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Transformer-based large language models are currently at the forefront of modern artificial 
intelligence. Their prominence followed from the seminal paper Attention is All You Need 
[1]. Vaswani and his colleagues suggested placing attention mechanisms within the encoder 
and decoder modules of autoencoders rather than using them to focus between these two 
modules. In this paper we present first the seminal insights of early AI that lead to deep 
learning. We then describe the mathematical tools necessary for understanding the current 
generation of LLMs and follow this with a brief description of the transformer architecture. 
We then provide examples of LLMs in action and conclude with some observations of their 
promise and problems.
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1. Introduction

Neural Networks, often characterized as neurally inspired computation, or parallel 
distributed processing, de-emphasize the explicit use of symbols and logic-based 
reasoning. Neural network approaches are designed to capture relations and associ-
ations within an application domain and interpret new situations in the context of 
previously learned relational patterns.

The neural net philosophy conjectures that intelligence arises in systems of sim-
ple interacting components, biological or artificial neurons. This happens through 
a process of learning or adaptation by which the connections between components 
are adjusted as patterns in the world are processed. Computation in these systems 
is distributed across collections, or layers, of neurons. Problem solving is paral-
lel in the sense that all the neurons within the collection or layer process their 
inputs simultaneously and independently. These systems also degrade gracefully 
since information and processing are distributed across nodes and layers and not 
localized to any single component of the network.
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The algorithms and architectures that implement connectionist techniques are 
usually trained or conditioned rather than explicitly programmed. This fact is a 
major strength of the approach, as an appropriately designed network architecture 
and learning algorithm can often capture invariances in the world, even in the form 
of strange attractors, without being explicitly programmed to recognize them.

The basis of a network is the artificial neuron, as shown in Fig. 1.
The minimal components of the artificial neuron are:

(1) Input signals Xi. These signals may come from the environment or from the 
activation of other neurons. Different models vary in the allowable range of the 
input values; typically, inputs are discrete, from the sets {0, 1} or {–1, 1}.

(2) A set of real-valued weights, wi. These values describe connection strengths.
(3) An activation level, Σwixi. The neuron’s activation level is determined by the 

cumulative strength of its input signals where each signal is scaled, or mul-
tiplied, by the connection weight associated with that input. The activation 
level is computed by taking the sum of the weighted inputs, that is Σwixi. The 
Greek sigma, Σ, indicates that these values are summed.

(4) A threshold or a bounded nonlinear mapping function, f. The threshold function 
computes the neuron’s output by seeing if it is above an activation level. The 
nonlinear mapping function produces either an on/off or a graded response for 
that neuron.

Early examples of neural computing are the McCulloch–Pitts [3] neurons. The 
inputs of these neurons are either +1, i.e. true, or –1, false. The activation function 
multiplies each input by its corresponding weight and adds the results; if this sum 
is greater than or equal to zero, the neuron returns 1, true, otherwise, –1, false. 
McCulloch and Pitts showed how these neurons could be constructed to compute 
any logical function.

Figure 2 shows McCulloch–Pitts neurons for computing the logical functions 
and (∧) and or (∨). The and neuron, (a) on the left, has three inputs: x and y are 
the values to be conjoined; the third input, sometimes called a bias, has a constant 
value of +1. The input data and bias have weights of +1, +1, and –2, respectively. 

Fig. 1.  An artificial neuron with input vector xi, weights wi for each input, and a threshold function 
f that determines the neurons output value. Figure adapted from [2].
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Thus, for any input values of x and y, the neuron computes x + y – 2. Table 1 shows 
that if this value is less than 0, it returns –1, false, otherwise a 1, true. The or neu-
ron, (b) on the right, illustrates the neuron computing x ∨ y. The weighted sum of 
input data for the ∨ neuron is greater than or equal to 0 unless both x and y equal 
–1, i.e. are false.

Although McCulloch and Pitts demonstrated the power of neural computation, 
interest in neural network research only began to flourish with the development of 
practical learning algorithms. Early learning models drew heavily on the work of 
the psychologist Donald Hebb [4], who speculated that learning occurred in brains 
through the modification, or conditioning, of synapses. Hebb stated:

When an axon of cell A is near enough to excite a cell B and repeatedly or per-
sistently takes place in firing it, some growth process or metabolic change takes place 
in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.

Neural physiological research has confirmed Hebb’s idea that temporal proxim-
ity of the firing of connected neurons can modify their synaptic strength, albeit in 
a more complex fashion than Hebb’s intuition of “increase in efficiency”. We next 
demonstrate Hebbian learning, which belongs to the coincidence class of learning 
laws. This learning produces weight changes in response to localized events in neu-
ral processing.

Neural network learning may be unsupervised, supervised, or some hybrid com-
bination of the two. The examples seen so far are unsupervised, as the network and 
its weights transformed input signals to the desired output values. We now consider 
an example of unsupervised Hebbian learning where each output has a weight 

Fig. 2.  McCulloch–Pitts neurons for and (a), and or (b). Figure adapted from [2].

(a) (b)

Table 1.  The McCulloch–Pitts 
model for computing the logical 
and of Fig. 2(a).

x y x = y – 2 Output

1 1   0   1
1 0 –1 –1
0 1 –1 –1
0 0 –2 –1
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adjustment factor. In unsupervised learning, a critic is not available to provide the 
“correct” output value. As a result, the weights must be modified across multiple 
iterations solely as a function of the input and output values of the neuron. The 
training of the Hebbian network of Fig. 3 has the effect of strengthening the net-
work’s responses to patterns that it has already seen and interpreting new patterns 
appropriately.

Figure 3 demonstrates how Hebbian techniques can be used to model condi-
tioned response learning, where an arbitrarily selected stimulus can be used to 
condition a desired response. Pavlov’s classic 1890’s experiment offers an example 
of a conditioned response. A dog is brought food while a bell is rung. The dog 
salivates in expectation of his meal. The unconditioned response of the salivating 
animal is the presence of food. After several instances where the arrival of food is 
accompanied by the ringing bell, the bell is rung without food. The dog salivates. 
The ringing bell produces the dog’s conditioned response!

Figure 3 demonstrates how a Hebbian network can transfer a response from a 
primary or unconditioned stimulus to a conditioned stimulus. In Pavlov’s exper-
iments, the dog’s salivation response to food is transferred to the bell. Weight 
adjustment, ∆W, at each network iteration, is described by the equation:

 ∆W = c * f (X, W) * X.

In this equation c is the learning constant, a small positive decimal, whose use 
modulates the extent of the learning at each step, as described with more detail in 
Fig. 3, f (X, W) is the network’s output at each iteration, and Xi is the input vector 
at that iteration.

The network of Fig. 3 has two layers, an input layer with six nodes and an out-
put layer with one node. The output layer returns either +1, signifying that the 
output neuron has fired, or a – 1 that it has not fired. The feedback, Supervise, 
monitoring the network, ∆W, takes each output of the network and multiplies it 
by the input vector and the learning constant to produce the set of weights for the 
input vector at the next iteration of the network.

Fig. 3.  A Hebbian network, with no extra-network supervision, that learns a response for an uncondi-
tioned stimulus. ∆W adjusts the weights at each iteration of the data through the network. The thresh-
old function is shown in Fig. 7(a). Figure adapted from [2].
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We set the learning constant to the small positive real number, 0.2. In this exam-
ple we train the network on the pattern [1, –1, 1, –1, 1 –1] which joins the two pat-
terns, [1, –1, 1] and [–1, 1, –1]. The pattern [1, –1, 1] represents the unconditioned 
stimulus and [–1, 1, –1] represents the new stimulus.

Assume that the network already responds positively to the unconditioned stim-
ulus but is neutral with respect to the new stimulus. We simulate the positive 
response of the network to the unconditioned stimulus with the weight vector  
[1, –1, 1] exactly matching the input pattern. The neutral response of the network 
to the new stimulus is simulated by the weight vector [0, 0, 0]. Joining these two 
vectors gives the initial weight vector for the network, [1, –1, 1, 0, 0, 0].

The network is next trained on the input pattern, hoping to induce a configura-
tion of weights that will produce a positive network response to the new stimulus. 
The first iteration of the network produces the result:

W  *X =  (1 * 1) + (–1 * –1) + (1 * 1) + (0 * –1) + (0 * 1) + (0 * –1) = (1) + (1) + (1) = 3,  
and f (3) = sign(3) = 1.

Now the Hebbian network creates the new weight vector W 2:

 W 2 = [1, –1, 1, 0, 0, 0] + 0.2 * (1) * [1, –1, 1, –1, 1, –1] 
   = [1, –1, 1, 0, 0, 0] + [0.2, –0.2, 0.2, –0.2, 0.2, –0.2] 
          = [1.2, –1.2, 1.2, –0.2, 0.2, –0.2].

Next, the adjusted network sees the original input pattern with the new weights:
 W  *X = (1.2 * 1) + (–1.2 * –1) + (1.2 * 1) + (–0.2 * –1) + (0.2 * 1) + (–0.2 * –1) 
      = (1.2) + (1.2) + (1.2) + (0.2) + (0.2) + (0.2) 
      = 4.2, and sign(4.2) = 1.

Now the Hebbian network creates the new weight vector W 3:

 W 3 = [1.2, –1.2, 1.2, –0.2, 0.2, –0.2] + 0.2 * (1) * [1, –1, 1, –1, 1 –1] 
          = [1.2, –1.2, 1.2, –0.2, 0.2, –0.2] + [0.2, –0.2, 0.2, –0.2, 0.2, –0.2] 
          = [1.4, –1.4, 1.4, –0.4, 0.4, –0.4].

It can now be seen that the weight vector product, W  *X, will continue to 
grow in the positive direction, with the value of each element of the weight vector 
increasing by 0.2 in the + or – direction, at each training cycle. After 10 more iter-
ations of Hebbian training the weight vector will be

 W 13 = [3.4, –3.4, 3.4, –2.4, 2.4, –2.4].

We use this trained weight vector to test the network’s response to the two 
partial patterns. We would like to see if the network continues to respond to the 
unconditioned stimulus positively and, more importantly, if the network has now 
acquired a positive response to the new conditioned stimulus. We test the network 
first on the unconditioned stimulus [1, –1, 1]. We fill out the last three arguments 
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of the input vector with random 1 and –1 assignment, for example, we test the 
network on the vector [1, –1, 1, 1, 1, –1]:

 sign(W *X)  = sign((3.4*1) + (–3.4*–1) + (3.4*1) + (–2.4*1) + (2.4*1) + (–2.4*–1)) 
= sign(3.4 + 3.4 + 3.4 – 2.4 + 2.4 + 2.4) = sign(12.6) = + 1.

The network still responds positively to the original unconditioned stimulus. 
We next do a second test using the original unconditioned stimulus and a different 
random vector in the last three positions [1, –1, 1, 1, –1, –1]:

 sign(W *X)  = sign((3.4*1) + (–3.4*–1) + (3.4*1) + (–2.4*1) + (2.4*–1) + (–2.4*–1)) 
= sign(3.4 + 3.4 + 3.4 – 2.4 – 2.4 + 2.4) = sign(7.8) = +1.

The second vector also produces a positive network response. With these two 
examples the network’s sensitivity to the original stimulus has been strengthened, 
due to repeated exposure to that stimulus.

We next test the network’s response to the new stimulus pattern, [–1, 1, –1], 
encoded in the last three positions of the input vector. We fill the first three vector 
positions with random assignments from the set {1, –1} and test the network on 
the vector [1, 1, 1, –1, 1, –1]:

 sign(W *X)  = sign((3.4*1) + (–3.4*–1) + (3.4*1) + (–2.4*1) + (2.4*1) + (–2.4*–1)) 
= sign(3.4 – 3.4 + 3.4 + 2.4 + 2.4 + 2.4) = sign(10.6) = +1.

We do one final experiment, with the vector patterns slightly degraded. This 
could represent the stimulus situation where the input signals are altered, perhaps 
because a new food and/or a different sounding bell is used. We test the network 
on the input vector [1, –1, –1, 1, 1, –1], where the first three parameters are one 
digit off the original unconditioned stimulus and the last three parameters are one 
digit off the conditioned stimulus:

 sign(W *X)  = sign((3.4*1) + (–3.4*–1) + (3.4*1) + (–2.4*1) + (2.4*1) + (–2.4*–1)) 
= sign(3.4 + 3.4 – 3.4 – 2.4 + 2.4 + 2.4) = sign(5.8) = +1.

Even this partially degraded stimulus is recognized.
What has the Hebbian learning model produced? We created an association 

between a new stimulus and an old response by repeatedly presenting the old and 
new stimuli together. The network learns to transfer its response to the new stimulus 
without any external supervision. This strengthened sensitivity also allows the net-
work to respond in the same way to a slightly degraded version of the stimulus. This 
was accomplished by using Hebbian coincidence learning to increase the strength 
of the network’s response to the total pattern. This increases the strength to each 
individual component of the pattern: an example of self-organization emerging from 
using Hebb’s rule. The pattern of the secondary stimulus is also recognized!

 = sign(10.6) = +1.

In 1958 Rosenblatt [5, 6] created the Perceptron, an electronic device inspired 
by neurologic principles. Rosenblatt was a psychologist and neuroscientist who, in 

2430008.indd   62430008.indd   6 24-09-2024   11:23:4224-09-2024   11:23:42



  WSPC/214-IJSC  2430008  ISSN:1793-351X 2nd Reading

LLMs: Their Past, Promise, and Problems 7

1959, became the director of Cornell’s Cognitive Systems Research Program. The 
perceptron network consists of a single layer of N perceptron neurons activated 
by n inputs each with a weight, wn, as shown in Fig. 1. Rosenblatt’s 1962 paper 
describing the perceptron is titled Principles of neurodynamics: Perceptrons and 
the theory of brain mechanisms.

Interestingly, many early researchers, the precursors of neural network technol-
ogy, claimed the inspiration of human neural activity for their creations. In the 
19th century, Boole, the creator of the algebraic system supporting modern compu-
tation, and who’s logic was first automated by McCulloch–Pitts neurons, offers a 
prime example. In the first chapter of An Investigation of the Laws of Thought, on 
which are founded the Mathematical Theories of Logic and Probabilities [7], Boole 
described his goal as

... to investigate the fundamental laws of those operations of the mind by which 
reasoning is performed: to give expression to them in the symbolical language of a 
Calculus, and upon this foundation to establish the science of logic and instruct its 
method; ... and finally to collect from the various elements of truth brought to view 
in the course of these inquiries some probable intimations concerning the nature 
and constitution of the human mind.

Perceptrons were initially greeted with enthusiasm. However, Nilsson [8] and 
others analyzed the limitations of the perceptron model. They demonstrated that 
perceptrons could not solve a certain difficult class of problems, namely problems 
in which the data points cannot be linearly separated in the dimensionality of 
the original problem statement. Although various enhancements of the perceptron 
model, including multilayered perceptrons, were envisioned at the time, Minsky 
and Papert, in their book Perceptrons [9], argued that the linear separability prob-
lem could not be overcome by any form of the then current perceptron network.

An example of nonlinearly separable classification is the exclusive-or problem of 
Table 2.

Consider a perceptron with two inputs, x1, x2, two weights, w1, w2, and threshold 
t. To learn this function, a network must find a weight assignment that satisfies the 
following inequalities, seen graphically in Fig. 4:

w1 * 1 + w2 * 1 < t, from line 1 of the truth table,
w1 * 1 + 0 > t, from line 2 of the truth table,
0 + w2 * 1 > t, from line 3 of the truth table,
0 + 0 < t, or t must be positive, from the last line of the table.

Table 2.  The truth table for 
the exclusive-or operator.

x1 x2 Output

1 1 0
1 0 1
0 1 1
0 0 0
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This series of equations on w1, w2 and t has no solution, proving that a percep-
tron that solves exclusive-or  is impossible. Although multilayer networks would 
eventually be built that could solve the exclusive-or problem, as we see in Sec. 2.1, 
the perceptron learning algorithm only worked for single layer networks. What 
makes exclusive-or impossible for the perceptron is that the two classes to be dis-
tinguished are not linearly separable. This can be seen in Fig. 4. It is impossible to 
draw a straight line in two dimensions that separates the data points {(0,0), (1,1)} 
from {(0,1), (1,0)}.

We may think of the set of data values for a network as defining a space. Each 
parameter of the input data corresponds to one dimension, with each input value 
defining a point in the space. In the exclusive-or example, the four input values, 
indexed by the x1, x2 coordinates, make up the data points of Fig. 4. The prob-
lem of learning a binary classification of the training instances reduces to that of 
separating these points into two groups. For a space of n dimensions, a classifica-
tion is linearly separable if its classes can be separated by an (n – 1)-dimensional 
hyperplane. In two dimensions an (n – 1)-dimensional hyperplane is a line; in three 
dimension it is a plane, etc.

As a result of the linear separability limitation, research shifted toward work 
in symbol-based architectures, slowing progress in the connectionist methodology. 
Subsequent work in the 1980s and 1990s has shown these problems to be solvable, 
however; see [10–12]. We next discuss backpropagation, an extension of perceptron 
learning that works for multilayered networks.

The neurons in these networks, seen in the multi-layer perceptron of Fig. 5, are 
connected in layers, with units within layer n passing their activations only to neu-
rons in layer n + 1. Multilayer signal processing means that errors deep in the net-
work can spread and evolve in complex, unanticipated ways throughout the layers. 
Thus, the analysis of the source of final output error and connecting that error back 
to the network nodes that produced it is complex. Backpropagation is an algorithm 
for apportioning this blame and adjusting the network’s weights accordingly.

The historical emergence of networks with continuous activation functions sug-
gested new approaches to error reduction learning. For example, the Widrow–Hoff 
[13] learning rule is independent of the activation function, minimizing the squared 

Fig. 4.  The exclusive-or problem. No straight line on the two-dimensional grid can separate the (0, 1) 
and (1, 0) data points from (0, 0) and (1, 1). Figure adapted from [2].
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error between the desired output value and the network activation, neti = WXi. 
A form of Widrow–Hoff became the most important learning rule for continuous 
activation functions. This is the delta rule [14].

Intuitively, the delta rule is based on the idea of an error surface, as illus-
trated in Fig. 6. This error surface represents cumulative error over a data set 
as a function of a network’s weights. For example, if there were six weights to be 
conditioned, as in our XOR example in Sec. 2.1, the error measure would make 
up the 7th dimension of the error space. Each network weight configuration is rep-
resented by a point on this n-dimensional error surface. Given a particular weight 
configuration, we want our learning algorithm to find the direction on this surface 
which most rapidly reduces the error. This approach is called  gradient descent 
learning because the gradient is a measure of slope, as a function of direction, from 
a point on a surface.

Backpropagation requires supervised data, e.g. a classifier is trained on labeled 
data. For example, a radiologist might have thousands of X-rays that reflect tumors 
while other X-rays are tumor free. Likewise, the welder may have thousands of 
examples of acceptable and unacceptable welds. Once these networks are trained, 

Fig. 5.  A schema for a multi-hidden-layer neural network. Backward error propagation is addressed 
with the algorithms of Sec. 2.1. Figure adapted from [2].

Fig. 6.  An error surface in two dimensions. The dimension of a problem’s error space is the number 
of weights involved plus the error measure. The learning constant c controls the step size taken on the 
error surface with each iteration of network learning. The goal is to find the value of W1 where E is at 
a minimum. Figure adapted from [2]. 
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however, they will be scanning totally new situations, examples they have never 
considered before. The classifier must decide each new situation and label it as 
either good or not.

2.  What Must Be Known to Understand the Current Generation 
of LLMs?

We next describe several of the skills necessary for dealing coherently with neural 
networks and deep learning. First, we demonstrate the backpropagation algo-
rithm and show a solution for the XOR problem that limited the use of the 
first-generation perceptron. Second, we demonstrate how matrix algebra provides 
the medium for network computing. Finally, we note the importance of statistics 
and briefly describe the softmax transformation. Deep learning, we conjecture, can 
best be described as computational statistics.

2.1. Backpropagation: Partial differential equations

The approach taken by the backpropagation algorithm is to start at the output 
layer and propagate error backward through all the hidden layers. We know that all 
the information needed to update the weights on a neuron is local to that neuron, 
except for the amount of error. For output nodes, this error is easily computed 
as the difference between the desired and actual output values. For nodes in the 
hidden layers, it is considerably more difficult to determine the error for which a 
node is responsible. The activation function for backpropagation is the logistic 
(sigmoid) function:

 f (net) = 1/(1 + e –λ*net), where net = Σxiwi.

This function, seen in Figs. 7(b) and 7(c), is used for four reasons: First, it has 
the sigmoid shape giving a real-valued output. Second, as a continuous function, 
it has a derivative everywhere. Third, since the value of the derivative is great-
est where the sigmoidal function is changing most rapidly, the assignment of the 
most error is attributed to those nodes whose activation was least certain. Finally, 

Fig. 7.  Threshold functions. (a) was used in the Hebbian example. The sigmoid function, continuous 
and differentiable, is used with backpropagation. Figure adapted from [2].

(a)  A hard limiting and 
bipolar linear threshold.

(b)  A sigmoidal and unipo-
lar threshold.

(c)  The sigmoidal, biased and squashed. 
As λ gets larger than sigmoid 
approximates a linear threshold.
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the derivative of the logistic function is easily computed by a subtraction and 
multiplication:

 fʹ(net) = (1/(1 + e – λ*net)) = λ(f(net) * (1 – f(net))).

Backpropagation training uses the generalized delta rule. For nodes in the hid-
den layer, we look at their contribution to the error at the output layer. The for-
mulas for computing the adjustment of the weight wki on the path from the kth to 
the ith node in backpropagation training are:

(1) ∆wki = –c(di – Oi) *Oi(1 – Oi) xk, for nodes on the output layer, and
(2) ∆wki = –c *Oi(1 – Oi) Σj (–deltaj * wij)xk, for nodes on hidden layers.

In (2), j is the index of the nodes in the next layer to which i’s signals fan out 
and

 deltaj = –∂Error/∂netj = (d – Oi) * Oi(1 – Oi).

We next show the derivation of these formulae. First, we derive (1), the formula 
for weight adjustment on nodes in the output layer. As before, what we want is 
the rate of change of network error as a function of change in the kth weight, wk, 
of node i. We show that

 ∂Error/∂wk = –((di – Oi) * f  ʹ(neti) * xk).

Since f, which could be any function, is now the logistic activation function, we have

 fʹ(net) = f ʹ(1/(1 + e –λ*net)) = f(net) * (1 – f(net)).

Recall that f(neti) is simply Oi. Substituting in the previous equation, we get

 ∂Error/∂wk = –(di – Oi) *Oi * (1 – Oi) * xk.

Since the minimization of the error requires that the weight changes be in the 
direction of the negative gradient component, we multiply by –c to get the weight 
adjustment for the ith node of the output layer:

	 ∆wk = c(di –Oi) *Oi * (1 – Oi) * xk.

We next derive the weight adjustment for hidden nodes. For the sake of clarity, 
we initially assume a single hidden layer. We take a single node i on the hidden 
layer and analyze its contribution to the total network error. We do this by ini-
tially considering node iʹs contribution to the error at a node j on the output layer. 
We then sum these contributions across all nodes on the output layer. Finally, we 
describe the contribution of the kth input weight on node i to the network error. 
Figure 8 illustrates this situation.
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We first look at the partial derivative of the network error with respect to the 
output of node i on the hidden layer. We get this by applying the chain rule:

 ∂Error/∂Oi = ∂Error/∂netj * ∂netj/∂Oi.

The negative of the first term on the right-hand side, (δError)/(δnetj), is called 
deltaj. Therefore, we can rewrite the equation as

 ∂Error/∂Oi = –deltaj * ∂netj/∂Oi.

Recall that the activation of node j, netj, on the output layer is given by the sum 
of the product of its own weights and of the output values coming from the nodes 
on the hidden layer:

 netj = ∑iwijOi.

Since we are taking the partial derivative with respect to only one component of 
the sum, namely the connection between node i and node j, we get

 ∂netj/∂Oi = wij,

where wij is the weight on the connection from node i in the hidden layer to node j 
in the output layer. Substituting this result,

 ∂Error/∂Oi = –deltaj * wij.

Next we sum over all the connections of node i to the output layer:

 ∂Error/∂Oi = ∑j –deltaj * wij.

This represents the sensitivity of network error to the output of node i on the 
hidden layer. We next determine the value of deltai, the sensitivity of network error 

Fig. 8.  ∑j – deltaj*wij is the total contribution of node i to the error at the jth output. Our derivation 
gives the adjustment for wki. Figure adapted from [2].
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to the net activation at hidden node i. This gives the sensitivity of network error 
to the incoming weights of node i. Using the chain rule again,

 –deltai = ∂Error/∂neti = (∂Error/∂Oi) * (∂Oi/∂neti ).

Since we are using the logistic activation function,

 ∂Oi/∂neti = Oi * (1 – Oi).

We now substitute this value in the equation for deltai to get

 –deltai = Oi * (1 – Oi) * ∑j –deltaj*wij.

Finally, we can evaluate the sensitivity of the network error on the output layer 
to the incoming weights on hidden node i. We examine the kth weight on node i, 
wk. By the chain rule,

 ∂Error/∂wki = (∂Error/∂neti) * (∂neti/∂wki) = –deltai * (∂neti/∂wki) = –deltai * xk,

where xk is the kth input to node i.
We substitute into the equation the value of –deltai:

 ∂Error/∂wki = Oi(1 – Oi) * ∑j (–deltaj * wij)xk.

Since the minimization of error requires that the weight changes be in the direc-
tion of the negative gradient component, the weight adjustment for the kth weight 
of i is fixed by multiplying the negative learning constant:

 ∆wki = c * ∂Error/∂wki = c * Oi(1 – Oi) * ∑j (–deltaj * wij)xk.

For networks with more than one hidden layer, the same procedure is applied 
recursively to propagate the error from hidden layer n to hidden layer n – 1.

Although it provides a solution to the problem of learning in multilayer net-
works, backpropagation is not without its own difficulties. Like the hillclimbing 
algorithm [2] it may converge to a local minimum, as was seen in Fig. 6. Finally, 
backpropagation can be very expensive to compute, especially when the network 
converges slowly.

Example: Backpropagation Solving the Exclusive-Or Problem

We next demonstrate the backpropagation algorithm solving the exclusive-or prob-
lem. The exclusive-or function in logic produces true when either of its two input 
values are true, and false when both input values are either true or false. It wasn’t 
until the creation of the Boltzmann machine [12], the generalized delta rule, and 
the backpropagation algorithm that the exclusive-or problem was solved.

Figure 9 shows a network with two input nodes, one hidden node and one output 
node. The network also has two bias nodes, the first connected to the hidden node 
and the second to the output node. The net values for the hidden and output nodes 
are calculated in the usual manner, as the vector product of the input values times 
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their trained weights. The bias is added to this sum. The weights and the biases 
are trained using the backpropagation algorithm with the sigmoidal activation 
function. Note that the input nodes are also directly linked, with trained weights, 
to the output node. This additional linking can often let the network designer get 
a network with fewer nodes in the hidden layer and quicker convergence.

There is nothing unique about the network of Fig. 8. Any number of different 
networks could be used to compute a solution to the exclusive-or problem. This 
randomly initialized network was trained with multiple instances of the four pat-
terns that represent the truth-values of the exclusive-or function. We use the sym-
bol “→” to indicate that the value of the function is 0 or 1. These four values are

 (0, 0) → 0; (1, 0) → 1; (0, 1) → 1; (1, 1) → 0.

A total of 1400 training cycles, using these four instances, produced the follow-
ing values, rounded to the nearest tenth, for the weight parameters of Fig. 8:

 WH1 = –7.0; WH2 = 2.6; WHB = –7.0; WO1 = –5.0; WOH = –11.0; WOB = 7.0; WO2 = –4.0.

With input values (0, 0), the output of the hidden node is

 f(0*(–7.0) + 0*(–7.0) + 1*(2.6)) = f(2.6) → 1.

The output of the output node for (0, 0) is

 f(0*(–5.0) + 0*(–4.0) + 1*(–11.0) + 1*(7.0)) = f(–4.0) → 0.

With input values (1, 0), the output of the hidden node is

 f(1*(–7.0) + 0*(–7.0) + 1*(2.6)) = f(–4.4) → 0.

The output of the output node for (1, 0) is

 f(1*(–5.0) + 0*(–4.0) + 0*(–11.0) + 1*(7.0)) = f(2.0) → 1.

The input value of (0, 1) is similar. Finally, we check the network with input 
values of (1, 1). The output of the hidden node is

 f(1*(–7.0) + 1*(–7.0) + 1*2.6) = f(–11.4) → 0.

Fig. 9.  One backpropagation neural network that solves the exclusive-or problem. The Wij are the 
weights, and I the input nodes, H the hidden node, and O the output node. Figure adapted from [2].
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The output of the output node for (1, 1) is

 f(1*(–5.0) + 1*(–4.0) + 0*(–11.0) + 1*(7.0)) = f(–2.0) → 0.

The result demonstrates that the feedforward network of Fig. 8, using back-
propagation learning, made a nonlinear separation of exclusive-or data points. 
The threshold function f is the sigmoidal of Fig. 7(c), the learned biases have 
translated it very slightly along the positive direction of the x-axis. We offer a 
matrix representation that captures the weights and input values for this problem 
in Sec. 2.2.

In concluding this example, it is important to understand what the backpropa-
gation algorithm produced. The search space for our exclusive-or network has eight 
dimensions, represented by the seven weights of Fig. 9 plus the error of the output. 
Each of the seven weights was initialized with random values. When the initial 
output was produced and its error determined, backpropagation adjusted each of 
the seven weights to decrease this error. The seven weights are adjusted again with 
each iteration of the algorithm, moving toward values that minimize the error for 
computing the exclusive-or function. After 1400 iterations the search found values 
for each of the seven weights that lets the error approach zero. What has happened 
is that in an 8-dimensional space, backpropagation has found a 7-dimensional 
hyperplane that appropriately separates the four ex-or instances.

Finally, an observation is made. The exclusive-or network was trained to satisfy 
four exact patterns, the results of applying the exclusive-or function to true/false 
pairs. In modern deep learning situations training to solve exact situations is rarely 
the case. Take for example, a program that scans X-ray images to detect disease 
situations. Another example is a network that scans metal welds looking for bad 
metal binding. Such systems are called classifiers and they examine new, previously 
unseen situations to determine if there are potential problems.

2.2. Matrix algebra

We next consider how matrices are used to represent several of the neural net-
work examples seen earlier. First consider the general description of an artificial  
neuron described in Fig. 1. Here we have input values x1, x2, x3,…, xn. Each of these 
input values has a corresponding weight attached, w1, w2, w3,…, wn. The calculation 
of the value of the output node is Σiwixi which is given by the product of the two 
matrices:
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A threshold function, f, is then applied to the output of the node: f [Σiwixi].
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Our second example considers the weight calculations for the Hebbian stimulus 
conditioning network of Sec. 1. First the network is run with the original input and 
weights:
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The weight adjustment, ∆W, for the second iteration of the net is created by 
multiplying the original input array by the learning rate constant, c, times the 
original network output, either a 1 or –1:

 ∆W = X * c * f(X, W ).

The new set of weights is produced by scalar multiplication on the original input 
array: 

 [x1 x2 x3 … x6] * c * (1 or – 1) = [2w1 2w2 2w3 … 2w6].

Next, these new weights are multiplied by the transposed array of the next input 
values, [2x1, 2x2, 2x3,…, 2x6] to produce
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The output of the network is the sign of Σi2wi2xi, either +1 or –1. The next 
weight adjustment, [3w1 3w2 3w3 … 3w6], is like the most recent:

 [2x1 2x2 2x3 … 2x6] * c * (1 or –1) = [3w1 3w2 3w3 … 3w6].

The Hebbian unsupervised network continues, with numeric details as shown in 
Sec. 1.

2.3. Statistical measures

Traditional machine learning in AI has always been an exercise in computational 
statistics. For example, the ID3 algorithm and its descendants [15, Sec. 10.3] use 
information theory to measure how pieces of data from a large collection of data 
correlate. Principle component analysis is often used for dimensionality reduction 
of the very large matrices used in latent semantic analysis. A knowledge of the 
implicit parallelism possibilities within matrix algebra has led to computational 
efficiencies in deep learning.
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We earlier demonstrated how multi-layered feedforward networks propagated 
output error back across the hidden layers of the network. This error propagation 
is called gradient descent learning. We also noted that the output nodes of these 
networks were activated through using the summed values of their weighted inputs. 
We next describe the softmax equation that transforms network output values into 
distributions. This transformation takes the raw numbers produced by the net-
work’s output layer and transforms them into a probability distribution. The term 
“softmax” comes from a “softening” of the traditional max function which selects the 
maximum of a set of given values.

As we will see in Sec. 3, deep learning algorithms represent their words/tokens 
as small real numbers. This is done for many reasons, including keeping partial 
derivatives within acceptable bounds. Further, since the output of these networks 
reflects the correlations found between the words/tokens in the learned model, it 
is important to characterize the output values of many matrix computations as 
probability distributions.

A probability distribution is a set of non-negative numbers that sum to 1.0. The 
softmax function s supports this transformation of network output values into a 
probability distribution:

 σ(xj) = exj/Σi exi.

In this formula, the Softmax of each output xj is e to the power of that output 
divided by the sum of all outputs as a power of e. Even if xj is a negative number, 
e to that power is positive. For an example, s[1, 0, –1] is approximately [0.665, 
0.244, 0.090]. It should be recognized that softmax transforms each output value 
to be part of a probability distribution while retaining the overall relationships 
between the original output’s values. Figure 10 augments Fig. 5 by adding a 
Softmax layer. The result of the softmax processing is then used with backprop-
agation to reduce the errors in the weights of the nodes on previous layers of the 
network.

Fig. 10.  A revision of Fig. 5 to add a Softmax layer. The results of Softmax are then used to adjust 
the weights of the hidden layers. Figure adapted from [2].
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Figure 10 shows softmax used on the network output layer, however it can be 
used on the output values of sets of nodes anywhere in the network. One example 
of this will be shown with the attention component of the transformer model in 
Sec. 4.

There are several further issues that arise when using softmax. One is the prob-
lem of trying to process large vectors with big numbers. But even with small vec-
tors softmax can produce exaggerated results. Consider, for example, the Softmax 
of the output vector [1 5 1 1]. softmax produces the vector [0.0174 0.9479 0.0174 
0.174], where the second element of the vector gets a very high value, only 0.0521 
less than 1, while the smaller probabilities are close to 0.

This issue is called saturation and only gets worse when some number is much 
larger than the others: a result where the larger number gets even closer to 1 and 
the smaller values go to 0. This issue is critical because the resulting softmax vector 
is intended to be used for gradient descent error reduction, which can lead to slow 
convergence and high variance in the training process. There are remedies for sat-
uration problems, such as normalizing the output vector by dividing each element 
by the square root of the vector’s length, as we will see in later sections.

Finally, creating networks based on reasoning using probability distributions 
affects the entire design of the network. The word/token embeddings input to the 
network are represented as small real numbers, or floats, between, and including, 
one and zero. Weight vectors are randomly initialized as real numbers near zero. We 
see this in more detail with the large language models and transformers of Sec. 3.

Each output of the output layer of the neural network, before its softmax trans-
formation, is called a logit, pronounced “LOW-jit”. Using a probability distribution 
to determine reward/punishment measures for weights in the network is called 
calculating the cross-entropy loss. Entropy is a term from information theory that 
measures the degree of disorder or randomness in a system. Loss of entropy indi-
cates the reduction of disorder or error. When the Softmax equation is used this 
error reduction is measured probabilistically across the network’s output states. 
Cross-entropy is a term used for describing the difference between two distribu-
tions, i.e. the distributions of the current and of the desired outputs.

Decreasing cross entropy loss, a positive number, is measured using the negative 
logarithmic probability assigned to the Softmax output. softmax computes the 
probabilities of all the outputs and provides an ordering of the “best” results for 
minimizing loss. We represent the cross-entropy loss, CEL, x, as the negative loga-
rithmic probability of that result:

 CEL(f,x) = –ln pf(ax).

In this equation, (f,x) represents the Softmax equation, φ, applied to x which 
produces ax.

We next consider why the negative logarithmic probability is used. First, our 
error estimate from softmax is a positive number so we want to decrease that 
error. Second, the logarithmic function has an important property between 1, our 
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maximum probability, and 0: –ln(x) gets larger as x approaches 0 which is import-
ant because this range is where most of our focus will be. This logarithmic function 
of x is shown in Fig. 11.

3. Building Large Language Models

Consider the sentence “What does a language model model?” How many times in 
normal English communication does the word model follow itself? Not really that 
often. On the other hand, how many times will the word “hand” follow the three 
words “On the other”? Quite regularly, as drawing comparisons using binary met-
aphors is rather common in normal English communication. Both these situations 
are captured in language models.

A language model is designed to represent how a particular language is used. 
Current language models developed for deep networks are stochastic, where each 
query to the model produces a probability distribution of language patterns that 
satisfy that query. The data to support these models can be from written or oral 
language usage. Large language models are a probabilistic representation of the 
corpora of language usage on which they are trained. We focus next on building 
models for written English word/sentence communication.

As we will see, discovering what the next word should be in an expression is 
important for creating new expressions. In fact, language models also support find-
ing the most likely previous word for a set of words, and the most likely words to 
fit between language strings. This missing word generation process supports the 
design and use of many interesting language-based applications. These can include:

(A) Translation between languages.
(B) The classification of texts into different categories.
(C) The recognition of “sentiment” such as joy or anger in expressions.
(D) Information retrieval from databases.

Fig. 11.  The graph of –ln(x) as x approaches 0.
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(E) Answering questions, as in various standardized tests.
(F) The generation of news articles.
(G) Composing essays on various topics.

There are several components of the creation of large written English language 
models. We discuss these next.

3.1. Preparing the text

Representing an all-English text, even for a very large neural network, is a complex 
task. For one thing, there are more than an infinite number of numbers each of which 
can be part of a piece of text. No finite state machine can handle an uncountably 
infinite number of tokens! Thus, the first task in representing written language for a 
neural network is to break the text up into reasonable finite number of pieces, that 
we will refer to as “tokens”. We then describe how these tokens will be the input for 
the network. We can start by considering the example of the infinite number of num-
bers and replace each of these numbers by the token UNK. This token, indicating an 
“unknown” word in English, will also be used to replace any component of the text 
that is not in the final set of vocabulary tokens that will be the input to the network.

Because even very large neural networks have a certain fixed size, we next con-
sider what an “acceptable” number of vocabulary tokens might be. Current language 
models have a word vocabulary of 30,000, with BERT [16], to 50,000 for GPT [17]. 
Although this sounds like a rather large number of possible tokens for the network, 
the Oxford English Dictionary estimates there are more than 170,000 English words 
currently in use. The OED also contains about 50,000 obsolete words that are used 
at different times. GPT is, at the present time, trained on a corpus of English sen-
tences that contain more than a half trillion words from 45 terabytes of text data.

The task, therefore, once the training corpora is identified, is to reduce the total 
number of individual words in the training corpus to the specific set of tokens that 
the network can process. There are several methods for accomplishing this task:

(A) Individual words must be isolated and “recognized”. This isolation can be 
assisted by recognizing the blank spaces that separates words. Punctuation, 
such as a period or semicolon, can also separate words. This word “recognition” 
enables word embeddings, described below.

(B) Punctuation symbols are “recognized” using rules that describe their roles in 
English text. The punctuation symbols themselves are placed in the “UNK” 
category.

(C) Sentences are usually padded, in that a specific symbol, say “STOP” is added 
after every sentence. This STOP captures the difference between periods that 
end sentences and those that are parts of sentences, e.g., e.g.

(D) New paragraphs, new pages, misspelled and hyphenated words must also be 
recognized and tokenized, possibly as UNK.

(E) And so on…
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As can be understood with very little thought, this process of making rules to 
break up text into individual word/tokens is complex as well as tedious to apply. 
But computers are excellent at complex and tedious tasks. Further details on the 
English text tokenization process can be found in computational linguistics texts 
or on the internet.

The next task is to determine the number of unique words or tokens, i.e. the 
vocabulary V, for the language model. We also calculate the number of times each 
of these words/tokens is used in the training corpus. Once words are cataloged and 
their occurrences calculated, further reduction is a function of the vocabulary’s 
limitations in the network. Reduction is done in several ways, including removing 
non-word symbols from the text. Besides numbers, periods, commas, and other 
punctuation are removed. Chemical, biological, or mathematical expressions are 
also often removed. Rare and infrequently used words can also be removed.

About 2017 and with the emergence of GPT-1, a further refinement was made 
on language tokenization. All words, including the previous UNK, were decom-
posed further to create partial-word tokens. This process breaks all words into their 
constituent syllables or, if it is voiced speech, into phonemes. This process makes 
sense since there are far fewer syllables or phonemes than there are individual 
words in a language. GPT now uses about 50,000 of these language tokens. Once 
the size of the set of tokens appropriate for the constraints of the network, the V, is 
determined, the mapping from tokens to network representations is possible. This 
is called creating the word or token embeddings.

3.2. Creating word/token embeddings

Because a language model will be represented as a probability distribution over 
word/token use in a language, word/token encodings, randomly generated, are 
usually taken from the set of real numbers between –1 and 1. Each token will be 
represented as a vector of real numbers, or floats, called the word embeddings. The 
number of floats, f, used for word embeddings is a hyperparameter of the network. 
A typical value for f is 100, although much larger vectors are often used for token 
embeddings.

The size of the array of token embeddings is |V| × f, where |V| is the size of the 
vocabulary and f the number of floats used in the model. The integers 1 to |V | 
serve as the index for the array of token embeddings. Thus, if the token “butter” 
has index 6, then the 6th row of the embedding array is the vector representing 
“butter”. This array of word embeddings is a parameter of the learning network. 
When the network is trained on English word/token patterns and, for example, is 
looking for the most appropriate next word/token in a string of word/tokens, back 
propagation conditions all word embeddings.

To be precise, the input to the language model is the index of the current word/
token in question which is immediately translated into its embedding. Continuing 
from that point, all the operations of the network are on the embeddings. The 
output of the network is the probability that each of the tokens in the array of 
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embeddings is the next most likely token in an expression. The backpropagation 
conditioning is cross-entropy loss, described by the function –lnP(x) of Fig. 7. This 
is the negative natural log of the probability of x, where x is an instance of an 
actual correct next word. In the backpropagation stage, once the loss function is 
determined the token embeddings of that loss are modified.

3.3. Bi-grams and tri-grams

N-gram technology has long been a staple of natural language understanding and 
the development of language models. The general question asks what the probabil-
ity is of an expression being part of a language. In probabilistic terms, described in 
more detail in [2] PART VII, the probability, P, of the expression “It is hot today” 
can be represented using the chain rule:

 P(It is hot today) = P(It) * P(is | It) * P(hot | It is) * P(today | It is hot).

The expression P(X |Y) is interpreted as “the probability that X is true given 
that Y is true”. “It is hot today” is obviously a very short sentence. It is not diffi-
cult to imagine the calculations and network training necessary to determine the 
probabilities of longer expressions, e.g. 15 words. The point, besides the calculation 
of the probabilities themselves, is that the lack of a corpus sufficient to condition 
all the probabilities that make up the members of this product of probabilities is a 
serious limitation on learning.

The Markov assumption simplifies this lengthy calculation, and constrains the 
probabilities that make up the chain, by assuming that the probability of a word is 
only conditioned by the probability of the word that immediately precedes it. Our 
previous example, simplified by using the Markov assumption, is

 P(It is hot today) = P(It) * P(is | It) * P(hot | is) * P(today | hot).

Using the Markov assumption to determine the probability of word combina-
tions is called the bi-gram, or two-word model. These bi-gram probabilities can be 
developed in either direction: either taking a word and determining the most likely 
next word or taking a word and determining the probability of the previous word. 
One can understand how determining bi-gram probabilities of word pairs is essen-
tial for generating new sequences of coherent word patterns.

Tri-gram probabilities are even more powerful in capturing patterns in language 
use. Tri-gram, or three word models, describe the probability of a word as a func-
tion of the probability of the two words that precede it or the two words that follow 
it. It takes a larger language corpus to train tri-gram models than that required for 
training bi-gram models.

3.4. Training the language model

Many of the details that make up the current generation of large language 
models remain company confidential. It takes internet searches and personal 
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communications to determine the best estimates of how these models are com-
posed and trained. There is, however, information describing the time and costs of 
LLM training: For example, it took Google four days for 64 specially configured 
tensor processor to train BERT [16]. For the more general purpose GPT-3, it is 
estimated that training took 1,024 A100 computers with graphic processing units 
about 34 days. It is also estimated that it would cost about $4.6M to train GPT-3 
using the lowest cost GPU cloud provider [17]. The details on Gemini, Google’s 
DeepMind LLM, are not available.

Fortunately for end users, once these models are trained, they can then be 
reused with minimal retraining by outside groups for their own special purpose 
needs. The idea is that the final layer of the network can be replaced, and the 
learned patterns of the hidden layers can be reconditioned to address new tasks. 
This new training can take about 2 h on a normal laptop using graphics processors. 
As a result, much less time is needed for the general user to employ the BERT or 
GPT environments for specific uses. We describe this re-purposing, or fine-tuning, 
of LLMs in more detail in Sec. 5.

It is interesting to consider some of the computations produced by a language 
model. Charniak [18] in Chapter 4 describes the results of running such a model. 
His language model was trained on a corpus of about 1 million words and had a 
vocabulary size of 7500 words. The length of the word embeddings was 30. Selected 
results from Charniak’s model are presented in Table 3. Cosine similarity measures 
word embedding vectors of length 30. Note that words that are used in similar situ-
ations have close cosine values. It is interesting that words that are appropriate for 
fitting into a sequence of words can also have similar meanings. For example, recalls 
or says could each follow he or she of a person’s name in a sentence.

We next consider the design of the attention-based large language models called 
transformers.

4. Toward Transformer-Based Large Language Models

The precursors of transformer-based language models, before the release of GPT-1 
in 2018, were convolutional and recurrent neural networks and autoencoders. 
Convolutional networks are feedforward networks that learn image features through 
filter optimization. Recurrent networks support feedback within layers so that 

Table 3.  Results summarized from [18, Chap. 4], 
using a bi-gram-based language model.

Word Cosine similarity

the –0.160
a 0.127
recalls 0.479
says 0.553
computer 0.249
machine 0.333
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new input for some nodes is modulated by previous node output. This “memory 
device” facilitates their use in automated handwriting and speech recognition tasks. 
Autoencoders are unsupervised networks for learning efficient representations of 
unlabeled data. The decoder element then translates this internal representation 
back into some useful form. For example, the autoencoder can be generative, trans-
lating a string of words into a different language.

The architectures underlying convolutional and recurrent networks are scaled-up 
implementations of ideas several decades older. Models resembling classical convo-
lutional neural networks gained state-of-the-art status in computer vision and mod-
els resembling the original design for the LSTM recurrent neural network came to 
dominate applications in natural language processing [19, 20]. Through the 2010s, 
the rapid emergence of deep learning successes based on CNN and RNN technology 
is also attributable to the availability of computational resources, including innova-
tions in parallel computing and massive data farms, i.e. cheap storage and multiple 
internet service providers.

There were, however, fundamental limitations with RNNs including the use of 
LSTM recurrent networks. First, recurrent networks have difficulty addressing long 
range dependencies in sentences. Second, RNNs had issues with very large and very 
small learning gradients. Finally, the sequential nature of the recurrent network 
“roll out” limited parallel evaluation and required substantially increased training 
times. Attention-based models address each of these issues.

One further contribution of the early 2010s, and an important step in the evo-
lution of transformer-based language models, was the creation of the generative 
adversarial network, or GAN. The GAN was originally developed by Goodfellow 
and his colleagues [21]. The GAN pits two neural networks “against” each other, the 
adversarial component, in a zero-sum competition. Given a training set, the GAN 
technique can generate new data with the same statistical profile as its training 
data. For example, a GAN trained on image data generates new images that can 
look authentic to human viewers (url 1). Although originally proposed as a method 
for unsupervised learning, the GAN is also useful for semi-supervised [22] and [23] 
learning. It can also support reinforcement learning [24].

When first proposed, the attention mechanism produced improvement to the 
recurrent networks previously used for machine translation, performing better than 
the earlier encoder–decoder sequence-to-sequence approaches [25]. Using attention, 
the decoder receives as input a context vector that consists of a weighted represen-
tation of the input at each time step. Researchers noted that some important quali-
tative insights often emerged when using attention weights. In translation tasks, for 
example, attention could suggest choices between synonyms for generating words in 
the target language. In Fig. 12 attention enhances the autoencoder–decoder model.

Starting with OpenAI’s GPT-1, available in 2018, the transformer has become 
the predominant network architecture for generative AI. Nearly all language pro-
cessing and vision analysis tasks are currently based on the transformer architecture. 

2430008.indd   242430008.indd   24 24-09-2024   11:24:0824-09-2024   11:24:08



  WSPC/214-IJSC  2430008  ISSN:1793-351X 2nd Reading

LLMs: Their Past, Promise, and Problems 25

Besides GPT, examples include BERT [16], RoBERTa [27], Longformer [28], and 
Gemini [29, url 18.16].

OpenAI’s large language models can develop “conversations” using the GPT 
transformer [17]. Further, their vision transformer is emerging as the model for 
multiple vision tasks, including the recognition of images and detection of objects, 
as well as creating semantic supported [27, 30]. Transformers are also used for 
speech recognition [31] and reinforcement learning [18]. Transformer models use 
autoencoders containing self-attention mechanisms. We consider these next.

4.1. Transformer models

The paper entitled Attention is All You Need [1] was a revolutionary contribution 
to the design of generative models. The idea that supports the transformer design 
is the self-attention mechanism. Figure 12, adapted from [1], reflects the trans-
former model with an attention mechanism, called self-attention, in each of the 
encoder–decoder components.

Attention mechanisms enhance transformer models because they support selec-
tive focusing on multiple input elements. This improves both decoding accuracy 
and computational efficiency. Attention mechanisms prioritize and emphasize rele-
vant information, acting as a “focus” that enhances overall model performance. This 
overcomes one of the problems of the previous recurrent models where long-range 
dependencies within a sentence or across several sentences were often lost.

As can be seen in Table 4, there are currently multiple transformer-based large 
language models available for exploration. Many details of these transformers are 
not available for public perusal. We will confine our comments to the publications 
available. In particular, we focus on the original transformer architecture proposed 
by Vaswani et al. [1], seen in Fig. 13, and on transformer descriptions offered by 
Zhang and his colleagues [32].

The encoder maps an input sequence of token embeddings, (x1, x2,…, xn) to a 
sequence of continuous representations (z1, z2,…, zn). Consuming Z, the decoder than  

Fig. 12.  Bahdanau attention [25] mediates between the input to the encoder and the decoder output 
in an example of English to French translation.
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generates, one at a time, an output sequence (y1, y2,…, ym). At each step, when 
generating an output, the decoder can utilize all the previously generated symbols 
as additional input. This property is called being auto-regressive.

The encoder for the original transformer was a stack of six identical layers. As 
seen in Fig. 12, there are two components in each layer, the first is a multi-head 
self-attention mechanism and the second a fully connected feed-forward percep-
tron network. There are add and norm connections for each component to ensure 
inter-component and inter-layer communication.

The original decoder was also a stack of six identical layers. Besides the two sub-
components identical to those of the encoder, there is a second multi-head attention 
mechanism, masked, and positional encoding ensuring that the output embeddings 
are offset by one position. This insures that the output values at any time also 

Table 4.  Currently, July 2024, available software for generative AI. Note that information on several 
models is company confidential. Interested readers should search these software tools for more current 
information as AI companies are known to change names, merge, or simply dissolve. Table adapted 
from [2].

Model Capabilities Parameters Training data URL

BERT Question answering, finds semantic 
similarity

345 million 3.3 billion words url 2

PaLM 2 Generates text, essays, and reports, 
answers questions, uses desired 
style and tone. Tuned to follow 
instructions 

340 billion 3.6 trillion tokens url 3

ChatGPT, 
powered by 
GPT

Generates text, essays, and reports, 
answers questions, uses desired 
style and tone. Tuned to follow 
instructions. 

175 billion 300 billion tokens url 4

Gemini created 
by Google 
DeepMind

Generates multimodal output from 
multimodal input. Generates 
documents with both text and 
images. 

Information 
not public

Information not 
public

url 16
url 17

Llama 2 Generates text, essays, and reports, 
answers questions using desired 
style and tone.

70 billion 2 trillion tokens url 5

T5 Advanced multilingual text generation 220 million 29 trillion characters 
in 107 languages

url 6

Stable diffusion Generate images from text, image 
translation. 

860 million 5 billion image text 
annotated pairs

url 7

Imagen Generate images from text, image 
translation, advanced image editing. 

Information 
not public

Information not 
released publicly

url 8

DALL E Generate images from text, advanced 
image modification

12 billion 650 million text 
image pairs

url 9

Phenaki Generate videos from text descriptions Information 
not public

Information not 
released publicly

url 10

Music Gen Generate music from text descriptions Information 
not public

Information not 
released publicly

url 11
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depend on previous output values. The decoder’s components also have add and 
norm mechanisms supporting inter-component and inter-layer communication.

4.2. Attention

Figure 12 presented an example where the encoder and decoder were focused on a 
string of tokens to translate that string into French. We begin this section with two 
examples of the self-attention mechanism that supports transformer processing. In 
the transformer, self-attention is a network function that assists the encoder and 
decoder in determining how tokens within a string of tokens are related to each 
other; examples are shown in Fig. 14. In both figures the bottom string is identical 
to the top string and attention should be seen as a search for relationships within 
the string itself. In Fig. 14, the focus is on the it token, searching for an appropriate 
reference; on the left attention focuses on animal and on the right on street.

As a second example, consider the sentence of Fig. 15, The young boy always 
carries his toy car with him. If the word him is masked, and the model doesn’t 
remember boy from the beginning of the sentence, it will not know which pronoun 

Fig. 13.  A transformer model, reflecting the encoder and decoder using self-attention. This is one layer 
of the original six-layer stack architecture. Figure adapted from [1].

2430008.indd   272430008.indd   27 24-09-2024   11:24:0924-09-2024   11:24:09



  WSPC/214-IJSC  2430008  ISSN:1793-351X 2nd Reading

28 G. F. Luger

to use at the end of the sentence: him, her, or it. Extending this example to a 
translation task, the transformer needs to use an appropriately translated pronoun 
when referring to boy.

To define the attention mechanism, we consider three components. First, a query, 
q, that can probe a tensor, T, of m tuples, for specific information. This probe que-
ries tensor locations, or keys, to access the information at that specific location. 
The tensor location we refer to as the key, k, and the content of that location as the 
value v, the focus of the query. The query, keys, values, and output are all tensors.

Attention and self-attention are defined:

Attention( , ) ( , ) ,q T a q k vi i i= Σ

where q is the token query, i ranges over the n key-value tuples of tensor T and the 
a are the positive real number attention weights.

With self-attention, the tensor T contains the query, q, the key k, and the value 
v, i.e. attention is focused on the vector containing the query.

To summarize results of using the attention mechanism:

(1) The attention query, q, process can operate on tensors, T, of any size.
(2) A single query, q, will receive different responses, v, depending on the keys of 

tensor, T.
(3) The query, q, operating on T can be flexible, i.e. asking for exact or approxi-

mate matches.

Fig. 14.  Attention: finding the relevant tokens supporting use of the pronoun “it” in two different but 
syntactically related sentences. Figure adapted from [2].

Fig. 15.  Self-attention for his. Line shading indicates the amount of attention the word his pays to 
other words in the sequence. Using masked, or auto-regressive attention, only the words before the word 
under consideration are visited, in this example, the three leftmost lines. Figure adapted from [2].

The young boy always carries his toy car with him. 

The young boy always carries his toy car with him. 
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(4) The a weights on queries are positive real numbers. The attention process 
forms a positive cone, C. i.e. if vi and vj are outputs of the attention procedure 
and c and d are positive scalars, then all c vi + d vj also belong to cone C.

To assure that all attention weights are non-negative and sum to 1, we apply a 
form of the softmax function:

 
a q k e

ej

a q k

i
a q k

j

i
( , ) .

( , )

( , )=
Σ

Attention supports the aggregation, or pooling, of information, given query q, 
over multiple key-value pairs. The attention procedure itself provides a continuous 
and differentiable function for the feed-forward neural network to determine which 
elements best suit the construction of further weighted representations. The atten-
tion weights attached to each query–key pair are trained by the values accessed 
by the key in the key–query pair. Figure 16 offers an example of attention-pooling 
network processing.

We next describe several metrics that support the query–key analysis, or how 
the query-based key-value relationship, a(q, ki) might be trained for each vi. One 
commonly used metric is the Gaussian. As an example of using the Gaussian 
metric, the Nadaraya–Watson estimator [33, 34] is employed in regression analysis 
where the query represents the location for making the regression, the keys are the 
locations of observed previous data, and the values correspond to the regression 
values. For the Gaussian regression example, the a(q, k) measure is calculated:

 a q k ei
q ki( , ) ,( )= − −1

2|| ||2

where ||q – ki|| is the normed vector difference between q and each key, ki.

Fig. 16.  The attention procedure, with pooling, computes a continuous and differentiable function of 
weight values over the vi. Weights are trained for (q, ki) by the values vj. Figure adapted from [2].
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There are alternative choices for determining a(q, ki). The most common is 
the scaled dot-product used in the Vaswani et al. [1] original transformer. The 
dot-product is the scalar value created by the component-wise multiplication of two 
vectors and then the summation of these products. To ensure that the magnitude of 
the dot-product does not become over large, it is usually normalized by the square 
root of the dimension of the key vector, ki. The dot-product attention measure is

 a(q, k ) qki i
T= / d ,

where kT
i indicates the transpose of the key vector, ki, and d is the length of the 

vector ki.
We can simplify the results of this equation by using the softmax equation:

 a q, k a q, ki i
i
T

i
T

( ) softmax ( ) //= = e eqk d
j

a qk dΣ ( ) / ,

where kT
i and kT

j are the transposes of ki and kj and d is the length of vector ki.
Most current transformers, including the original Vaswani et al. [1] transformer, 

use the scaled dot-product with softmax for calculating attention. Figure 17(a) 
represents the scaled dot-product attention mechanism. As just noted, scaled 
dot-product attention calculates using the matrix representations Q and K for 
all the individual q and k. From a matrix perspective, the attention mechanism is 
computed on a set of queries combined into a matrix Q. The keys and values are 
also combined into matrices K and V. The matrix output then is

 
Attention softmax( , , ) ( ) ,Q K V QK

d
V

T

k

=

where T is the transpose of K and dk is the dimension of the key vectors.
An alternative to the scaled dot-product attention mechanism is to use the 

dot-product mechanism without the scaling factor. Scaling is used to prevent the 
dot-product from getting too large and helps stabilize the learning process. Dividing 

Fig. 17.  (a) The standard scaled dot-product attention mechanism. (b) shows the multi-head scaled 
dot-product attention mechanism. Figure adapted from [1].

(a) Scaled dot-product attention. (b) Multi-head attention.
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by the square root of the dimension of the key vector does not affect the overall 
distribution of the attention scores.

Research continues determining quality attention mechanisms. In fact, one 
research group [35] proposes improving the transformer architecture with the 
weights of a multiple level perceptron. A more common approach, however, is that 
of the original Vaswani et al. [1] attention mechanism that uses multi-head atten-
tion processing, as seen in Fig. 17(b).

Instead of using the scaled dot-product attention function with model-based 
dimensional keys, values, and queries, they found it helpful to linearly project the 
queries, keys, and values h times with different learned linear projections. The 
dimension of the key vector was used for the query and key and the value used its 
own dimension. In their original transformer architecture projection, h was 8. On 
each of the projected versions of queries, keys, and values the attention function is 
performed in parallel.

The attention output values are then concatenated together and again pro-
jected, producing the final values, as seen in Fig. 16(b). The multi-head attention 
mechanism supports the notion that the model can attend to different represen-
tation subspaces at different positions all in parallel, a function not possible with 
a single attention head of Fig. 17(a). Vaswani et al. [1] present several of these 
parallel multi-head attention results graphically.

Returning to the description of Fig. 13, the encoder contains self-attention lay-
ers, where the queries, keys and values come from the output of the previous layer. 
Each position of the encoder can attend to any position in the previous layer. 
Similarly, the self-attention layers in the decoder attend to all positions up to 
and including the current position which is masked to enforce the auto-regressive 
property.

In the encoder/decoder attention layers, the queries come from the previous 
decoder layer and the keys and values come from the output of the encoder. This 
enables each position in the decoder to attend to all positions in the encoder 
sequence. This gives the attention mechanism a functionality like the earlier 
pre-transformer sequence-to-sequence models seen in Fig. 12.

For the attention mechanism to utilize the order in the sequences there must 
be information about the relative order and position of tokens in each sequence. 
To accomplish this, positional encodings are added to the input embeddings at 
the bottoms of the encoder and decoder stacks, as seen in Fig. 12. Finally, each 
layer of the encoder and decoder contains a fully connected feed-forward network 
which is applied to the output of each of the attention mechanisms. The training 
process for the translation tasks of the Vaswani et al. [1] transformer is described 
in their paper.

We conclude this subsection with Fig. 18, a representation of the calculation of 
the attention mechanism.

For a high-level description of attention, compare it with normal database 
retrieval. In database retrieval, a query, q, is used to search for a key, k, that is 
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a pointer to a value, v, that we wish to retrieve. With the attention mechanism, 
instead of returning a particular key–value pair, we return a probability distribu-
tion, based on our query, of the appropriateness of all possible key–value pairs. A 
more formal description for many of the transformer mechanisms described this 
section can be found in [36].

Since 2018 the transformer architecture with attention has become the pre-
dominant methodology used in building large language models. The practice in 
using transformers is to pretrain these large-scale models on enormous corpora 
to optimize self-supervised learning. After pretraining, the models can then be 
fine-tuned by their users with data appropriate for the user’s application needs, as 
we see in Sec. 5 and Fig. 19. When using this pretraining approach, the original 
attention-based transformers are referred to as foundation models [26]. We consider 
these issues in Sec. 5.

5. The Transformer in Practice

Our final section first considers how the transformer-based model is trained to 
operate in specialized environments. Then we demonstrate fine-tuning the LLM 
to train it for new domains and then we present prompt engineering, a real-time 
technique that conditions the LLM to further focus its performance. Finally, we 
describe several important application areas for generative AI.

Fig. 18.  The output of attention pooling is a weighted average of values where weights, a, are com-
puted using the attention procedure with softmax. Figure adapted from [2].

2430008.indd   322430008.indd   32 24-09-2024   11:24:5124-09-2024   11:24:51



  WSPC/214-IJSC  2430008  ISSN:1793-351X 2nd Reading

LLMs: Their Past, Promise, and Problems 33

5.1. Pretraining: The corpora

A large language model is first pre-trained on corpora of text data and on specific 
language modeling related tasks. During pre-training, the LLM tries to learn and 
understand general language patterns found in the relationships between words. 
Some examples of a suitable corpus for LLM pre-training:

• English Wikipedia — a collection of articles from the English version of 
Wikipedia, the free online encyclopedia. It contains a range of topics and writ-
ing styles, making it a representative sample of English language usage. The 
English component of Wikipedia contains about 2.5 billion words.

• The BookCorpus — a large collection of fiction and non-fiction books. It was 
created by scraping book text from the web and includes a range of genres, from 
romance and mystery to science fiction and history. The books in this corpus 
were required to have a minimum length of 2000 words and to be written in 
English. BookCorpus contains approximately one billion words.

5.2. Fine-tuning the LLM

Transfer learning is a technique that leverages the knowledge gained from one 
task to improve performance on another task. Transfer learning for LLMs involves 
taking a pretrained LLM and fine-tuning it for a specific “new” task, such as text 
classification or text generation. Fine-tuning updates the model’s parameters using 
the new task-specific data, as in Fig. 19. Fine-tuning consists of four steps:

(1) Determine the model to be tuned and its parameters, e.g. the learning rate.
(2) Aggregate new training data, where format and other parameters depend on 

the model.

Fig. 19. The pretrained transformer can transfer its knowledge to related domains. The new domain is 
conditioned by using a smaller task-specific dataset. Figure adapted from [2].
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(3) Compute losses, the error measure, and gradients, to change the model to 
minimize error.

(4) Update the model through backpropagation.

5.3. Prompt engineering

Prompt engineering is the practice of querying the trained LLM with specific pieces 
of information to elicit the most appropriate responses from the model. There are 
several approaches to prompt engineering. Zero-shot queries request information 
that is not part of the model’s training; the model will, however, generate a result. 
This technique makes LLMs useful for many different tasks. Few-shot prompting is 
a strategy where the model is given several task-specific examples before presenting 
the actual query. Few-shot queries enable the model to generalize over the queries. 
To summarize:

Zero-Shot Prompting: Used when the task is self-explanatory, requiring no specific 
examples.

One-Shot Prompting: Ideal for tasks requiring a specific format or context, where 
one example can guide the output. For example, give the LLM a job description 
and then ask it to “write a similar job description for a Data Analyst position”.

Few-Shot Prompting: Used for complex tasks requiring multiple examples that pro-
vide broader context or to handle more nuanced queries. For example, after giving 
several labeled product reviews, to “Predict the sentiment of the following review”.

Chain of Thought Prompting: It breaks down large problems into intermediate 
steps, allowing language models to tackle complex tasks not solved with standard 
prompting techniques.

Chain-of-thought prompting is a style of few-shot prompting, where prompts 
contain a series of intermediate reasoning steps. Chain-of-thought prompting 
encourages the model to reason the way that the prompts are proposed, i.e. 
in a series of steps. Surprisingly, the answers from chain-of-thought prompting 
are often more accurate and interpretable than the answers from other prompts. 
Chain-of-thought prompting also discourages the model from generating quick 
easy answers.

There are now several suggestions for organizing the process just described for 
moving from the foundation model through fine tuning to prompt engineering. This 
process is called LLM alignment, see [37] for a survey of approaches. One of these 
is called RLHF or Reinforcement Learning from Human Feedback [37]. There are 
still major questions about the utility of these approaches [38].

We next demonstrate our own use of prompt engineering to change LLM’s 
responses. For our examples we use BERT (url 2) and GPT (url 4). The user gives 
Prompt: and the LLM replies with Output:. We begin with an example of a zero-
shot prompt:
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Prompt: The sky is
Output: blue

The LLM replies with a continuation of “The sky is” string, which may not be 
appropriate for the user’s needs. We next try for an improved result:

Prompt: Complete the sentence: The sky is
Output: so beautiful today.

Since we told the LLM to “complete the sentence”, the result looks different as 
the LLM follows what it is told to do. Prompts contain any of the following ele-
ments and the format depends on the task:

 Instruction — a description of a specific task you want the model to perform.
 Context — further information or a particular context that directs the model to a 

response.
 Input Data — the input or question that you are interested in asking.
 Output Indicator — the type or format of the output, for example, a poem.

We can also design prompts for various tasks by using commands that instruct 
the model what we want to achieve. These prompts include: “Write”, “Classify”, 
“Summarize”, “Translate”, “Order”, etc.

Prompt: Instruction: Translate the text to Spanish:
    Text: “hello! ”

Output:  ¡Hola!

We can add contextual constraints to the prompt to give information to the 
model or to restrict the boundaries of the responses to the prompt. Context can be 
either instructions that specify how the model should behave or information that 
the model uses or references to generate a response. For example:

Prompt: Marbles:
   Color: red
   Number: 12
   Color: blue
   Number: 28
   Color: yellow
   Number: 15
   Color: green
   Number: 17

  How many green marbles are there?
Output:  There are 17 green marbles.
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We can also add examples to enrich the context.

Prompt: Classify the following.
          Options:
               - red wine
               - white wine
          Text: Chardonnay
               The answer is: white wine
          Text: Cabernet
               The answer is: red wine
          Text: Moscato
               The answer is: white wine
          Text: Riesling
          The answer is:

Output: white wine.

To demonstrate the utility of few-shot prompting, consider sentiment analysis: 
We take paragraphs of different opinions and label them with a sentiment classifi-
cation. Then we condition the model to take a paragraph as input and generate a 
classification as output. Before transformer-based LLMs, recurrent neural networks 
were not very adaptive. Adding a new classification to be considered or asking the 
model not to classify but to summarize a paragraph required that the model needed 
to be modified and retrained.

A large transformer language model, however, does not need to be retrained. We 
can ask the model to classify a paragraph or summarize it when we know how to 
ask correctly. The model cannot classify a paragraph into categories A or B when 
the specifications for A and B are unclear. As we see next, the LLM can classify 
“positive” or “negative” sentiment once the model is told what “positive” and “nega-
tive” are. During training, the model learns these words and acquires the ability to 
follow simple instructions.

Prompt: Classify the text into positive, neutral, or negative:
           Text: That musical performance was enjoyable.

     Classification:
Output: The text “That musical performance was enjoyable” can be classified as positive.

The response was “positive”. This is correct and concise. The model will also be 
able to classify “awesome” as positive. Identifying sentiment results from the begin-
ning instruction: Classify the text into positive, neutral, or negative.

Prompt: Text: The room was very hot.
           Classification: Negative

  Text: The lecture was very intense.
           Classification:
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Output:  The text “The lecture was very intense” can be classified as neutral. It describes 
the lecture’s intensity without inherently conveying a positive or negative 
sentiment.

Prompt: Text: Today the weather is fantastic
   Classification: Pos

  Text: The furniture is small.
   Classification: Neg

  Text: I don’t like your attitude
   Classification: Neg

  Text: That shot selection was awful
   Classification:

Output:  The text “That shot selection was awful” can be classified as negative, as it 
expresses strong disapproval or criticism of the shot selection.

Next, chain of thought reasoning allows models to decompose complex problems 
into intermediate steps that are solved individually. Moreover, the language-based 
nature of chain of thought makes it applicable to most tasks people can solve using 
language.

Prompt: Which is a faster way to get home?
Option 1: Take a 10 min bus, then a 40 min bus, and finally a 10 min train.
Option 2: Take a 90 min train, then a 45 min bike ride, and finally a 10 min bus.
Option 1 will take 10 + 40 + 10 = 60 min.
Option 2 will take 90 + 45 + 10 = 145 min.
Since Option 1 takes 60 min and Option 2 takes 145 min, Option 1 is faster.
Which is a faster way to get to work?
Option 1: Take a 1000 min bus, then a half hour train, and a 10 min bike ride.
Option 2: Take an 800 min bus, then an hour train, and finally a 30 min bike ride.

Output:  Option 1 will take 1000 + 30 + 10 = 1040 min.
Option 2 will take 800 + 60 + 30 = 890 min.
Since Option 2 takes 890 min and Option 1 takes 1040 min, Option 2 is faster.

In Fig. 20, we request the LLM to create two images, the first from a word 
description and the second from an image plus a word description.

5.4. Sample applications of generative AI

Using the fundamental concepts supporting LLM training and prompt engineer-
ing, several interesting applications have emerged. Generative AI models are used 
to write novels, pass the legal bar exam, create marketing campaign materials, 
automatically regenerate financial reports, and for many other interesting tasks. 
LLMs have applications beyond the domain of text generation. They can be used 
to generate images from text, or text description of images, or, with instructions, 
to transform images.
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Image to Image Conversion, (url 1).
Image conversion includes transforming the external elements of an image, such as 
its color, medium, or form, while preserving its constitutive elements, as in Fig. 20. 
One example would be turning a daylight image into a nighttime image. This type 
conversion is also used to manipulate the attributes of an image, such as a face, color-
ize them, or change their style. Another example is to take images in the style of one 
painter and transform them in the style of another. Image conversion has also been 
used in advanced photo editing applications, e.g. to add or remove details, figures, or 
objects from pictures. All these tasks are performed using carefully designed prompts.

Text to Images and Images to Text, (url 4, url 10).
Generative AI models are also trained to generate images from text descriptions 
under a special class of models called diffusion. Diffusion models are a class of 
generative models that simulate the data generation process by transforming a 
simple starting distribution into the desired complex data distribution through a 

Fig. 20.  The LLM creates an image of a suit-wearing basketball-playing puppy (with 5 legs?). The 
second image transforms a kitten into a Gandalf clone. Figure adapted from [2].
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sequence of invertible operations. These models can be used in applications includ-
ing answering questions about an image, creating descriptions of images, and edit-
ing an image.

Text to Video
Interestingly, not only can transformers generate text to images, as we saw in 
Fig. 20, but current research is exploring possibility of transforming text to video. 
For example, “Show me a woman in a red parka skiing down a resort ski run” or “A 
man and women in black clothes are doing ice dancing”. Many important questions 
remain, including how best to train transformers with video materials [40, 41]; see 
also (url 15).

Music Production, (url 6).
Using recurrent neural networks and variational autoencoders, generative AI has 
been trained to automatically create music from text descriptions. Models can 
learn melodic motifs, chord progression, as well as rhythmic elements. Applications 
include automatically synthesizing music from different genres, tweaking composi-
tions, teaching music theory, and provoking creativity in music makers.

Code Generation, (url 2, url 12).
Generative AI can be used to create computer code based on prompts. This code 
can be generated in most programming languages using only a natural language 
description of the problem. Applications support more accurate code completion 
suggestions, generating unit tests for a function, automated debugging, generat-
ing documentation, teaching programming, and answering questions about pieces 
of code.

Protein Design and Generation, (url 13).
Trained AI models are used to generate new protein sequences. The training con-
sists of several amino acid sequences of different proteins and then fine-tuning with 
a smaller subset of sequences that have contextual descriptions. Using language 
prompts for the desired properties of the required protein, the model automati-
cally generates several proteins whose amino acid sequences meet those properties. 
This technology has been used to speed up the process of drug design for new 
medications.

Continued Extensions of Google’s DeepMind Problem Solvers, (url 14).
Google’s DeepMind research group designed the Alpha family of game playing 
programs. Their Alpha Zero program played go, chess, and shogi all at world 
class levels. A recent extension, AlphaGeometry [42], combines symbolic AI with 
deep learning language model technology to generate proofs in Euclidean geometry. 
Symbolic AI, along the line of traditional mathematical theorem proving programs 
[43, 44], suggests possible proof procedures. These partial solutions are then passed 
to deep learning models to explore symbolic and construction-based methods 
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for completing the proofs. The resulting program surpassed the geometry proof 
skills of previous computers and approaches the performance of the International 
Mathematical Olympiad competitors.

Finally, Table 4 presents the currently most used large language models, along 
with several of their design parameters. In the table, “tokens” refers to the piece of 
information used to train the model, syllables, words, components of images, etc. 
Having more parameters or training tokens does not always support having a bet-
ter model, as code design and computational efficiency always remain important.

6. Summary and Conclusions

We have presented an overview of the evolution of neural network research and prac-
tice, beginning in the 1940s with models of human cortical processing and ending 
with transformer-based large language models. The complete story of this evolution 
requires a much deeper analysis of the algorithms and engineering practices than we 
have presented here [17, 16, 36]. Although the current application of these technolo-
gies is very impressive, as we saw in Sec. 5, and offers entirely new opportunities for 
AI practitioners, their remain important issues that society must address.

First, there is a lack of mathematical integrity and support for many of the 
engineering practices of modern AI. That engineers create programs “because they 
seem to work” is not sufficient justification for software tools that are coming to 
play important roles in modern life. Adding to this issue is the fact that many of 
our current LLM creators are keeping their engineering practices “company confi-
dential”. Protecting profit for corporate investment is important, but accountability 
for algorithm use and engineering decisions is critical for society’s responsible use 
of this technology. A step in this direction would be to have more university collab-
oration, peer-reviewed publications, and open analysis of the current generation of 
AI practices. And linked to this, of course, is better education of the public to both 
the promise and problems of the current generation of AI problem solvers.

An important first step here is to acknowledge that LLMs reflect the data that 
they are trained on. If the data is racist and/or sexist, so also will be its product. 
If the model is trained on data of a certain date and location, its results will reflect 
this. The fine-tuning and prompt engineering of LLMs to extract useful results is 
more of a black art than a science, although several research groups are addressing 
this [37, 38].

Large language models are relatively knowledge free. They don’t know what 
they know and, even worse, they don’t know what they don’t know. But they will 
always offer the user a response. Consider again the five-legged dog of Fig. 20. Their 
“knowledge” is how words/tokens are associated in large corpora, with attention 
networks assisting in building more complex associations. These models, in the 
human sense, do not “know” anything.

A further critique, explained by the absence of knowledge within the system, is 
a lack of transparency and explainability of LLMs and their products. When an 
LLM produces a product, it is close to impossible for it to produce any justification 
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for that result. For most of society’s important decisions, justifications and expla-
nations are required. Why was I approved for that bank loan at a particular inter-
est rate? Why do you think this tumor is malignant? Why is this stock purchase 
recommended? Humanly responsible decision-making requires transparency and 
explanations.

The United States government (url 20, url 21, url 22) and the European Union 
have each proposed guidelines for AI use (url 23) as have major companies includ-
ing IBM (url 19) and Microsoft (url 18). Professional societies including IEEE 
[45, 46] as well as a modern AI textbook [2] that contains chapters on the ethical 
use of modern AI technology.

We noted in our introduction that many of the neural network neuroscientist 
pioneers, including McColloch and Pitts, Hebb, and Rosenblatt, felt that their 
creations emulated aspects of human neuronal processing. That vision is no longer 
part of the prospectus of the current generation of LLMs [47].
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