
1

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

International Journal of Semantic Computing
(2024) 1–44
© World Scientific Publishing Company
DOI: 10.1142/S1793351X24300085

LLMs: Their Past, Promise, and Problems

George F. Luger 
Professor Emeritus, Department of Computer Science

University of New Mexico Albuquerque, NM 87113, USA
luger@cs.unm.edu

https://www.cs.unm.edu/~luger

Received 18 July 2024
Accepted 25 July 2024

Published

Transformer-based large language models are currently at the forefront of modern artificial
intelligence. Their prominence followed from the seminal paper Attention is All You Need
[1]. Vaswani and his colleagues suggested placing attention mechanisms within the encoder
and decoder modules of autoencoders rather than using them to focus between these two
modules. In this paper we present first the seminal insights of early AI that lead to deep
learning. We then describe the mathematical tools necessary for understanding the current
generation of LLMs and follow this with a brief description of the transformer architecture.
We then provide examples of LLMs in action and conclude with some observations of their
promise and problems.

Keywords: Large language models; attention; transformer.

1. Introduction

Neural Networks, often characterized as neurally inspired computation, or parallel
distributed processing, de-emphasize the explicit use of symbols and logic-based
reasoning. Neural network approaches are designed to capture relations and associ-
ations within an application domain and interpret new situations in the context of
previously learned relational patterns.

The neural net philosophy conjectures that intelligence arises in systems of sim-
ple interacting components, biological or artificial neurons. This happens through
a process of learning or adaptation by which the connections between components
are adjusted as patterns in the world are processed. Computation in these systems
is distributed across collections, or layers, of neurons. Problem solving is paral-
lel in the sense that all the neurons within the collection or layer process their
inputs simultaneously and independently. These systems also degrade gracefully
since information and processing are distributed across nodes and layers and not
localized to any single component of the network.

2430008.indd 12430008.indd 1 24-09-2024 11:23:4024-09-2024 11:23:40

https://dx.doi.org/10.1142/S1793351X24300085
https://orcid.org/0009-0001-8164-5964

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

2 G. F. Luger

The algorithms and architectures that implement connectionist techniques are
usually trained or conditioned rather than explicitly programmed. This fact is a
major strength of the approach, as an appropriately designed network architecture
and learning algorithm can often capture invariances in the world, even in the form
of strange attractors, without being explicitly programmed to recognize them.

The basis of a network is the artificial neuron, as shown in Fig. 1.
The minimal components of the artificial neuron are:

(1)	 Input signals Xi. These signals may come from the environment or from the
activation of other neurons. Different models vary in the allowable range of the
input values; typically, inputs are discrete, from the sets {0, 1} or {–1, 1}.

(2)	 A set of real-valued weights, wi. These values describe connection strengths.
(3)	 An activation level, Σwixi. The neuron’s activation level is determined by the

cumulative strength of its input signals where each signal is scaled, or mul-
tiplied, by the connection weight associated with that input. The activation
level is computed by taking the sum of the weighted inputs, that is Σwixi. The
Greek sigma, Σ, indicates that these values are summed.

(4)	 A threshold or a bounded nonlinear mapping function, f. The threshold function
computes the neuron’s output by seeing if it is above an activation level. The
nonlinear mapping function produces either an on/off or a graded response for
that neuron.

Early examples of neural computing are the McCulloch–Pitts [3] neurons. The
inputs of these neurons are either +1, i.e. true, or –1, false. The activation function
multiplies each input by its corresponding weight and adds the results; if this sum
is greater than or equal to zero, the neuron returns 1, true, otherwise, –1, false.
McCulloch and Pitts showed how these neurons could be constructed to compute
any logical function.

Figure 2 shows McCulloch–Pitts neurons for computing the logical functions
and (∧) and or (∨). The and neuron, (a) on the left, has three inputs: x and y are
the values to be conjoined; the third input, sometimes called a bias, has a constant
value of +1. The input data and bias have weights of +1, +1, and –2, respectively.

Fig. 1.  An artificial neuron with input vector xi, weights wi for each input, and a threshold function
f that determines the neurons output value. Figure adapted from [2].

2430008.indd 22430008.indd 2 24-09-2024 11:23:4024-09-2024 11:23:40

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 3

Thus, for any input values of x and y, the neuron computes x + y – 2. Table 1 shows
that if this value is less than 0, it returns –1, false, otherwise a 1, true. The or neu-
ron, (b) on the right, illustrates the neuron computing x ∨ y. The weighted sum of
input data for the ∨ neuron is greater than or equal to 0 unless both x and y equal
–1, i.e. are false.

Although McCulloch and Pitts demonstrated the power of neural computation,
interest in neural network research only began to flourish with the development of
practical learning algorithms. Early learning models drew heavily on the work of
the psychologist Donald Hebb [4], who speculated that learning occurred in brains
through the modification, or conditioning, of synapses. Hebb stated:

When an axon of cell A is near enough to excite a cell B and repeatedly or per-
sistently takes place in firing it, some growth process or metabolic change takes place
in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.

Neural physiological research has confirmed Hebb’s idea that temporal proxim-
ity of the firing of connected neurons can modify their synaptic strength, albeit in
a more complex fashion than Hebb’s intuition of “increase in efficiency”. We next
demonstrate Hebbian learning, which belongs to the coincidence class of learning
laws. This learning produces weight changes in response to localized events in neu-
ral processing.

Neural network learning may be unsupervised, supervised, or some hybrid com-
bination of the two. The examples seen so far are unsupervised, as the network and
its weights transformed input signals to the desired output values. We now consider
an example of unsupervised Hebbian learning where each output has a weight

Fig. 2.  McCulloch–Pitts neurons for and (a), and or (b). Figure adapted from [2].

(a) (b)

Table 1.  The McCulloch–Pitts
model for computing the logical
and of Fig. 2(a).

x y x = y – 2 Output

1 1   0   1
1 0 –1 –1
0 1 –1 –1
0 0 –2 –1

2430008.indd 32430008.indd 3 24-09-2024 11:23:4124-09-2024 11:23:41

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

4 G. F. Luger

adjustment factor. In unsupervised learning, a critic is not available to provide the
“correct” output value. As a result, the weights must be modified across multiple
iterations solely as a function of the input and output values of the neuron. The
training of the Hebbian network of Fig. 3 has the effect of strengthening the net-
work’s responses to patterns that it has already seen and interpreting new patterns
appropriately.

Figure 3 demonstrates how Hebbian techniques can be used to model condi-
tioned response learning, where an arbitrarily selected stimulus can be used to
condition a desired response. Pavlov’s classic 1890’s experiment offers an example
of a conditioned response. A dog is brought food while a bell is rung. The dog
salivates in expectation of his meal. The unconditioned response of the salivating
animal is the presence of food. After several instances where the arrival of food is
accompanied by the ringing bell, the bell is rung without food. The dog salivates.
The ringing bell produces the dog’s conditioned response!

Figure 3 demonstrates how a Hebbian network can transfer a response from a
primary or unconditioned stimulus to a conditioned stimulus. In Pavlov’s exper-
iments, the dog’s salivation response to food is transferred to the bell. Weight
adjustment, ∆W, at each network iteration, is described by the equation:

	 ∆W = c * f (X, W) * X.

In this equation c is the learning constant, a small positive decimal, whose use
modulates the extent of the learning at each step, as described with more detail in
Fig. 3, f (X, W) is the network’s output at each iteration, and Xi is the input vector
at that iteration.

The network of Fig. 3 has two layers, an input layer with six nodes and an out-
put layer with one node. The output layer returns either +1, signifying that the
output neuron has fired, or a – 1 that it has not fired. The feedback, Supervise,
monitoring the network, ∆W, takes each output of the network and multiplies it
by the input vector and the learning constant to produce the set of weights for the
input vector at the next iteration of the network.

Fig. 3.  A Hebbian network, with no extra-network supervision, that learns a response for an uncondi-
tioned stimulus. ∆W adjusts the weights at each iteration of the data through the network. The thresh-
old function is shown in Fig. 7(a). Figure adapted from [2].

2430008.indd 42430008.indd 4 24-09-2024 11:23:4124-09-2024 11:23:41

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 5

We set the learning constant to the small positive real number, 0.2. In this exam-
ple we train the network on the pattern [1, –1, 1, –1, 1 –1] which joins the two pat-
terns, [1, –1, 1] and [–1, 1, –1]. The pattern [1, –1, 1] represents the unconditioned
stimulus and [–1, 1, –1] represents the new stimulus.

Assume that the network already responds positively to the unconditioned stim-
ulus but is neutral with respect to the new stimulus. We simulate the positive
response of the network to the unconditioned stimulus with the weight vector
[1, –1, 1] exactly matching the input pattern. The neutral response of the network
to the new stimulus is simulated by the weight vector [0, 0, 0]. Joining these two
vectors gives the initial weight vector for the network, [1, –1, 1, 0, 0, 0].

The network is next trained on the input pattern, hoping to induce a configura-
tion of weights that will produce a positive network response to the new stimulus.
The first iteration of the network produces the result:

W  *X = �(1 * 1) + (–1 * –1) + (1 * 1) + (0 * –1) + (0 * 1) + (0 * –1) = (1) + (1) + (1) = 3,
and f (3) = sign(3) = 1.

Now the Hebbian network creates the new weight vector W 2:

	 W 2 = [1, –1, 1, 0, 0, 0] + 0.2 * (1) * [1, –1, 1, –1, 1, –1]
	   = [1, –1, 1, 0, 0, 0] + [0.2, –0.2, 0.2, –0.2, 0.2, –0.2]
          = [1.2, –1.2, 1.2, –0.2, 0.2, –0.2].

Next, the adjusted network sees the original input pattern with the new weights:
 W  *X = (1.2 * 1) + (–1.2 * –1) + (1.2 * 1) + (–0.2 * –1) + (0.2 * 1) + (–0.2 * –1)
      = (1.2) + (1.2) + (1.2) + (0.2) + (0.2) + (0.2)
      = 4.2, and sign(4.2) = 1.

Now the Hebbian network creates the new weight vector W 3:

	 W 3 = [1.2, –1.2, 1.2, –0.2, 0.2, –0.2] + 0.2 * (1) * [1, –1, 1, –1, 1 –1]
          = [1.2, –1.2, 1.2, –0.2, 0.2, –0.2] + [0.2, –0.2, 0.2, –0.2, 0.2, –0.2]
          = [1.4, –1.4, 1.4, –0.4, 0.4, –0.4].

It can now be seen that the weight vector product, W  *X, will continue to
grow in the positive direction, with the value of each element of the weight vector
increasing by 0.2 in the + or – direction, at each training cycle. After 10 more iter-
ations of Hebbian training the weight vector will be

	 W 13 = [3.4, –3.4, 3.4, –2.4, 2.4, –2.4].

We use this trained weight vector to test the network’s response to the two
partial patterns. We would like to see if the network continues to respond to the
unconditioned stimulus positively and, more importantly, if the network has now
acquired a positive response to the new conditioned stimulus. We test the network
first on the unconditioned stimulus [1, –1, 1]. We fill out the last three arguments

2430008.indd 52430008.indd 5 24-09-2024 11:23:4224-09-2024 11:23:42

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

6 G. F. Luger

of the input vector with random 1 and –1 assignment, for example, we test the
network on the vector [1, –1, 1, 1, 1, –1]:

 sign(W *X) �= sign((3.4*1) + (–3.4*–1) + (3.4*1) + (–2.4*1) + (2.4*1) + (–2.4*–1))
= sign(3.4 + 3.4 + 3.4 – 2.4 + 2.4 + 2.4) = sign(12.6) = + 1.

The network still responds positively to the original unconditioned stimulus.
We next do a second test using the original unconditioned stimulus and a different
random vector in the last three positions [1, –1, 1, 1, –1, –1]:

 sign(W *X) �= sign((3.4*1) + (–3.4*–1) + (3.4*1) + (–2.4*1) + (2.4*–1) + (–2.4*–1))
= sign(3.4 + 3.4 + 3.4 – 2.4 – 2.4 + 2.4) = sign(7.8) = +1.

The second vector also produces a positive network response. With these two
examples the network’s sensitivity to the original stimulus has been strengthened,
due to repeated exposure to that stimulus.

We next test the network’s response to the new stimulus pattern, [–1, 1, –1],
encoded in the last three positions of the input vector. We fill the first three vector
positions with random assignments from the set {1, –1} and test the network on
the vector [1, 1, 1, –1, 1, –1]:

 sign(W *X) �= sign((3.4*1) + (–3.4*–1) + (3.4*1) + (–2.4*1) + (2.4*1) + (–2.4*–1))
= sign(3.4 – 3.4 + 3.4 + 2.4 + 2.4 + 2.4) = sign(10.6) = +1.

We do one final experiment, with the vector patterns slightly degraded. This
could represent the stimulus situation where the input signals are altered, perhaps
because a new food and/or a different sounding bell is used. We test the network
on the input vector [1, –1, –1, 1, 1, –1], where the first three parameters are one
digit off the original unconditioned stimulus and the last three parameters are one
digit off the conditioned stimulus:

 sign(W *X) �= sign((3.4*1) + (–3.4*–1) + (3.4*1) + (–2.4*1) + (2.4*1) + (–2.4*–1))
= sign(3.4 + 3.4 – 3.4 – 2.4 + 2.4 + 2.4) = sign(5.8) = +1.

Even this partially degraded stimulus is recognized.
What has the Hebbian learning model produced? We created an association

between a new stimulus and an old response by repeatedly presenting the old and
new stimuli together. The network learns to transfer its response to the new stimulus
without any external supervision. This strengthened sensitivity also allows the net-
work to respond in the same way to a slightly degraded version of the stimulus. This
was accomplished by using Hebbian coincidence learning to increase the strength
of the network’s response to the total pattern. This increases the strength to each
individual component of the pattern: an example of self-organization emerging from
using Hebb’s rule. The pattern of the secondary stimulus is also recognized!

	 = sign(10.6) = +1.

In 1958 Rosenblatt [5, 6] created the Perceptron, an electronic device inspired
by neurologic principles. Rosenblatt was a psychologist and neuroscientist who, in

2430008.indd 62430008.indd 6 24-09-2024 11:23:4224-09-2024 11:23:42

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 7

1959, became the director of Cornell’s Cognitive Systems Research Program. The
perceptron network consists of a single layer of N perceptron neurons activated
by n inputs each with a weight, wn, as shown in Fig. 1. Rosenblatt’s 1962 paper
describing the perceptron is titled Principles of neurodynamics: Perceptrons and
the theory of brain mechanisms.

Interestingly, many early researchers, the precursors of neural network technol-
ogy, claimed the inspiration of human neural activity for their creations. In the
19th century, Boole, the creator of the algebraic system supporting modern compu-
tation, and who’s logic was first automated by McCulloch–Pitts neurons, offers a
prime example. In the first chapter of An Investigation of the Laws of Thought, on
which are founded the Mathematical Theories of Logic and Probabilities [7], Boole
described his goal as

... to investigate the fundamental laws of those operations of the mind by which
reasoning is performed: to give expression to them in the symbolical language of a
Calculus, and upon this foundation to establish the science of logic and instruct its
method; ... and finally to collect from the various elements of truth brought to view
in the course of these inquiries some probable intimations concerning the nature
and constitution of the human mind.

Perceptrons were initially greeted with enthusiasm. However, Nilsson [8] and
others analyzed the limitations of the perceptron model. They demonstrated that
perceptrons could not solve a certain difficult class of problems, namely problems
in which the data points cannot be linearly separated in the dimensionality of
the original problem statement. Although various enhancements of the perceptron
model, including multilayered perceptrons, were envisioned at the time, Minsky
and Papert, in their book Perceptrons [9], argued that the linear separability prob-
lem could not be overcome by any form of the then current perceptron network.

An example of nonlinearly separable classification is the exclusive-or problem of
Table 2.

Consider a perceptron with two inputs, x1, x2, two weights, w1, w2, and threshold
t. To learn this function, a network must find a weight assignment that satisfies the
following inequalities, seen graphically in Fig. 4:

w1 * 1 + w2 * 1 < t, from line 1 of the truth table,
w1 * 1 + 0 > t, from line 2 of the truth table,
0 + w2 * 1 > t, from line 3 of the truth table,
0 + 0 < t, or t must be positive, from the last line of the table.

Table 2.  The truth table for
the exclusive-or operator.

x1 x2 Output

1 1 0
1 0 1
0 1 1
0 0 0

2430008.indd 72430008.indd 7 24-09-2024 11:23:4224-09-2024 11:23:42

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

8 G. F. Luger

This series of equations on w1, w2 and t has no solution, proving that a percep-
tron that solves exclusive-or is impossible. Although multilayer networks would
eventually be built that could solve the exclusive-or problem, as we see in Sec. 2.1,
the perceptron learning algorithm only worked for single layer networks. What
makes exclusive-or impossible for the perceptron is that the two classes to be dis-
tinguished are not linearly separable. This can be seen in Fig. 4. It is impossible to
draw a straight line in two dimensions that separates the data points {(0,0), (1,1)}
from {(0,1), (1,0)}.

We may think of the set of data values for a network as defining a space. Each
parameter of the input data corresponds to one dimension, with each input value
defining a point in the space. In the exclusive-or example, the four input values,
indexed by the x1, x2 coordinates, make up the data points of Fig. 4. The prob-
lem of learning a binary classification of the training instances reduces to that of
separating these points into two groups. For a space of n dimensions, a classifica-
tion is linearly separable if its classes can be separated by an (n – 1)-dimensional
hyperplane. In two dimensions an (n – 1)-dimensional hyperplane is a line; in three
dimension it is a plane, etc.

As a result of the linear separability limitation, research shifted toward work
in symbol-based architectures, slowing progress in the connectionist methodology.
Subsequent work in the 1980s and 1990s has shown these problems to be solvable,
however; see [10–12]. We next discuss backpropagation, an extension of perceptron
learning that works for multilayered networks.

The neurons in these networks, seen in the multi-layer perceptron of Fig. 5, are
connected in layers, with units within layer n passing their activations only to neu-
rons in layer n + 1. Multilayer signal processing means that errors deep in the net-
work can spread and evolve in complex, unanticipated ways throughout the layers.
Thus, the analysis of the source of final output error and connecting that error back
to the network nodes that produced it is complex. Backpropagation is an algorithm
for apportioning this blame and adjusting the network’s weights accordingly.

The historical emergence of networks with continuous activation functions sug-
gested new approaches to error reduction learning. For example, the Widrow–Hoff
[13] learning rule is independent of the activation function, minimizing the squared

Fig. 4.  The exclusive-or problem. No straight line on the two-dimensional grid can separate the (0, 1)
and (1, 0) data points from (0, 0) and (1, 1). Figure adapted from [2].

2430008.indd 82430008.indd 8 24-09-2024 11:23:4224-09-2024 11:23:42

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 9

error between the desired output value and the network activation, neti = WXi.
A form of Widrow–Hoff became the most important learning rule for continuous
activation functions. This is the delta rule [14].

Intuitively, the delta rule is based on the idea of an error surface, as illus-
trated in Fig. 6. This error surface represents cumulative error over a data set
as a function of a network’s weights. For example, if there were six weights to be
conditioned, as in our XOR example in Sec. 2.1, the error measure would make
up the 7th dimension of the error space. Each network weight configuration is rep-
resented by a point on this n-dimensional error surface. Given a particular weight
configuration, we want our learning algorithm to find the direction on this surface
which most rapidly reduces the error. This approach is called gradient descent
learning because the gradient is a measure of slope, as a function of direction, from
a point on a surface.

Backpropagation requires supervised data, e.g. a classifier is trained on labeled
data. For example, a radiologist might have thousands of X-rays that reflect tumors
while other X-rays are tumor free. Likewise, the welder may have thousands of
examples of acceptable and unacceptable welds. Once these networks are trained,

Fig. 5.  A schema for a multi-hidden-layer neural network. Backward error propagation is addressed
with the algorithms of Sec. 2.1. Figure adapted from [2].

Fig. 6.  An error surface in two dimensions. The dimension of a problem’s error space is the number
of weights involved plus the error measure. The learning constant c controls the step size taken on the
error surface with each iteration of network learning. The goal is to find the value of W1 where E is at
a minimum. Figure adapted from [2].

2430008.indd 92430008.indd 9 24-09-2024 11:23:4324-09-2024 11:23:43

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

10 G. F. Luger

however, they will be scanning totally new situations, examples they have never
considered before. The classifier must decide each new situation and label it as
either good or not.

2. �What Must Be Known to Understand the Current Generation
of LLMs?

We next describe several of the skills necessary for dealing coherently with neural
networks and deep learning. First, we demonstrate the backpropagation algo-
rithm and show a solution for the XOR problem that limited the use of the
first-generation perceptron. Second, we demonstrate how matrix algebra provides
the medium for network computing. Finally, we note the importance of statistics
and briefly describe the softmax transformation. Deep learning, we conjecture, can
best be described as computational statistics.

2.1. Backpropagation: Partial differential equations

The approach taken by the backpropagation algorithm is to start at the output
layer and propagate error backward through all the hidden layers. We know that all
the information needed to update the weights on a neuron is local to that neuron,
except for the amount of error. For output nodes, this error is easily computed
as the difference between the desired and actual output values. For nodes in the
hidden layers, it is considerably more difficult to determine the error for which a
node is responsible. The activation function for backpropagation is the logistic
(sigmoid) function:

	 f (net) = 1/(1 + e –λ*net), where net = Σxiwi.

This function, seen in Figs. 7(b) and 7(c), is used for four reasons: First, it has
the sigmoid shape giving a real-valued output. Second, as a continuous function,
it has a derivative everywhere. Third, since the value of the derivative is great-
est where the sigmoidal function is changing most rapidly, the assignment of the
most error is attributed to those nodes whose activation was least certain. Finally,

Fig. 7.  Threshold functions. (a) was used in the Hebbian example. The sigmoid function, continuous
and differentiable, is used with backpropagation. Figure adapted from [2].

(a) �A hard limiting and
bipolar linear threshold.

(b) �A sigmoidal and unipo-
lar threshold.

(c) �The sigmoidal, biased and squashed.
As λ gets larger than sigmoid
approximates a linear threshold.

2430008.indd 102430008.indd 10 24-09-2024 11:23:4324-09-2024 11:23:43

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 11

the derivative of the logistic function is easily computed by a subtraction and
multiplication:

	 fʹ(net) = (1/(1 + e – λ*net)) = λ(f(net) * (1 – f(net))).

Backpropagation training uses the generalized delta rule. For nodes in the hid-
den layer, we look at their contribution to the error at the output layer. The for-
mulas for computing the adjustment of the weight wki on the path from the kth to
the ith node in backpropagation training are:

(1)	 ∆wki = –c(di – Oi) *Oi(1 – Oi) xk, for nodes on the output layer, and
(2)	 ∆wki = –c *Oi(1 – Oi) Σj (–deltaj * wij)xk, for nodes on hidden layers.

In (2), j is the index of the nodes in the next layer to which i’s signals fan out
and

	 deltaj = –∂Error/∂netj = (d – Oi) * Oi(1 – Oi).

We next show the derivation of these formulae. First, we derive (1), the formula
for weight adjustment on nodes in the output layer. As before, what we want is
the rate of change of network error as a function of change in the kth weight, wk,
of node i. We show that

	 ∂Error/∂wk = –((di – Oi) * f  ʹ(neti) * xk).

Since f, which could be any function, is now the logistic activation function, we have

	 fʹ(net) = f ʹ(1/(1 + e –λ*net)) = f(net) * (1 – f(net)).

Recall that f(neti) is simply Oi. Substituting in the previous equation, we get

	 ∂Error/∂wk = –(di – Oi) *Oi * (1 – Oi) * xk.

Since the minimization of the error requires that the weight changes be in the
direction of the negative gradient component, we multiply by –c to get the weight
adjustment for the ith node of the output layer:

	 ∆wk = c(di –Oi) *Oi * (1 – Oi) * xk.

We next derive the weight adjustment for hidden nodes. For the sake of clarity,
we initially assume a single hidden layer. We take a single node i on the hidden
layer and analyze its contribution to the total network error. We do this by ini-
tially considering node iʹs contribution to the error at a node j on the output layer.
We then sum these contributions across all nodes on the output layer. Finally, we
describe the contribution of the kth input weight on node i to the network error.
Figure 8 illustrates this situation.

2430008.indd 112430008.indd 11 24-09-2024 11:23:4424-09-2024 11:23:44

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

12 G. F. Luger

We first look at the partial derivative of the network error with respect to the
output of node i on the hidden layer. We get this by applying the chain rule:

	 ∂Error/∂Oi = ∂Error/∂netj * ∂netj/∂Oi.

The negative of the first term on the right-hand side, (δError)/(δnetj), is called
deltaj. Therefore, we can rewrite the equation as

	 ∂Error/∂Oi = –deltaj * ∂netj/∂Oi.

Recall that the activation of node j, netj, on the output layer is given by the sum
of the product of its own weights and of the output values coming from the nodes
on the hidden layer:

	 netj = ∑iwijOi.

Since we are taking the partial derivative with respect to only one component of
the sum, namely the connection between node i and node j, we get

	 ∂netj/∂Oi = wij,

where wij is the weight on the connection from node i in the hidden layer to node j
in the output layer. Substituting this result,

	 ∂Error/∂Oi = –deltaj * wij.

Next we sum over all the connections of node i to the output layer:

	 ∂Error/∂Oi = ∑j –deltaj * wij.

This represents the sensitivity of network error to the output of node i on the
hidden layer. We next determine the value of deltai, the sensitivity of network error

Fig. 8.  ∑j – deltaj*wij is the total contribution of node i to the error at the jth output. Our derivation
gives the adjustment for wki. Figure adapted from [2].

2430008.indd 122430008.indd 12 24-09-2024 11:23:4624-09-2024 11:23:46

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 13

to the net activation at hidden node i. This gives the sensitivity of network error
to the incoming weights of node i. Using the chain rule again,

	 –deltai = ∂Error/∂neti = (∂Error/∂Oi) * (∂Oi/∂neti ).

Since we are using the logistic activation function,

	 ∂Oi/∂neti = Oi * (1 – Oi).

We now substitute this value in the equation for deltai to get

	 –deltai = Oi * (1 – Oi) * ∑j –deltaj*wij.

Finally, we can evaluate the sensitivity of the network error on the output layer
to the incoming weights on hidden node i. We examine the kth weight on node i,
wk. By the chain rule,

	 ∂Error/∂wki = (∂Error/∂neti) * (∂neti/∂wki) = –deltai * (∂neti/∂wki) = –deltai * xk,

where xk is the kth input to node i.
We substitute into the equation the value of –deltai:

	 ∂Error/∂wki = Oi(1 – Oi) * ∑j (–deltaj * wij)xk.

Since the minimization of error requires that the weight changes be in the direc-
tion of the negative gradient component, the weight adjustment for the kth weight
of i is fixed by multiplying the negative learning constant:

	 Δwki = c * ∂Error/∂wki = c * Oi(1 – Oi) * ∑j (–deltaj * wij)xk.

For networks with more than one hidden layer, the same procedure is applied
recursively to propagate the error from hidden layer n to hidden layer n – 1.

Although it provides a solution to the problem of learning in multilayer net-
works, backpropagation is not without its own difficulties. Like the hillclimbing
algorithm [2] it may converge to a local minimum, as was seen in Fig. 6. Finally,
backpropagation can be very expensive to compute, especially when the network
converges slowly.

Example: Backpropagation Solving the Exclusive-Or Problem

We next demonstrate the backpropagation algorithm solving the exclusive-or prob-
lem. The exclusive-or function in logic produces true when either of its two input
values are true, and false when both input values are either true or false. It wasn’t
until the creation of the Boltzmann machine [12], the generalized delta rule, and
the backpropagation algorithm that the exclusive-or problem was solved.

Figure 9 shows a network with two input nodes, one hidden node and one output
node. The network also has two bias nodes, the first connected to the hidden node
and the second to the output node. The net values for the hidden and output nodes
are calculated in the usual manner, as the vector product of the input values times

2430008.indd 132430008.indd 13 24-09-2024 11:23:4724-09-2024 11:23:47

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

14 G. F. Luger

their trained weights. The bias is added to this sum. The weights and the biases
are trained using the backpropagation algorithm with the sigmoidal activation
function. Note that the input nodes are also directly linked, with trained weights,
to the output node. This additional linking can often let the network designer get
a network with fewer nodes in the hidden layer and quicker convergence.

There is nothing unique about the network of Fig. 8. Any number of different
networks could be used to compute a solution to the exclusive-or problem. This
randomly initialized network was trained with multiple instances of the four pat-
terns that represent the truth-values of the exclusive-or function. We use the sym-
bol “→” to indicate that the value of the function is 0 or 1. These four values are

	 (0, 0) → 0; (1, 0) → 1; (0, 1) → 1; (1, 1) → 0.

A total of 1400 training cycles, using these four instances, produced the follow-
ing values, rounded to the nearest tenth, for the weight parameters of Fig. 8:

	 WH1 = –7.0; WH2 = 2.6; WHB = –7.0; WO1 = –5.0; WOH = –11.0; WOB = 7.0; WO2 = –4.0.

With input values (0, 0), the output of the hidden node is

	 f(0*(–7.0) + 0*(–7.0) + 1*(2.6)) = f(2.6) → 1.

The output of the output node for (0, 0) is

	 f(0*(–5.0) + 0*(–4.0) + 1*(–11.0) + 1*(7.0)) = f(–4.0) → 0.

With input values (1, 0), the output of the hidden node is

	 f(1*(–7.0) + 0*(–7.0) + 1*(2.6)) = f(–4.4) → 0.

The output of the output node for (1, 0) is

	 f(1*(–5.0) + 0*(–4.0) + 0*(–11.0) + 1*(7.0)) = f(2.0) → 1.

The input value of (0, 1) is similar. Finally, we check the network with input
values of (1, 1). The output of the hidden node is

	 f(1*(–7.0) + 1*(–7.0) + 1*2.6) = f(–11.4) → 0.

Fig. 9.  One backpropagation neural network that solves the exclusive-or problem. The Wij are the
weights, and I the input nodes, H the hidden node, and O the output node. Figure adapted from [2].

2430008.indd 142430008.indd 14 24-09-2024 11:23:4724-09-2024 11:23:47

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 15

The output of the output node for (1, 1) is

	 f(1*(–5.0) + 1*(–4.0) + 0*(–11.0) + 1*(7.0)) = f(–2.0) → 0.

The result demonstrates that the feedforward network of Fig. 8, using back-
propagation learning, made a nonlinear separation of exclusive-or data points.
The threshold function f is the sigmoidal of Fig. 7(c), the learned biases have
translated it very slightly along the positive direction of the x-axis. We offer a
matrix representation that captures the weights and input values for this problem
in Sec. 2.2.

In concluding this example, it is important to understand what the backpropa-
gation algorithm produced. The search space for our exclusive-or network has eight
dimensions, represented by the seven weights of Fig. 9 plus the error of the output.
Each of the seven weights was initialized with random values. When the initial
output was produced and its error determined, backpropagation adjusted each of
the seven weights to decrease this error. The seven weights are adjusted again with
each iteration of the algorithm, moving toward values that minimize the error for
computing the exclusive-or function. After 1400 iterations the search found values
for each of the seven weights that lets the error approach zero. What has happened
is that in an 8-dimensional space, backpropagation has found a 7-dimensional
hyperplane that appropriately separates the four ex-or instances.

Finally, an observation is made. The exclusive-or network was trained to satisfy
four exact patterns, the results of applying the exclusive-or function to true/false
pairs. In modern deep learning situations training to solve exact situations is rarely
the case. Take for example, a program that scans X-ray images to detect disease
situations. Another example is a network that scans metal welds looking for bad
metal binding. Such systems are called classifiers and they examine new, previously
unseen situations to determine if there are potential problems.

2.2. Matrix algebra

We next consider how matrices are used to represent several of the neural net-
work examples seen earlier. First consider the general description of an artificial
neuron described in Fig. 1. Here we have input values x1, x2, x3,…, xn. Each of these
input values has a corresponding weight attached, w1, w2, w3,…, wn. The calculation
of the value of the output node is Σiwixi which is given by the product of the two
matrices:

	

[] .x x x x

w
w
w

w

w xn

n

i i i1 2 3

1

2

3…

�
*























= []Σ

A threshold function, f, is then applied to the output of the node: f [Σiwixi].

2430008.indd 152430008.indd 15 24-09-2024 11:23:5424-09-2024 11:23:54

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

16 G. F. Luger

Our second example considers the weight calculations for the Hebbian stimulus
conditioning network of Sec. 1. First the network is run with the original input and
weights:

	

x x x x

w
w
w

w

w xi i i1 2 3 6

1

2

3

6

…

�
[]























= []* Σ .

The weight adjustment, ∆W, for the second iteration of the net is created by
multiplying the original input array by the learning rate constant, c, times the
original network output, either a 1 or –1:

	 ∆W = X * c * f(X, W ).

The new set of weights is produced by scalar multiplication on the original input
array:

	 [x1 x2 x3 … x6] * c * (1 or – 1) = [2w1 2w2 2w3 … 2w6].

Next, these new weights are multiplied by the transposed array of the next input
values, [2x1, 2x2, 2x3,…, 2x6] to produce

	

2 2 2 2

2
2
2

2

2 21 2 3 6

1

2

3

6

w w w w

x
x
x

x

w xi i i…

�
[]























= []* Σ .

The output of the network is the sign of Σi2wi2xi, either +1 or –1. The next
weight adjustment, [3w1 3w2 3w3 … 3w6], is like the most recent:

	 [2x1 2x2 2x3 … 2x6] * c * (1 or –1) = [3w1 3w2 3w3 … 3w6].

The Hebbian unsupervised network continues, with numeric details as shown in
Sec. 1.

2.3. Statistical measures

Traditional machine learning in AI has always been an exercise in computational
statistics. For example, the ID3 algorithm and its descendants [15, Sec. 10.3] use
information theory to measure how pieces of data from a large collection of data
correlate. Principle component analysis is often used for dimensionality reduction
of the very large matrices used in latent semantic analysis. A knowledge of the
implicit parallelism possibilities within matrix algebra has led to computational
efficiencies in deep learning.

2430008.indd 162430008.indd 16 24-09-2024 11:24:0624-09-2024 11:24:06

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 17

We earlier demonstrated how multi-layered feedforward networks propagated
output error back across the hidden layers of the network. This error propagation
is called gradient descent learning. We also noted that the output nodes of these
networks were activated through using the summed values of their weighted inputs.
We next describe the softmax equation that transforms network output values into
distributions. This transformation takes the raw numbers produced by the net-
work’s output layer and transforms them into a probability distribution. The term
“softmax” comes from a “softening” of the traditional max function which selects the
maximum of a set of given values.

As we will see in Sec. 3, deep learning algorithms represent their words/tokens
as small real numbers. This is done for many reasons, including keeping partial
derivatives within acceptable bounds. Further, since the output of these networks
reflects the correlations found between the words/tokens in the learned model, it
is important to characterize the output values of many matrix computations as
probability distributions.

A probability distribution is a set of non-negative numbers that sum to 1.0. The
softmax function s supports this transformation of network output values into a
probability distribution:

	 σ(xj) = exj/Σi exi.

In this formula, the Softmax of each output xj is e to the power of that output
divided by the sum of all outputs as a power of e. Even if xj is a negative number,
e to that power is positive. For an example, s[1, 0, –1] is approximately [0.665,
0.244, 0.090]. It should be recognized that softmax transforms each output value
to be part of a probability distribution while retaining the overall relationships
between the original output’s values. Figure 10 augments Fig. 5 by adding a
Softmax layer. The result of the softmax processing is then used with backprop-
agation to reduce the errors in the weights of the nodes on previous layers of the
network.

Fig. 10.  A revision of Fig. 5 to add a Softmax layer. The results of Softmax are then used to adjust
the weights of the hidden layers. Figure adapted from [2].

2430008.indd 172430008.indd 17 24-09-2024 11:24:0724-09-2024 11:24:07

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

18 G. F. Luger

Figure 10 shows softmax used on the network output layer, however it can be
used on the output values of sets of nodes anywhere in the network. One example
of this will be shown with the attention component of the transformer model in
Sec. 4.

There are several further issues that arise when using softmax. One is the prob-
lem of trying to process large vectors with big numbers. But even with small vec-
tors softmax can produce exaggerated results. Consider, for example, the Softmax
of the output vector [1 5 1 1]. softmax produces the vector [0.0174 0.9479 0.0174
0.174], where the second element of the vector gets a very high value, only 0.0521
less than 1, while the smaller probabilities are close to 0.

This issue is called saturation and only gets worse when some number is much
larger than the others: a result where the larger number gets even closer to 1 and
the smaller values go to 0. This issue is critical because the resulting softmax vector
is intended to be used for gradient descent error reduction, which can lead to slow
convergence and high variance in the training process. There are remedies for sat-
uration problems, such as normalizing the output vector by dividing each element
by the square root of the vector’s length, as we will see in later sections.

Finally, creating networks based on reasoning using probability distributions
affects the entire design of the network. The word/token embeddings input to the
network are represented as small real numbers, or floats, between, and including,
one and zero. Weight vectors are randomly initialized as real numbers near zero. We
see this in more detail with the large language models and transformers of Sec. 3.

Each output of the output layer of the neural network, before its softmax trans-
formation, is called a logit, pronounced “LOW-jit”. Using a probability distribution
to determine reward/punishment measures for weights in the network is called
calculating the cross-entropy loss. Entropy is a term from information theory that
measures the degree of disorder or randomness in a system. Loss of entropy indi-
cates the reduction of disorder or error. When the Softmax equation is used this
error reduction is measured probabilistically across the network’s output states.
Cross-entropy is a term used for describing the difference between two distribu-
tions, i.e. the distributions of the current and of the desired outputs.

Decreasing cross entropy loss, a positive number, is measured using the negative
logarithmic probability assigned to the Softmax output. softmax computes the
probabilities of all the outputs and provides an ordering of the “best” results for
minimizing loss. We represent the cross-entropy loss, CEL, x, as the negative loga-
rithmic probability of that result:

	 CEL(f,x) = –ln pf(ax).

In this equation, (f,x) represents the Softmax equation, φ, applied to x which
produces ax.

We next consider why the negative logarithmic probability is used. First, our
error estimate from softmax is a positive number so we want to decrease that
error. Second, the logarithmic function has an important property between 1, our

2430008.indd 182430008.indd 18 24-09-2024 11:24:0724-09-2024 11:24:07

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 19

maximum probability, and 0: –ln(x) gets larger as x approaches 0 which is import-
ant because this range is where most of our focus will be. This logarithmic function
of x is shown in Fig. 11.

3. Building Large Language Models

Consider the sentence “What does a language model model?” How many times in
normal English communication does the word model follow itself? Not really that
often. On the other hand, how many times will the word “hand” follow the three
words “On the other”? Quite regularly, as drawing comparisons using binary met-
aphors is rather common in normal English communication. Both these situations
are captured in language models.

A language model is designed to represent how a particular language is used.
Current language models developed for deep networks are stochastic, where each
query to the model produces a probability distribution of language patterns that
satisfy that query. The data to support these models can be from written or oral
language usage. Large language models are a probabilistic representation of the
corpora of language usage on which they are trained. We focus next on building
models for written English word/sentence communication.

As we will see, discovering what the next word should be in an expression is
important for creating new expressions. In fact, language models also support find-
ing the most likely previous word for a set of words, and the most likely words to
fit between language strings. This missing word generation process supports the
design and use of many interesting language-based applications. These can include:

(A)	 Translation between languages.
(B)	 The classification of texts into different categories.
(C)	 The recognition of “sentiment” such as joy or anger in expressions.
(D)	 Information retrieval from databases.

Fig. 11.  The graph of –ln(x) as x approaches 0.

2430008.indd 192430008.indd 19 24-09-2024 11:24:0724-09-2024 11:24:07

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

20 G. F. Luger

(E)	 Answering questions, as in various standardized tests.
(F)	 The generation of news articles.
(G)	 Composing essays on various topics.

There are several components of the creation of large written English language
models. We discuss these next.

3.1. Preparing the text

Representing an all-English text, even for a very large neural network, is a complex
task. For one thing, there are more than an infinite number of numbers each of which
can be part of a piece of text. No finite state machine can handle an uncountably
infinite number of tokens! Thus, the first task in representing written language for a
neural network is to break the text up into reasonable finite number of pieces, that
we will refer to as “tokens”. We then describe how these tokens will be the input for
the network. We can start by considering the example of the infinite number of num-
bers and replace each of these numbers by the token UNK. This token, indicating an
“unknown” word in English, will also be used to replace any component of the text
that is not in the final set of vocabulary tokens that will be the input to the network.

Because even very large neural networks have a certain fixed size, we next con-
sider what an “acceptable” number of vocabulary tokens might be. Current language
models have a word vocabulary of 30,000, with BERT [16], to 50,000 for GPT [17].
Although this sounds like a rather large number of possible tokens for the network,
the Oxford English Dictionary estimates there are more than 170,000 English words
currently in use. The OED also contains about 50,000 obsolete words that are used
at different times. GPT is, at the present time, trained on a corpus of English sen-
tences that contain more than a half trillion words from 45 terabytes of text data.

The task, therefore, once the training corpora is identified, is to reduce the total
number of individual words in the training corpus to the specific set of tokens that
the network can process. There are several methods for accomplishing this task:

(A)	 Individual words must be isolated and “recognized”. This isolation can be
assisted by recognizing the blank spaces that separates words. Punctuation,
such as a period or semicolon, can also separate words. This word “recognition”
enables word embeddings, described below.

(B)	 Punctuation symbols are “recognized” using rules that describe their roles in
English text. The punctuation symbols themselves are placed in the “UNK”
category.

(C)	 Sentences are usually padded, in that a specific symbol, say “STOP” is added
after every sentence. This STOP captures the difference between periods that
end sentences and those that are parts of sentences, e.g., e.g.

(D)	 New paragraphs, new pages, misspelled and hyphenated words must also be
recognized and tokenized, possibly as UNK.

(E)	 And so on…

2430008.indd 202430008.indd 20 24-09-2024 11:24:0724-09-2024 11:24:07

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 21

As can be understood with very little thought, this process of making rules to
break up text into individual word/tokens is complex as well as tedious to apply.
But computers are excellent at complex and tedious tasks. Further details on the
English text tokenization process can be found in computational linguistics texts
or on the internet.

The next task is to determine the number of unique words or tokens, i.e. the
vocabulary V, for the language model. We also calculate the number of times each
of these words/tokens is used in the training corpus. Once words are cataloged and
their occurrences calculated, further reduction is a function of the vocabulary’s
limitations in the network. Reduction is done in several ways, including removing
non-word symbols from the text. Besides numbers, periods, commas, and other
punctuation are removed. Chemical, biological, or mathematical expressions are
also often removed. Rare and infrequently used words can also be removed.

About 2017 and with the emergence of GPT-1, a further refinement was made
on language tokenization. All words, including the previous UNK, were decom-
posed further to create partial-word tokens. This process breaks all words into their
constituent syllables or, if it is voiced speech, into phonemes. This process makes
sense since there are far fewer syllables or phonemes than there are individual
words in a language. GPT now uses about 50,000 of these language tokens. Once
the size of the set of tokens appropriate for the constraints of the network, the V, is
determined, the mapping from tokens to network representations is possible. This
is called creating the word or token embeddings.

3.2. Creating word/token embeddings

Because a language model will be represented as a probability distribution over
word/token use in a language, word/token encodings, randomly generated, are
usually taken from the set of real numbers between –1 and 1. Each token will be
represented as a vector of real numbers, or floats, called the word embeddings. The
number of floats, f, used for word embeddings is a hyperparameter of the network.
A typical value for f is 100, although much larger vectors are often used for token
embeddings.

The size of the array of token embeddings is |V| × f, where |V| is the size of the
vocabulary and f the number of floats used in the model. The integers 1 to |V |
serve as the index for the array of token embeddings. Thus, if the token “butter”
has index 6, then the 6th row of the embedding array is the vector representing
“butter”. This array of word embeddings is a parameter of the learning network.
When the network is trained on English word/token patterns and, for example, is
looking for the most appropriate next word/token in a string of word/tokens, back
propagation conditions all word embeddings.

To be precise, the input to the language model is the index of the current word/
token in question which is immediately translated into its embedding. Continuing
from that point, all the operations of the network are on the embeddings. The
output of the network is the probability that each of the tokens in the array of

2430008.indd 212430008.indd 21 24-09-2024 11:24:0724-09-2024 11:24:07

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

22 G. F. Luger

embeddings is the next most likely token in an expression. The backpropagation
conditioning is cross-entropy loss, described by the function –lnP(x) of Fig. 7. This
is the negative natural log of the probability of x, where x is an instance of an
actual correct next word. In the backpropagation stage, once the loss function is
determined the token embeddings of that loss are modified.

3.3. Bi-grams and tri-grams

N-gram technology has long been a staple of natural language understanding and
the development of language models. The general question asks what the probabil-
ity is of an expression being part of a language. In probabilistic terms, described in
more detail in [2] PART VII, the probability, P, of the expression “It is hot today”
can be represented using the chain rule:

	 P(It is hot today) = P(It) * P(is | It) * P(hot | It is) * P(today | It is hot).

The expression P(X |Y) is interpreted as “the probability that X is true given
that Y is true”. “It is hot today” is obviously a very short sentence. It is not diffi-
cult to imagine the calculations and network training necessary to determine the
probabilities of longer expressions, e.g. 15 words. The point, besides the calculation
of the probabilities themselves, is that the lack of a corpus sufficient to condition
all the probabilities that make up the members of this product of probabilities is a
serious limitation on learning.

The Markov assumption simplifies this lengthy calculation, and constrains the
probabilities that make up the chain, by assuming that the probability of a word is
only conditioned by the probability of the word that immediately precedes it. Our
previous example, simplified by using the Markov assumption, is

	 P(It is hot today) = P(It) * P(is | It) * P(hot | is) * P(today | hot).

Using the Markov assumption to determine the probability of word combina-
tions is called the bi-gram, or two-word model. These bi-gram probabilities can be
developed in either direction: either taking a word and determining the most likely
next word or taking a word and determining the probability of the previous word.
One can understand how determining bi-gram probabilities of word pairs is essen-
tial for generating new sequences of coherent word patterns.

Tri-gram probabilities are even more powerful in capturing patterns in language
use. Tri-gram, or three word models, describe the probability of a word as a func-
tion of the probability of the two words that precede it or the two words that follow
it. It takes a larger language corpus to train tri-gram models than that required for
training bi-gram models.

3.4. Training the language model

Many of the details that make up the current generation of large language
models remain company confidential. It takes internet searches and personal

2430008.indd 222430008.indd 22 24-09-2024 11:24:0824-09-2024 11:24:08

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 23

communications to determine the best estimates of how these models are com-
posed and trained. There is, however, information describing the time and costs of
LLM training: For example, it took Google four days for 64 specially configured
tensor processor to train BERT [16]. For the more general purpose GPT-3, it is
estimated that training took 1,024 A100 computers with graphic processing units
about 34 days. It is also estimated that it would cost about $4.6M to train GPT-3
using the lowest cost GPU cloud provider [17]. The details on Gemini, Google’s
DeepMind LLM, are not available.

Fortunately for end users, once these models are trained, they can then be
reused with minimal retraining by outside groups for their own special purpose
needs. The idea is that the final layer of the network can be replaced, and the
learned patterns of the hidden layers can be reconditioned to address new tasks.
This new training can take about 2 h on a normal laptop using graphics processors.
As a result, much less time is needed for the general user to employ the BERT or
GPT environments for specific uses. We describe this re-purposing, or fine-tuning,
of LLMs in more detail in Sec. 5.

It is interesting to consider some of the computations produced by a language
model. Charniak [18] in Chapter 4 describes the results of running such a model.
His language model was trained on a corpus of about 1 million words and had a
vocabulary size of 7500 words. The length of the word embeddings was 30. Selected
results from Charniak’s model are presented in Table 3. Cosine similarity measures
word embedding vectors of length 30. Note that words that are used in similar situ-
ations have close cosine values. It is interesting that words that are appropriate for
fitting into a sequence of words can also have similar meanings. For example, recalls
or says could each follow he or she of a person’s name in a sentence.

We next consider the design of the attention-based large language models called
transformers.

4. Toward Transformer-Based Large Language Models

The precursors of transformer-based language models, before the release of GPT-1
in 2018, were convolutional and recurrent neural networks and autoencoders.
Convolutional networks are feedforward networks that learn image features through
filter optimization. Recurrent networks support feedback within layers so that

Table 3.  Results summarized from [18, Chap. 4],
using a bi-gram-based language model.

Word Cosine similarity

the –0.160
a 0.127
recalls 0.479
says 0.553
computer 0.249
machine 0.333

2430008.indd 232430008.indd 23 24-09-2024 11:24:0824-09-2024 11:24:08

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

24 G. F. Luger

new input for some nodes is modulated by previous node output. This “memory
device” facilitates their use in automated handwriting and speech recognition tasks.
Autoencoders are unsupervised networks for learning efficient representations of
unlabeled data. The decoder element then translates this internal representation
back into some useful form. For example, the autoencoder can be generative, trans-
lating a string of words into a different language.

The architectures underlying convolutional and recurrent networks are scaled-up
implementations of ideas several decades older. Models resembling classical convo-
lutional neural networks gained state-of-the-art status in computer vision and mod-
els resembling the original design for the LSTM recurrent neural network came to
dominate applications in natural language processing [19, 20]. Through the 2010s,
the rapid emergence of deep learning successes based on CNN and RNN technology
is also attributable to the availability of computational resources, including innova-
tions in parallel computing and massive data farms, i.e. cheap storage and multiple
internet service providers.

There were, however, fundamental limitations with RNNs including the use of
LSTM recurrent networks. First, recurrent networks have difficulty addressing long
range dependencies in sentences. Second, RNNs had issues with very large and very
small learning gradients. Finally, the sequential nature of the recurrent network
“roll out” limited parallel evaluation and required substantially increased training
times. Attention-based models address each of these issues.

One further contribution of the early 2010s, and an important step in the evo-
lution of transformer-based language models, was the creation of the generative
adversarial network, or GAN. The GAN was originally developed by Goodfellow
and his colleagues [21]. The GAN pits two neural networks “against” each other, the
adversarial component, in a zero-sum competition. Given a training set, the GAN
technique can generate new data with the same statistical profile as its training
data. For example, a GAN trained on image data generates new images that can
look authentic to human viewers (url 1). Although originally proposed as a method
for unsupervised learning, the GAN is also useful for semi-supervised [22] and [23]
learning. It can also support reinforcement learning [24].

When first proposed, the attention mechanism produced improvement to the
recurrent networks previously used for machine translation, performing better than
the earlier encoder–decoder sequence-to-sequence approaches [25]. Using attention,
the decoder receives as input a context vector that consists of a weighted represen-
tation of the input at each time step. Researchers noted that some important quali-
tative insights often emerged when using attention weights. In translation tasks, for
example, attention could suggest choices between synonyms for generating words in
the target language. In Fig. 12 attention enhances the autoencoder–decoder model.

Starting with OpenAI’s GPT-1, available in 2018, the transformer has become
the predominant network architecture for generative AI. Nearly all language pro-
cessing and vision analysis tasks are currently based on the transformer architecture.

2430008.indd 242430008.indd 24 24-09-2024 11:24:0824-09-2024 11:24:08

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 25

Besides GPT, examples include BERT [16], RoBERTa [27], Longformer [28], and
Gemini [29, url 18.16].

OpenAI’s large language models can develop “conversations” using the GPT
transformer [17]. Further, their vision transformer is emerging as the model for
multiple vision tasks, including the recognition of images and detection of objects,
as well as creating semantic supported [27, 30]. Transformers are also used for
speech recognition [31] and reinforcement learning [18]. Transformer models use
autoencoders containing self-attention mechanisms. We consider these next.

4.1. Transformer models

The paper entitled Attention is All You Need [1] was a revolutionary contribution
to the design of generative models. The idea that supports the transformer design
is the self-attention mechanism. Figure 12, adapted from [1], reflects the trans-
former model with an attention mechanism, called self-attention, in each of the
encoder–decoder components.

Attention mechanisms enhance transformer models because they support selec-
tive focusing on multiple input elements. This improves both decoding accuracy
and computational efficiency. Attention mechanisms prioritize and emphasize rele-
vant information, acting as a “focus” that enhances overall model performance. This
overcomes one of the problems of the previous recurrent models where long-range
dependencies within a sentence or across several sentences were often lost.

As can be seen in Table 4, there are currently multiple transformer-based large
language models available for exploration. Many details of these transformers are
not available for public perusal. We will confine our comments to the publications
available. In particular, we focus on the original transformer architecture proposed
by Vaswani et al. [1], seen in Fig. 13, and on transformer descriptions offered by
Zhang and his colleagues [32].

The encoder maps an input sequence of token embeddings, (x1, x2,…, xn) to a
sequence of continuous representations (z1, z2,…, zn). Consuming Z, the decoder than

Fig. 12.  Bahdanau attention [25] mediates between the input to the encoder and the decoder output
in an example of English to French translation.

2430008.indd 252430008.indd 25 24-09-2024 11:24:0824-09-2024 11:24:08

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

26 G. F. Luger

generates, one at a time, an output sequence (y1, y2,…, ym). At each step, when
generating an output, the decoder can utilize all the previously generated symbols
as additional input. This property is called being auto-regressive.

The encoder for the original transformer was a stack of six identical layers. As
seen in Fig. 12, there are two components in each layer, the first is a multi-head
self-attention mechanism and the second a fully connected feed-forward percep-
tron network. There are add and norm connections for each component to ensure
inter-component and inter-layer communication.

The original decoder was also a stack of six identical layers. Besides the two sub-
components identical to those of the encoder, there is a second multi-head attention
mechanism, masked, and positional encoding ensuring that the output embeddings
are offset by one position. This insures that the output values at any time also

Table 4.  Currently, July 2024, available software for generative AI. Note that information on several
models is company confidential. Interested readers should search these software tools for more current
information as AI companies are known to change names, merge, or simply dissolve. Table adapted
from [2].

Model Capabilities Parameters Training data URL

BERT Question answering, finds semantic
similarity

345 million 3.3 billion words url 2

PaLM 2 Generates text, essays, and reports,
answers questions, uses desired
style and tone. Tuned to follow
instructions

340 billion 3.6 trillion tokens url 3

ChatGPT,
powered by
GPT

Generates text, essays, and reports,
answers questions, uses desired
style and tone. Tuned to follow
instructions.

175 billion 300 billion tokens url 4

Gemini created
by Google
DeepMind

Generates multimodal output from
multimodal input. Generates
documents with both text and
images.

Information
not public

Information not
public

url 16
url 17

Llama 2 Generates text, essays, and reports,
answers questions using desired
style and tone.

70 billion 2 trillion tokens url 5

T5 Advanced multilingual text generation 220 million 29 trillion characters
in 107 languages

url 6

Stable diffusion Generate images from text, image
translation.

860 million 5 billion image text
annotated pairs

url 7

Imagen Generate images from text, image
translation, advanced image editing.

Information
not public

Information not
released publicly

url 8

DALL E Generate images from text, advanced
image modification

12 billion 650 million text
image pairs

url 9

Phenaki Generate videos from text descriptions Information
not public

Information not
released publicly

url 10

Music Gen Generate music from text descriptions Information
not public

Information not
released publicly

url 11

2430008.indd 262430008.indd 26 24-09-2024 11:24:0824-09-2024 11:24:08

https://bard.google.com/
https://ai.meta.com/llama/
https://stablediffusionweb.com/%23demo

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 27

depend on previous output values. The decoder’s components also have add and
norm mechanisms supporting inter-component and inter-layer communication.

4.2. Attention

Figure 12 presented an example where the encoder and decoder were focused on a
string of tokens to translate that string into French. We begin this section with two
examples of the self-attention mechanism that supports transformer processing. In
the transformer, self-attention is a network function that assists the encoder and
decoder in determining how tokens within a string of tokens are related to each
other; examples are shown in Fig. 14. In both figures the bottom string is identical
to the top string and attention should be seen as a search for relationships within
the string itself. In Fig. 14, the focus is on the it token, searching for an appropriate
reference; on the left attention focuses on animal and on the right on street.

As a second example, consider the sentence of Fig. 15, The young boy always
carries his toy car with him. If the word him is masked, and the model doesn’t
remember boy from the beginning of the sentence, it will not know which pronoun

Fig. 13.  A transformer model, reflecting the encoder and decoder using self-attention. This is one layer
of the original six-layer stack architecture. Figure adapted from [1].

2430008.indd 272430008.indd 27 24-09-2024 11:24:0924-09-2024 11:24:09

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

28 G. F. Luger

to use at the end of the sentence: him, her, or it. Extending this example to a
translation task, the transformer needs to use an appropriately translated pronoun
when referring to boy.

To define the attention mechanism, we consider three components. First, a query,
q, that can probe a tensor, T, of m tuples, for specific information. This probe que-
ries tensor locations, or keys, to access the information at that specific location.
The tensor location we refer to as the key, k, and the content of that location as the
value v, the focus of the query. The query, keys, values, and output are all tensors.

Attention and self-attention are defined:

Attention(,) (,) ,q T a q k vi i i= Σ

where q is the token query, i ranges over the n key-value tuples of tensor T and the
a are the positive real number attention weights.

With self-attention, the tensor T contains the query, q, the key k, and the value
v, i.e. attention is focused on the vector containing the query.

To summarize results of using the attention mechanism:

(1)	 The attention query, q, process can operate on tensors, T, of any size.
(2)	 A single query, q, will receive different responses, v, depending on the keys of

tensor, T.
(3)	 The query, q, operating on T can be flexible, i.e. asking for exact or approxi-

mate matches.

Fig. 14.  Attention: finding the relevant tokens supporting use of the pronoun “it” in two different but
syntactically related sentences. Figure adapted from [2].

Fig. 15.  Self-attention for his. Line shading indicates the amount of attention the word his pays to
other words in the sequence. Using masked, or auto-regressive attention, only the words before the word
under consideration are visited, in this example, the three leftmost lines. Figure adapted from [2].

The young boy always carries his toy car with him.

The young boy always carries his toy car with him.

2430008.indd 282430008.indd 28 24-09-2024 11:24:1624-09-2024 11:24:16

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 29

(4)	 The a weights on queries are positive real numbers. The attention process
forms a positive cone, C. i.e. if vi and vj are outputs of the attention procedure
and c and d are positive scalars, then all c vi + d vj also belong to cone C.

To assure that all attention weights are non-negative and sum to 1, we apply a
form of the softmax function:

	
a q k e

ej

a q k

i
a q k

j

i
(,) .

(,)

(,)=
Σ

Attention supports the aggregation, or pooling, of information, given query q,
over multiple key-value pairs. The attention procedure itself provides a continuous
and differentiable function for the feed-forward neural network to determine which
elements best suit the construction of further weighted representations. The atten-
tion weights attached to each query–key pair are trained by the values accessed
by the key in the key–query pair. Figure 16 offers an example of attention-pooling
network processing.

We next describe several metrics that support the query–key analysis, or how
the query-based key-value relationship, a(q, ki) might be trained for each vi. One
commonly used metric is the Gaussian. As an example of using the Gaussian
metric, the Nadaraya–Watson estimator [33, 34] is employed in regression analysis
where the query represents the location for making the regression, the keys are the
locations of observed previous data, and the values correspond to the regression
values. For the Gaussian regression example, the a(q, k) measure is calculated:

	 a q k ei
q ki(,) ,()= − −1

2|| ||2

where ||q – ki|| is the normed vector difference between q and each key, ki.

Fig. 16.  The attention procedure, with pooling, computes a continuous and differentiable function of
weight values over the vi. Weights are trained for (q, ki) by the values vj. Figure adapted from [2].

2430008.indd 292430008.indd 29 24-09-2024 11:24:3224-09-2024 11:24:32

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

30 G. F. Luger

There are alternative choices for determining a(q, ki). The most common is
the scaled dot-product used in the Vaswani et al. [1] original transformer. The
dot-product is the scalar value created by the component-wise multiplication of two
vectors and then the summation of these products. To ensure that the magnitude of
the dot-product does not become over large, it is usually normalized by the square
root of the dimension of the key vector, ki. The dot-product attention measure is

	 a(q, k) qki i
T= / d ,

where kT
i indicates the transpose of the key vector, ki, and d is the length of the

vector ki.
We can simplify the results of this equation by using the softmax equation:

	 a q, k a q, ki i
i
T

i
T

() softmax () //= = e eqk d
j

a qk dΣ () / ,

where kT
i and kT

j are the transposes of ki and kj and d is the length of vector ki.
Most current transformers, including the original Vaswani et al. [1] transformer,

use the scaled dot-product with softmax for calculating attention. Figure 17(a)
represents the scaled dot-product attention mechanism. As just noted, scaled
dot-product attention calculates using the matrix representations Q and K for
all the individual q and k. From a matrix perspective, the attention mechanism is
computed on a set of queries combined into a matrix Q. The keys and values are
also combined into matrices K and V. The matrix output then is

	
Attention softmax(, ,) () ,Q K V QK

d
V

T

k

=

where T is the transpose of K and dk is the dimension of the key vectors.
An alternative to the scaled dot-product attention mechanism is to use the

dot-product mechanism without the scaling factor. Scaling is used to prevent the
dot-product from getting too large and helps stabilize the learning process. Dividing

Fig. 17.  (a) The standard scaled dot-product attention mechanism. (b) shows the multi-head scaled
dot-product attention mechanism. Figure adapted from [1].

(a) Scaled dot-product attention. (b) Multi-head attention.

2430008.indd 302430008.indd 30 24-09-2024 11:24:5024-09-2024 11:24:50

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 31

by the square root of the dimension of the key vector does not affect the overall
distribution of the attention scores.

Research continues determining quality attention mechanisms. In fact, one
research group [35] proposes improving the transformer architecture with the
weights of a multiple level perceptron. A more common approach, however, is that
of the original Vaswani et al. [1] attention mechanism that uses multi-head atten-
tion processing, as seen in Fig. 17(b).

Instead of using the scaled dot-product attention function with model-based
dimensional keys, values, and queries, they found it helpful to linearly project the
queries, keys, and values h times with different learned linear projections. The
dimension of the key vector was used for the query and key and the value used its
own dimension. In their original transformer architecture projection, h was 8. On
each of the projected versions of queries, keys, and values the attention function is
performed in parallel.

The attention output values are then concatenated together and again pro-
jected, producing the final values, as seen in Fig. 16(b). The multi-head attention
mechanism supports the notion that the model can attend to different represen-
tation subspaces at different positions all in parallel, a function not possible with
a single attention head of Fig. 17(a). Vaswani et al. [1] present several of these
parallel multi-head attention results graphically.

Returning to the description of Fig. 13, the encoder contains self-attention lay-
ers, where the queries, keys and values come from the output of the previous layer.
Each position of the encoder can attend to any position in the previous layer.
Similarly, the self-attention layers in the decoder attend to all positions up to
and including the current position which is masked to enforce the auto-regressive
property.

In the encoder/decoder attention layers, the queries come from the previous
decoder layer and the keys and values come from the output of the encoder. This
enables each position in the decoder to attend to all positions in the encoder
sequence. This gives the attention mechanism a functionality like the earlier
pre-transformer sequence-to-sequence models seen in Fig. 12.

For the attention mechanism to utilize the order in the sequences there must
be information about the relative order and position of tokens in each sequence.
To accomplish this, positional encodings are added to the input embeddings at
the bottoms of the encoder and decoder stacks, as seen in Fig. 12. Finally, each
layer of the encoder and decoder contains a fully connected feed-forward network
which is applied to the output of each of the attention mechanisms. The training
process for the translation tasks of the Vaswani et al. [1] transformer is described
in their paper.

We conclude this subsection with Fig. 18, a representation of the calculation of
the attention mechanism.

For a high-level description of attention, compare it with normal database
retrieval. In database retrieval, a query, q, is used to search for a key, k, that is

2430008.indd 312430008.indd 31 24-09-2024 11:24:5024-09-2024 11:24:50

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

32 G. F. Luger

a pointer to a value, v, that we wish to retrieve. With the attention mechanism,
instead of returning a particular key–value pair, we return a probability distribu-
tion, based on our query, of the appropriateness of all possible key–value pairs. A
more formal description for many of the transformer mechanisms described this
section can be found in [36].

Since 2018 the transformer architecture with attention has become the pre-
dominant methodology used in building large language models. The practice in
using transformers is to pretrain these large-scale models on enormous corpora
to optimize self-supervised learning. After pretraining, the models can then be
fine-tuned by their users with data appropriate for the user’s application needs, as
we see in Sec. 5 and Fig. 19. When using this pretraining approach, the original
attention-based transformers are referred to as foundation models [26]. We consider
these issues in Sec. 5.

5. The Transformer in Practice

Our final section first considers how the transformer-based model is trained to
operate in specialized environments. Then we demonstrate fine-tuning the LLM
to train it for new domains and then we present prompt engineering, a real-time
technique that conditions the LLM to further focus its performance. Finally, we
describe several important application areas for generative AI.

Fig. 18.  The output of attention pooling is a weighted average of values where weights, a, are com-
puted using the attention procedure with softmax. Figure adapted from [2].

2430008.indd 322430008.indd 32 24-09-2024 11:24:5124-09-2024 11:24:51

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 33

5.1. Pretraining: The corpora

A large language model is first pre-trained on corpora of text data and on specific
language modeling related tasks. During pre-training, the LLM tries to learn and
understand general language patterns found in the relationships between words.
Some examples of a suitable corpus for LLM pre-training:

•	 English Wikipedia — a collection of articles from the English version of
Wikipedia, the free online encyclopedia. It contains a range of topics and writ-
ing styles, making it a representative sample of English language usage. The
English component of Wikipedia contains about 2.5 billion words.

•	 The BookCorpus — a large collection of fiction and non-fiction books. It was
created by scraping book text from the web and includes a range of genres, from
romance and mystery to science fiction and history. The books in this corpus
were required to have a minimum length of 2000 words and to be written in
English. BookCorpus contains approximately one billion words.

5.2. Fine-tuning the LLM

Transfer learning is a technique that leverages the knowledge gained from one
task to improve performance on another task. Transfer learning for LLMs involves
taking a pretrained LLM and fine-tuning it for a specific “new” task, such as text
classification or text generation. Fine-tuning updates the model’s parameters using
the new task-specific data, as in Fig. 19. Fine-tuning consists of four steps:

(1) Determine the model to be tuned and its parameters, e.g. the learning rate.
(2) Aggregate new training data, where format and other parameters depend on

the model.

Fig. 19. The pretrained transformer can transfer its knowledge to related domains. The new domain is
conditioned by using a smaller task-specific dataset. Figure adapted from [2].

2430008.indd 332430008.indd 33 24-09-2024 11:24:5124-09-2024 11:24:51

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

34 G. F. Luger

(3) Compute losses, the error measure, and gradients, to change the model to
minimize error.

(4) Update the model through backpropagation.

5.3. Prompt engineering

Prompt engineering is the practice of querying the trained LLM with specific pieces
of information to elicit the most appropriate responses from the model. There are
several approaches to prompt engineering. Zero-shot queries request information
that is not part of the model’s training; the model will, however, generate a result.
This technique makes LLMs useful for many different tasks. Few-shot prompting is
a strategy where the model is given several task-specific examples before presenting
the actual query. Few-shot queries enable the model to generalize over the queries.
To summarize:

Zero-Shot Prompting: Used when the task is self-explanatory, requiring no specific
examples.

One-Shot Prompting: Ideal for tasks requiring a specific format or context, where
one example can guide the output. For example, give the LLM a job description
and then ask it to “write a similar job description for a Data Analyst position”.

Few-Shot Prompting: Used for complex tasks requiring multiple examples that pro-
vide broader context or to handle more nuanced queries. For example, after giving
several labeled product reviews, to “Predict the sentiment of the following review”.

Chain of Thought Prompting: It breaks down large problems into intermediate
steps, allowing language models to tackle complex tasks not solved with standard
prompting techniques.

Chain-of-thought prompting is a style of few-shot prompting, where prompts
contain a series of intermediate reasoning steps. Chain-of-thought prompting
encourages the model to reason the way that the prompts are proposed, i.e.
in a series of steps. Surprisingly, the answers from chain-of-thought prompting
are often more accurate and interpretable than the answers from other prompts.
Chain-of-thought prompting also discourages the model from generating quick
easy answers.

There are now several suggestions for organizing the process just described for
moving from the foundation model through fine tuning to prompt engineering. This
process is called LLM alignment, see [37] for a survey of approaches. One of these
is called RLHF or Reinforcement Learning from Human Feedback [37]. There are
still major questions about the utility of these approaches [38].

We next demonstrate our own use of prompt engineering to change LLM’s
responses. For our examples we use BERT (url 2) and GPT (url 4). The user gives
Prompt: and the LLM replies with Output:. We begin with an example of a zero-
shot prompt:

2430008.indd 342430008.indd 34 24-09-2024 11:24:5224-09-2024 11:24:52

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 35

Prompt: The sky is
Output: blue

The LLM replies with a continuation of “The sky is” string, which may not be
appropriate for the user’s needs. We next try for an improved result:

Prompt: Complete the sentence: The sky is
Output: so beautiful today.

Since we told the LLM to “complete the sentence”, the result looks different as
the LLM follows what it is told to do. Prompts contain any of the following ele-
ments and the format depends on the task:

	 Instruction — a description of a specific task you want the model to perform.
	 Context — further information or a particular context that directs the model to a

response.
	 Input Data — the input or question that you are interested in asking.
	 Output Indicator — the type or format of the output, for example, a poem.

We can also design prompts for various tasks by using commands that instruct
the model what we want to achieve. These prompts include: “Write”, “Classify”,
“Summarize”, “Translate”, “Order”, etc.

Prompt: Instruction: Translate the text to Spanish:
    Text: “hello! ”

Output:  ¡Hola!

We can add contextual constraints to the prompt to give information to the
model or to restrict the boundaries of the responses to the prompt. Context can be
either instructions that specify how the model should behave or information that
the model uses or references to generate a response. For example:

Prompt: Marbles:
   Color: red
   Number: 12
   Color: blue
   Number: 28
   Color: yellow
   Number: 15
   Color: green
   Number: 17

  How many green marbles are there?
Output:  There are 17 green marbles.

2430008.indd 352430008.indd 35 24-09-2024 11:24:5224-09-2024 11:24:52

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

36 G. F. Luger

We can also add examples to enrich the context.

Prompt: Classify the following.
          Options:
               - red wine
               - white wine
          Text: Chardonnay
               The answer is: white wine
          Text: Cabernet
               The answer is: red wine
          Text: Moscato
               The answer is: white wine
          Text: Riesling
          The answer is:

Output: white wine.

To demonstrate the utility of few-shot prompting, consider sentiment analysis:
We take paragraphs of different opinions and label them with a sentiment classifi-
cation. Then we condition the model to take a paragraph as input and generate a
classification as output. Before transformer-based LLMs, recurrent neural networks
were not very adaptive. Adding a new classification to be considered or asking the
model not to classify but to summarize a paragraph required that the model needed
to be modified and retrained.

A large transformer language model, however, does not need to be retrained. We
can ask the model to classify a paragraph or summarize it when we know how to
ask correctly. The model cannot classify a paragraph into categories A or B when
the specifications for A and B are unclear. As we see next, the LLM can classify
“positive” or “negative” sentiment once the model is told what “positive” and “nega-
tive” are. During training, the model learns these words and acquires the ability to
follow simple instructions.

Prompt: Classify the text into positive, neutral, or negative:
           Text: That musical performance was enjoyable.

     Classification:
Output: The text “That musical performance was enjoyable” can be classified as positive.

The response was “positive”. This is correct and concise. The model will also be
able to classify “awesome” as positive. Identifying sentiment results from the begin-
ning instruction: Classify the text into positive, neutral, or negative.

Prompt: Text: The room was very hot.
           Classification: Negative

  Text: The lecture was very intense.
           Classification:

2430008.indd 362430008.indd 36 24-09-2024 11:24:5224-09-2024 11:24:52

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 37

Output: �The text “The lecture was very intense” can be classified as neutral. It describes
the lecture’s intensity without inherently conveying a positive or negative
sentiment.

Prompt: Text: Today the weather is fantastic
   Classification: Pos

  Text: The furniture is small.
   Classification: Neg

  Text: I don’t like your attitude
   Classification: Neg

  Text: That shot selection was awful
   Classification:

Output: �The text “That shot selection was awful” can be classified as negative, as it
expresses strong disapproval or criticism of the shot selection.

Next, chain of thought reasoning allows models to decompose complex problems
into intermediate steps that are solved individually. Moreover, the language-based
nature of chain of thought makes it applicable to most tasks people can solve using
language.

Prompt: Which is a faster way to get home?
Option 1: Take a 10 min bus, then a 40 min bus, and finally a 10 min train.
Option 2: Take a 90 min train, then a 45 min bike ride, and finally a 10 min bus.
Option 1 will take 10 + 40 + 10 = 60 min.
Option 2 will take 90 + 45 + 10 = 145 min.
Since Option 1 takes 60 min and Option 2 takes 145 min, Option 1 is faster.
Which is a faster way to get to work?
Option 1: Take a 1000 min bus, then a half hour train, and a 10 min bike ride.
Option 2: Take an 800 min bus, then an hour train, and finally a 30 min bike ride.

Output:  Option 1 will take 1000 + 30 + 10 = 1040 min.
Option 2 will take 800 + 60 + 30 = 890 min.
Since Option 2 takes 890 min and Option 1 takes 1040 min, Option 2 is faster.

In Fig. 20, we request the LLM to create two images, the first from a word
description and the second from an image plus a word description.

5.4. Sample applications of generative AI

Using the fundamental concepts supporting LLM training and prompt engineer-
ing, several interesting applications have emerged. Generative AI models are used
to write novels, pass the legal bar exam, create marketing campaign materials,
automatically regenerate financial reports, and for many other interesting tasks.
LLMs have applications beyond the domain of text generation. They can be used
to generate images from text, or text description of images, or, with instructions,
to transform images.

2430008.indd 372430008.indd 37 24-09-2024 11:24:5224-09-2024 11:24:52

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

38 G. F. Luger

Image to Image Conversion, (url 1).
Image conversion includes transforming the external elements of an image, such as
its color, medium, or form, while preserving its constitutive elements, as in Fig. 20.
One example would be turning a daylight image into a nighttime image. This type
conversion is also used to manipulate the attributes of an image, such as a face, color-
ize them, or change their style. Another example is to take images in the style of one
painter and transform them in the style of another. Image conversion has also been
used in advanced photo editing applications, e.g. to add or remove details, figures, or
objects from pictures. All these tasks are performed using carefully designed prompts.

Text to Images and Images to Text, (url 4, url 10).
Generative AI models are also trained to generate images from text descriptions
under a special class of models called diffusion. Diffusion models are a class of
generative models that simulate the data generation process by transforming a
simple starting distribution into the desired complex data distribution through a

Fig. 20.  The LLM creates an image of a suit-wearing basketball-playing puppy (with 5 legs?). The
second image transforms a kitten into a Gandalf clone. Figure adapted from [2].

2430008.indd 382430008.indd 38 24-09-2024 11:24:5324-09-2024 11:24:53

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 39

sequence of invertible operations. These models can be used in applications includ-
ing answering questions about an image, creating descriptions of images, and edit-
ing an image.

Text to Video
Interestingly, not only can transformers generate text to images, as we saw in
Fig. 20, but current research is exploring possibility of transforming text to video.
For example, “Show me a woman in a red parka skiing down a resort ski run” or “A
man and women in black clothes are doing ice dancing”. Many important questions
remain, including how best to train transformers with video materials [40, 41]; see
also (url 15).

Music Production, (url 6).
Using recurrent neural networks and variational autoencoders, generative AI has
been trained to automatically create music from text descriptions. Models can
learn melodic motifs, chord progression, as well as rhythmic elements. Applications
include automatically synthesizing music from different genres, tweaking composi-
tions, teaching music theory, and provoking creativity in music makers.

Code Generation, (url 2, url 12).
Generative AI can be used to create computer code based on prompts. This code
can be generated in most programming languages using only a natural language
description of the problem. Applications support more accurate code completion
suggestions, generating unit tests for a function, automated debugging, generat-
ing documentation, teaching programming, and answering questions about pieces
of code.

Protein Design and Generation, (url 13).
Trained AI models are used to generate new protein sequences. The training con-
sists of several amino acid sequences of different proteins and then fine-tuning with
a smaller subset of sequences that have contextual descriptions. Using language
prompts for the desired properties of the required protein, the model automati-
cally generates several proteins whose amino acid sequences meet those properties.
This technology has been used to speed up the process of drug design for new
medications.

Continued Extensions of Google’s DeepMind Problem Solvers, (url 14).
Google’s DeepMind research group designed the Alpha family of game playing
programs. Their Alpha Zero program played go, chess, and shogi all at world
class levels. A recent extension, AlphaGeometry [42], combines symbolic AI with
deep learning language model technology to generate proofs in Euclidean geometry.
Symbolic AI, along the line of traditional mathematical theorem proving programs
[43, 44], suggests possible proof procedures. These partial solutions are then passed
to deep learning models to explore symbolic and construction-based methods

2430008.indd 392430008.indd 39 24-09-2024 11:24:5324-09-2024 11:24:53

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

40 G. F. Luger

for completing the proofs. The resulting program surpassed the geometry proof
skills of previous computers and approaches the performance of the International
Mathematical Olympiad competitors.

Finally, Table 4 presents the currently most used large language models, along
with several of their design parameters. In the table, “tokens” refers to the piece of
information used to train the model, syllables, words, components of images, etc.
Having more parameters or training tokens does not always support having a bet-
ter model, as code design and computational efficiency always remain important.

6. Summary and Conclusions

We have presented an overview of the evolution of neural network research and prac-
tice, beginning in the 1940s with models of human cortical processing and ending
with transformer-based large language models. The complete story of this evolution
requires a much deeper analysis of the algorithms and engineering practices than we
have presented here [17, 16, 36]. Although the current application of these technolo-
gies is very impressive, as we saw in Sec. 5, and offers entirely new opportunities for
AI practitioners, their remain important issues that society must address.

First, there is a lack of mathematical integrity and support for many of the
engineering practices of modern AI. That engineers create programs “because they
seem to work” is not sufficient justification for software tools that are coming to
play important roles in modern life. Adding to this issue is the fact that many of
our current LLM creators are keeping their engineering practices “company confi-
dential”. Protecting profit for corporate investment is important, but accountability
for algorithm use and engineering decisions is critical for society’s responsible use
of this technology. A step in this direction would be to have more university collab-
oration, peer-reviewed publications, and open analysis of the current generation of
AI practices. And linked to this, of course, is better education of the public to both
the promise and problems of the current generation of AI problem solvers.

An important first step here is to acknowledge that LLMs reflect the data that
they are trained on. If the data is racist and/or sexist, so also will be its product.
If the model is trained on data of a certain date and location, its results will reflect
this. The fine-tuning and prompt engineering of LLMs to extract useful results is
more of a black art than a science, although several research groups are addressing
this [37, 38].

Large language models are relatively knowledge free. They don’t know what
they know and, even worse, they don’t know what they don’t know. But they will
always offer the user a response. Consider again the five-legged dog of Fig. 20. Their
“knowledge” is how words/tokens are associated in large corpora, with attention
networks assisting in building more complex associations. These models, in the
human sense, do not “know” anything.

A further critique, explained by the absence of knowledge within the system, is
a lack of transparency and explainability of LLMs and their products. When an
LLM produces a product, it is close to impossible for it to produce any justification

2430008.indd 402430008.indd 40 24-09-2024 11:24:5424-09-2024 11:24:54

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 41

for that result. For most of society’s important decisions, justifications and expla-
nations are required. Why was I approved for that bank loan at a particular inter-
est rate? Why do you think this tumor is malignant? Why is this stock purchase
recommended? Humanly responsible decision-making requires transparency and
explanations.

The United States government (url 20, url 21, url 22) and the European Union
have each proposed guidelines for AI use (url 23) as have major companies includ-
ing IBM (url 19) and Microsoft (url 18). Professional societies including IEEE
[45, 46] as well as a modern AI textbook [2] that contains chapters on the ethical
use of modern AI technology.

We noted in our introduction that many of the neural network neuroscientist
pioneers, including McColloch and Pitts, Hebb, and Rosenblatt, felt that their
creations emulated aspects of human neuronal processing. That vision is no longer
part of the prospectus of the current generation of LLMs [47].

URLs

url 1: �Image to image translation GAN: https://github.com/eriklindernoren/
PyTorch-GAN

url 2: BERT: https://github.com/google-research/bert
url 3: Bard, now Gemini: https://bard.google.com
url 4: ChatGPT: https://chat.openai.com
url 5: https://ai.meta.com/llama/
url 6: https://huggingface.co/docs/transformers/model_doc/t5
url 7: Stable diffusion: https://stablediffusionweb.com
url 8: https://imagen.research.google/
url 9: https://openai.com/dall-e-2
url 10: https://sites.research.google/phenaki/, https://phenaki.video
url 11: MusicGen: https://huggingface.co/spaces/facebook/MusicGen
url 12: Copilot: https://github.com/features/copilot
url 13: https://doi.org/10.1038/s42256-022-00532-1
url 14: https://www.nature.com/articles/s41586-023-06747-5
url 15: https://huggingface.co/tasks/text-to-video
url 16: https://storage.googleapis.com/deepmindmedia/gemini_v1_5_report.pdf
url 17: https://blog.google/technology/ai/google-gemini-ai/
url 18: �https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1%3apri​

maryr6
url 19: https://research.ibm.com/topics/trustworthy-ai
url 20: https://www.nist.gov/artificial-intelligence-safety-institute
url 21: https://www.cisa.gov/ai
url 22: �https://www.commerce.gov/news/press-releases/2024/04/us-commerce-

secretary-gina-raimondo-announces-expansion-us-ai-safety
url 23: https://www.aepd.es/sites/default/files/2019-12/ai-ethics-guidelines.pdf

2430008.indd 412430008.indd 41 24-09-2024 11:24:5424-09-2024 11:24:54

https://github.com/eriklindernoren/PyTorch-GAN
https://github.com/eriklindernoren/PyTorch-GAN
https://github.com/google-research/bert
https://bard.google.com
https://chat.openai.com
https://ai.meta.com/llama/
https://huggingface.co/docs/transformers/model_doc/t5
https://stablediffusionweb.com
https://imagen.research.google/
https://openai.com/dall-e-2
https://sites.research.google/phenaki/
https://phenaki.video
https://huggingface.co/spaces/facebook/MusicGen
https://github.com/features/copilot
https://huggingface.co/tasks/text-to-video
https://storage.googleapis.com/deepmind
https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1%3aprimaryr6
https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1%3aprimaryr6
https://research.ibm.com/topics/trustworthy-ai
https://www.nist.gov/artificial-intelligence-safety-institute
https://www.cisa.gov/ai
https://www.commerce.gov/news/press-releases/2024/04/us-commerce-secretary-gina-raimondo-announces-expansion-us-ai-safety
https://www.commerce.gov/news/press-releases/2024/04/us-commerce-secretary-gina-raimondo-announces-expansion-us-ai-safety

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

42 G. F. Luger

ORCID

George F. Luger  https://orcid.org/0009-0001-8164-5964

References
 [1]	 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser and

I. Polosukhin, Attention is all you need, in Advances in Neural Information Processing
Systems (Curran Associates Inc., San Francisco CA, 2017), pp. 5998–6008.

 [2]	 G. F. Luger, Artificial Intelligence: Principles and Practice (Springer Nature, New York,
2024).

 [3]	 W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous
activity, Bull. Math. Biophys. 5 (1943) 115–133.

 [4]	 D. O. Hebb, The Organization of Behavior (Wiley, New York, 1949).
 [5]	 F. Rosenblatt, The perceptron: A probabilistic model for information storage and orga-

nization in the brain, Psychol. Rev. 65 (1958) 386–408.
 [6]	 F. Rosenblatt, Principles of Neurodynamics (Spartan, New York, 1962).
 [7]	 G. Boole, An Investigation of the Laws of Thought (Walton & Maberly, London, 1854).
 [8]	 N. J. Nilsson, Learning Machines (McGraw-Hill, New York, 1965).
 [9]	 M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry

(MIT Press, Cambridge, MA, 1969).
[10]	 D. H. Ackley, G. E. Hinton and T. J. Sejnowski, A learning algorithm for Boltzmann

machines, Cogn. Sci. 9 (1985) 147–169.
[11]	 G. E. Hinton and T. J. Sejnowski, Analyzing cooperative computation, in Proc. 5th

Annual Congress of the Cognitive Science Society, 1983.
[12]	 G. E. Hinton and T. J. Sejnowski, Learning and relearning in Boltzmann machines,

in Parallel Distributed Processing, eds. J. L. McClelland et al. (MIT Press, Cambridge
MA, 1986), pp. 282–317.

[13]	 B. Widrow, and M. E. Hoff, Adaptive switching circuits, in 1960 IRE WESCON
Convention Record (IEEE, New York, 1969), pp. 96–104.

[14]	 D. E. Rumelhart, J. L. McClelland and The PDP Research Group, Parallel Distributed
Processing (MIT Press, Cambridge, MA, 1986).

[15]	 G. F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem
Solving (Addison Wesley-Pearson, New York, 2009).

[16]	 J. Devlin, M. Chen, K. Lee and K. Toutanova, BERT: Pre-training of deep bidirec-
tional transformers for language understanding, preprint (2018), https://arxiv.org/
abs/1810.04805.

[17]	 A. Radford, J. Wu, R. Child, D. Luan, D. Amodei and I. Sutskever, Language models
are unsupervised multitask learners, OpenAI Blog, 1(8) (2019) 9.

[18]	 E. Charniak, Introduction to Deep Learning (MIT Press, Cambridge MA, 2019).
[19]	 Y. LeCun and Y. Bengio, Convolutional networks for images, speech, and time series,

in The Handbook for Brain theory and Neural Networks (MIT Press, Cambridge MA,
1995), pp. 255–258.

[20]	 Z. C. Lipton, J. Berkowitz and C. Elkan, A critical review of recurrent neural networks
for sequence learning, preprint (2015), arXiv:1506.00019.

[21]	 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville and Y. Benjio, Generative adversarial nets, in Advances in Neural
Information Processing Systems (Curran Associates Inc., San Francisco CA, 2014),
pp. 2672–2680.

2430008.indd 422430008.indd 42 24-09-2024 11:24:5424-09-2024 11:24:54

https://orcid.org/0009-0001-8164-5964
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

LLMs: Their Past, Promise, and Problems 43

[22]	 T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford and X. Chen,
Improved techniques for training GANs, preprint (2016), arXiv:1606.03498.

[23]	 P. Isola, J. Y. Zhu, T. Zhou and A. A. Efros, Image-to-image translation with condi-
tional adversarial nets,preprint (2016), arXiv:1611.07004.

[24]	 J. Ho and S. Ermon, Generative adversarial imitation learning, in Advances in Neural
Information Processing Systems, Vol. 29, (Curran Associates Inc., San Francisco CA),
pp. 4565–4573.

[25]	 D. Bahdanau, K. Cho and Y. Bengio, Neural machine translation by jointly learning to
align and translate (2014). ArXiv:1409.0473.

[26]	 R. Bommasani et al., On the opportunities and risks of foundation models, preprint
(2021), arXiv:2108.07258.

[27]	 Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen and V. Stoyanov, RoBERTa:
A robustly optimized BERT pretraining approach, preprint (2019), arXiv:1907.11692.

[28]	 I. O. Beltagy, M. E. Peters and A. Cohan, Longformer: The long-document trans-
former, preprint (2020), arXiv:2004.05150v2.

[29]	 Gemini Team: Google DeepMind, Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context (2024), https://blog.google/technology/ai/
google-gemini-ai/.

[30]	 A. Dosovitskiy et al., An image is worth 16 × 16 words: Transformers for image recog-
nition at scale, in Int. Conf. Learning Representations, 2021, pp. 1–22.

[31]	 A. Gulati et al., Conformer: Convolution-augmented transformer for speech recogni-
tion, in Proc. Interspeech 2020, 2020, pp. 5036–5040.

[32]	 A. Zhang, Z. C. Lipton, M. Li and A. J. Smola, Deep Dive into Deep Learning
(Cambridge University Press, Cambridge, 2023).

[33]	 E. A. Nadaraya, On estimating regression, Theory Probab. Appl. 9(1) (1964) 141–142.
[34]	 G. S. Watson, Smooth regression analysis, Sankhyā: Indian J. Stat. Ser. A

(1964) 359–372.
[35]	 A. Morsali, M. Heidari, S. Heydarian and T. Abdeini, MLP-Attention: Improving trans-

former architecture with MLP attention weights, in Int. Conf. Learning Representations
(ICLR-23), 2023, pp. 1–5.

[36]	 M. Phuong and M. Hutter, Formal algorithms for transformers, preprint (2022),
arXiv:2207.09238v1.

[37]	 T. Shen, R. Jin, Y. Huang, C. Liu, W. Dong, Z. Guo, X. Wu, Y. Liu and D. Xiong,
Large language model alignment: A survey, preprint (2023), arXiv:2309.15025v1.

[38]	 R. Rafailov, S. Archit, E. Mitchell, E. Stephano, C. D. Manning and C. Finn, Direct
preference optimization: Your language model is secretly a reward model, in 37th
Conf. Neural Information Processing, NeurIPS-23, 2023 (Curran Associates Inc.,
San Francisco CA), arXiv:2305.18290.

[39]	 S. Casper et al., Open problems and fundamental limitations on reinforcement learning
from human feedback, preprint (2023), arXiv:2307.1517.

[40]	 W. Hong, M. Ding, W. Zheng, X. Liu, and J. Tang, CogVideo: Large-scale pretraining
for text-to-video generation via transformers, preprint (2022), arXiv.2205.15868.

[41]	 G. Chen, A simple text to video model via transformer, preprint (2023),
arXiv:2309.14683v1.

[42]	 T. H. Trinh, Y. Wu, Q. V. Le, H. He and T. Luong, Solving Olympiad geometry with-
out human demonstrations, Nature 625 (2024) 476-482.

[43]	 H. Gelernter and N. Rochester, Intelligent behavior in problem-solving machines, IBM
J. Res. Develop. 2(4), (1958) 336–345.

2430008.indd 432430008.indd 43 24-09-2024 11:24:5424-09-2024 11:24:54

  WSPC/214-IJSC  2430008  ISSN:1793-351X� 2nd Reading

44 G. F. Luger

[44]	 A. Bundy, L. Byrd, G. Luger, C. Mellish, R. Milne and M. Stone, Solving mechan-
ics problems using meta-level inference, in Proc. Sixth Int. Joint Conf. Artificial
Intelligence, IJCAI-79, 1979, pp. 1017–1027.

[45]	 C. Huang, Z. Zhang, B. Mao and X. Yao, An overview of artificial intelligence ethics,
IEEE Trans. Artif. Intell. (2022), doi:10.1109/TAI.2022.3194503.

[46]	 K. Shahriari and M. Shahriari, IEEE standard review — Ethically aligned design:
A vision for prioritizing human wellbeing with artificial intelligence and autonomous
systems, in IEEE Canada Int. Humanitarian Technology Conference (IHTC), 2017,
pp. 197–201.

[47]	 G. F. Luger, Knowing Our World: An Artificial Intelligence Perspective (Springer
Nature, New York, 2021)

2430008.indd 442430008.indd 44 24-09-2024 11:24:5424-09-2024 11:24:54

