.com.

Acknowledgments

Development of this curricular material was funded in part by:

• Santa Fe Institute Summer Internship/Mentorship (SIM) and Summer
Complexity and Modeling Program (CaMP) for high school students;

• New Mexico Supercomputing Challenge;

• Project GUTS;

• New Mexico Computer Science For All.

Participants in the above programs have also provided invaluable feedback on earlier
versions of this material.

mailto:nickbenn@g-r-c.com
http://www.projectguts.org/
http://www.supercomputingchallenge.org/
http://www.santafe.edu/education/schools/summer-camp/
http://www.santafe.edu/education/schools/summer-camp/
http://www.santafe.edu/education/schools/summer-camp/
http://www.santafe.edu/
mailto:nickbenn@g-r-c.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.g-r-c.com/tutorials/netlogo/
http://www.g-r-c.com/tutorials/netlogo/
http://creativecommons.org/licenses/by-nc-sa/3.0/

What is NetLogo?

NetLogo is an agent-based modeling and programming (ABM) tool, developed by the
Northwester University Center for Connected Learning (CCL) and Computer-Based
Modeling [1]. It builds on the original Logo programming language [2], incorporating
and extending concepts and constructs introduced in StarLogo and MacStarLogo [3],
both developed by the MIT Media Lab.

NetLogo is referred to as an agent-based tool due to the fact that the programming
language and user interface of NetLogo are primarily intended for modeling and
simulating systems of multiple interacting agents (see “Different Types of Agents”, p.
10). Usually, these agents need not be programmed with extensive or complicated
behaviors – powerful and useful models can often be developed with agents following
very simple rules.

Developed in Java and Scala, and running on the Java Virtual Machine (JVM), NetLogo
is highly portable: models written in NetLogo for Windows can run unchanged (and be
further modified) with the NetLogo Macintosh OS X and Linux editions; models can
also be executed as applets in web pages. Extensions to NetLogo can be written in Java
or Scala, and NetLogo itself can be instantiated and controlled by a program written in
Java, Scala – or virtually any other language running on the JVM.

With each major release, NetLogo has been enhanced significantly. The agent-oriented
features of the language have been rationalized, to be more consistent and coherent
than in earlier versions. List and set operations have been expanded, and the
performance of those operations improved. A link agent type has been added,
supporting not only modeling of networks (social, communication, etc.) but also of
physical and logical structures and assemblies.

NetLogo Tutorial Series: Core Concepts 3

The NetLogo Coordinate System

In building NetLogo models it's important to understand the coordinate system used by
NetLogo. This diagram, and the explanations that follow, illustrate some important
points to remember:

4 NetLogo Tutorial Series: Core Concepts

patch -5 -8

Turtle at (-4.6, -8.3)

Origin (0, 0)

patch 3 2

(3, 2)

X+

w
o
r
l
d
-
h
e
i
g
h
t

X-

Y+ (max-pxcor, max-pycor)

Y-

world-width

(min-pxcor, min-pycor)

1. Like the Cartesian coordinate system traditionally used in algebra, analytic
geometry, and calculus, the NetLogo world has X and Y axes. The center of the
coordinate system is the origin (which is usually – but not always – located in the
physical center of the NetLogo world, as well), where X and Y have values of zero
(0).

2. Overlaid on the coordinate system is a grid of patches (1 X 1 squares). Each patch has
a color, and an optional label; a NetLogo program can also define additional
variables for a patch.

3. The center of a patch is a point in the coordinate system with integral X and Y
values; these coordinates are used to refer to the patch. For example, patch 3 2 in
the diagram is a square with its center at (3, 2); this square is the region where 2.5 ≤
X < 3.5 and 1.5 ≤ Y < 2.5. (We can also refer to patches with floating point
coordinates; they'll be rounded to integers as necessary.)

4. A patch’s coordinates are always integer values, but that's not necessarily the case
for a turtle. In the diagram, there's a turtle located at (-4.6, -8.3), which is on the
patch centered at (-5, -8). Though a turtle appears as if it's on two or more patches at
once, the turtle’s center point is what matters: this center point is treated as the
actual location of the turtle, and the patch containing that center point is considered
to be the patch on which the turtle is standing.

5. The user can change the width or height of the NetLogo world at any time; because
of this, NetLogo programs should generally not assume fixed world dimensions,
unless absolutely necessary. Fortunately, NetLogo programs can always use world-
width and world-height to get the current dimensions of the world.

6. The patches on the extreme right-hand side of the NetLogo world have an X value of
max-pxcor; those on the top of the world have a Y value of max-pycor. Similarly,
min-pxcor and min-pycor are the X and Y coordinates (respectively) of the patches
on the extreme left-hand side and bottom (respectively) of the NetLogo world. These
variables are related to the overall size of the world, as follows:

world-width = (max-pxcor - min-pxcor) + 1

world-height = (max-pycor - min-pycor) + 1.

NetLogo Tutorial Series: Core Concepts 5

NetLogo Angles and Directions

All angles in NetLogo are specified in degrees, and directions are based on compass
headings, with 0° being “up” (i.e. north), 90° being towards the right (i.e. east), etc.

When instructing a turtle to face a particular direction, we can do so by setting the
heading of the turtle to the desired compass heading, or by telling the turtle to turn
right or left by the number of degrees required to orient the turtle as desired. We can
also instruct a turtle to face another agent by specifying the second agent in a face
command, rather than computing the compass direction or turn angle required.

NetLogo Topology

Notice that we can specify that the NetLogo world should wrap horizontally, vertically,
both horizontally and vertically, or not at all. When wrapping is turned on horizontally
(for example), a turtle moving off the right edge of the world will reappear on the left
edge, and vice versa. If horizontal wrapping is not enabled, a turtle will be unable to
move off the right or left edge.

1. What is the logical “shape” of the NetLogo world, if wrapping is turned on
horizontally, but not vertically?

2. What is the shape of the NetLogo world, if wrapping is turned on vertically, but not
horizontally?

3. What is the shape of the NetLogo world, if wrapping is turned on both vertically
and horizontally?

6 NetLogo Tutorial Series: Core Concepts

Programming in General: Teaching the Computer

Although computers (more precisely, the processors inside computers) are capable of
manipulating data very efficiently, and though modern processors include floating-
point processing units that can perform impressive arithmetic, trigonometric, and
logarithmic calculations, they're also simple-minded: they're generally incapable of
performing most tasks the average user would consider meaningful – until they're
taught to do these meaningful tasks. We teach computers to do this through programming:
encoding an algorithm (a procedure for completing a task or solving a problem) into a
form that the computer can understand, for which it will take specified inputs, and
from which it can present a meaningful result as output.

Fortunately for us, virtually every modern, commercially-available computer comes
with millions of lines of these algorithmic instructions already written, and preloaded
on hard drives, programmable memory chips, etc. These instructions make up the
operating system (which lets us read and write data from and to the keyboard, display,
and files), drivers (which tell the computer how to connect to and make use of
hardware devices – e.g. video display adapters, disk drives, printers, external memory
devices), and applications (special files which can be executed on demand by the user,
for more specific functionality). We can augment this further by installing or writing
new programs for the computer to execute; when we do this, we're literally teaching the
computer to perform new tasks.

Some computer programs are instruction translators: they allow programmers to write
new programs, without them having to understand much of the internal workings of
the computer; these translators then convert the instructions the programmers have
written into a form that the computer can execute. NetLogo is one such translator: it
allows us to write programs in a specialized language to describe the behaviors of
agents; NetLogo then converts these programs (NetLogo models) into a form the
computer can execute1, without us having to know anything about how that conversion
takes place. Nonetheless, we can still think of the NetLogo models we write as being
sets of instructions that we teach to the computer; perhaps more usefully, we can think
of our task, when building NetLogo models, as being that of teaching NetLogo itself.

1 This is actually a slight over-simplification. NetLogo is built on top of Java, so it converts models into
instructions which the Java Virtual Machine (JVM) can understand. As the model runs, the JVM
translates those into instructions the computer hardware can execute directly.

NetLogo Tutorial Series: Core Concepts 7

Programming in NetLogo

We give instructions to NetLogo in three main ways:

• We can type instructions in the Command Center (usually located at the bottom
of the Interface window). These instructions are executed as soon as we press the
Enter key – but they don't become part of what we're teaching NetLogo (i.e. the
program2 we're writing). In other words, we can use the Command Center to
instruct NetLogo to perform actions it already knows how to do, but we can't use
it to teach NetLogo new capabilities.

• Some instructions can be included in buttons and other controls in the user
interfaces we create. This functionality is most often used to connect the buttons
we create to the new capabilities that we've taught NetLogo in our program.

• Finally, and most importantly, when we write instructions in the Code window,
we're creating a NetLogo program (which includes one or more procedures), and
teaching NetLogo to do something new. What we write in the Code window isn't
executed immediately, but becomes part of what NetLogo knows how to do (as
long as the program is loaded). We can invoke this new functionality through
buttons and monitors in the user interface, by typing commands in the
Command Center, or by referring to one or more of the new procedures in other
code we write in the Procedures window.

When you teach another person a procedure for completing some task, you might begin
by saying: “To do X, first do A, then do B,” and so on. Teaching NetLogo to perform
some task is very similar: we use the keyword to, followed by the name of the task, and
then the set of instructions that make up the procedure; finally, we indicate that there
are no more instructions for this task by ending the procedure with the keyword end.

2 “Model” and “program” are often used interchangeably when talking about NetLogo. Here, we'll
distinguish between the two by using “program” to refer to the contents of the Code window, and
“model” to refer to the combined contents of the Interface, Information, and Code windows – i.e. the
procedures, the user interface, and any embedded user information and documentation.

8 NetLogo Tutorial Series: Core Concepts

For example, the following procedure teaches NetLogo how to draw a square (more
precisely, how a turtle draws a square; see “Different Types of Agents”, below):

to draw-square
 pen-down
 repeat 4
 [
 forward 10
 right 90
]
 pen-up
end

Note that there are hyphenated words in this example, just as there are in the “The
NetLogo Coordinate System“, above. Though this isn't allowed in most programming
languages, it's valid and common in Logo dialects, and there are a number of built-in
procedures (such as pen-down and pen-up) with hyphenated names. However, while
procedure and variable names can include hyphens – as well as many other
punctuation symbols – they can't include spaces.

Now that we've written the draw-square procedure, we can invoke it by name in the
Command Center, in a button, or in another procedure.

Most programming languages support two fundamentally different kinds of
procedures: those that modify the state of the system, but don't compute and return
some information as a result; and those that compute and return a result (these may or
may not also modify the state of the system). The procedure above is an example of the
former: it modifies the heading and position of an agent, but doesn't compute and
return a result. In NetLogo, we can also write reporter procedures, which return results.
For example, the following reporter procedure computes and returns the square of a
specified number:

to-report square [input-value]
 report (input-value * input-value)
end

The reporter syntax has two main differences from the syntax of a regular procedure:

1. The definition of a reporter begins with to-report, instead of to.

2. The command report is used to return a value.

Note that input parameters can be included in the definitions of procedures and
reporters, using square brackets after the procedure or reporter name.

NetLogo Tutorial Series: Core Concepts 9

Different Types of Agents

There are four types of agents in NetLogo; each is capable of different kinds of
following different kinds of instructions, and each serves a different purpose in a
NetLogo model:

1. Observer – There's always exactly one of this kind of agent; we can think of this as
being NetLogo itself. This agent is not displayed on the NetLogo world, but it is the
only agent that can perform certain global operations in a model (e.g. clear-all).

2. Patches – These are stationary agents, and there's exactly one such agent per square
in the grid of the NetLogo world. A patch can't be displayed as any shape other than
a square, but each patch can have its own color.

3. Turtles – These are agents that can move about the NetLogo world independently of
other agents, and can be displayed with different shapes and colors. Any
instructions that tell an agent to move can only be used with turtles.

4. Links – These are agents which connect one turtle to another. There are no
instructions to move links directly; a link moves when one or both of the turtles at
the endpoints move. (A link can also be configured as a tie, where motion of one
endpoint turtle will force movement of the other endpoint turtle.) Links can be
directed or undirected: with undirected links, we don't recognize the link as coming
from one turtle to another, but simply that it is between the two; a directed link, on
the other hand, is always from one turtle to another.

Links and turtles are the only agents that can be created or destroyed by the instructions
contained within the model itself. Also, links and turtles are the only agents that can be
organized into breeds.

Turtles can interact with other turtles by reading the attributes of those turtles, or by
asking those turtles to execute instructions; they can also interact with patches in the
same ways. Patches can interact with turtles, and with other patches. Links generally
interact with their endpoint turtles, but they can also be made to interact with other
links, turtles, and patches. The observer can ask turtles, patches, and links to perform
specified operations. On the other hand, turtles, patches, and links cannot interact
directly with the observer, in the sense that they can't ask the observer to perform any
actions. However, models have global variables (some predefined by NetLogo, and
others we can define in our sliders and program code); in general, patches, links, and
turtles can modify the values of these variables – and the observer's actions may be
affected by such changes.

10 NetLogo Tutorial Series: Core Concepts

References

[1] Wilensky, U. NetLogo, 1999. [Online]. Available:
http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and
Computer-Based Modeling, Northwestern University. Evanston, IL. [Accessed:
26 Jan. 2013].

[2] The Logo Programming Language, 2012. [Online]. Available:
http://el.media.mit.edu/logo-foundation/logo/programming.html. The Logo
Foundation, Cambridge, MA. [Accessed: 26 Jan. 2013].

[3] StarLogo on the Web, Jul. 2008. [Online]. Available:
http://education.mit.edu/starlogo/. MIT Scheller Teacher Education Program,
Cambridge, MA. [Accessed: 25 Jan. 2013].

NetLogo Tutorial Series: Core Concepts 11

http://el.media.mit.edu/logo-foundation/logo/programming.html
http://education.mit.edu/starlogo/
http://ccl.northwestern.edu/netlogo/

	NetLogo Tutorial Series: Introduction and Core Concepts
	Copyright and License
	Acknowledgments
	What is NetLogo?
	The NetLogo Coordinate System
	NetLogo Angles and Directions
	NetLogo Topology
	Programming in General: Teaching the Computer
	Programming in NetLogo
	Different Types of Agents
	References

