
1

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

International Journal of Semantic Computing
(2025) 1–38
© World Scientific Publishing Company
DOI: 10.1142/S1793351X25300018

Current AI: A Survey and Critique

George F. Luger 
Professor Emeritus, Computer Science, Linguists, and Psychology

University of New Mexico, Albuquerque, NM 87113, USA
luger@cs.unm.edu

https:/www.cs.unm.edu/~luger

Received 29 September 2024
Accepted 9 October 2024

Published

With the recent attention of the user community to the “successes” of large language mod-
els (LLMs), it is easy to overlook the extension and depth of AI research and practice over
the past seventy years. Beginning with the 1956 Dartmouth summer workshop where the
name artificial intelligence was first suggested, this new discipline branched out in multiple
directions. In fact, many of these early AI research areas were to become the foundation
for the later emergence of what we now call computer science. In this paper, we review the
highlights of the major research and application areas of artificial intelligence including the
symbol-based, genetic/emergent, probabilistic and neural network/deep learning. We con-
clude with several comments on the problems and promise of AI and the current generation
of LLMs.

Keywords: Symbol-based AI; genetic/emergent AI; probabilistic AI; Geep learning;
AI critique.

1. Introduction

The word artificial is derived from two Latin words: first the noun, ars/artis, mean-
ing “skilled effort”, i.e., artist or artisan, and second, the verb facere, “to make”.
The literal meaning, then, of artificial intelligence is that something, namely intel-
ligence, is made by skilled effort. Our first definition of Artificial Intelligence is that
proposed near the end of the Dartmouth summer workshop proposal:

For the present purpose the artificial intelligence problem is taken to be that of mak-
ing a machine behave in ways that would be called intelligent if a human were so
behaving.

This definition can be seen as directly related to Turing’s test described in the
journal Mind [1]. Turing conjectures that if observers are not able to determine
whether they are interacting with a human or with a computer, the software on the
computer must be seen as intelligent. The Dartmouth workshop attendees thought

2530001.indd 12530001.indd 1 12-11-2024 11:43:3612-11-2024 11:43:36

https://dx.doi.org/10.1142/S1793351X25300018
https://orcid.org/0009-0001-8164-5964
mailto:luger@cs.unm.edu

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

2 G. F. Luger

that problem solving in humans could be sufficiently understood that it could be
“captured” as computer algorithms. Supporting the view that the mechanisms of
intelligence can be automated, the workshop proposal claims:

The (workshop) study is to proceed on the basis of the conjecture that every aspect of
learning or any other feature of intelligence can in principle be so precisely described
that a machine can be made to simulate it.

This definition still suffers from the fact that human intelligence itself is not
very well defined and understood. Most of us are certain that we know intelligent
behavior when we see it, but we cannot define intelligence in specific enough detail
to simulate it with a computer program.

A further question asks whether it is necessary to pattern an intelligent com-
puter program after what is known about human intelligence, or is a strict “engi-
neering” approach to developing “intelligent” results sufficient? Is it even possible to
achieve general intelligence on a computer, or does an intelligent entity require the
richness of sensation, emotion and experience found only in a biological existence,
as critics have suggested [2, 3]?

For these reasons, any definition of artificial intelligence falls short of unambig-
uously defining the field. If anything, it has only led to further questions and the
paradoxical notion of a field of study whose major goals include its own definition.
This difficulty in arriving at a precise definition of AI is entirely appropriate.
Artificial intelligence is a young discipline, and its structure, concerns and methods
are less clearly defined than those of more mature sciences such as physics.

For the time being, we will simply say that AI is the collection of problems and
methodologies studied by artificial intelligence researchers. This definition may seem
silly and meaningless, but it makes the important point that artificial intelligence,
like every science, is an evolving human endeavor, and perhaps is best understood
from that perspective.

In the following sections we summarize AI’s continuing evolution across four
research themes: the symbolic, the genetic/emergent, the stochastic and the neu-
ral network or connectionist. Each of these approaches to AI has made important
contributions; we describe these briefly and offer examples. Several AI researchers
have been given the ACM Turing Award and we describe their work. The Turing
award is the highest recognition offered to researchers in computer science: the
Nobel award for computer science.

2. Symbol-Based AI

Symbol-based AI, sometimes called GOFAI or good old-fashioned AI [4], requires that
explicit symbols and sets of symbols reflect the world of things and relations within
a problem domain. Euler’s graph theory offers a foundation for what AI researchers
called state-space search. Several different representational languages are available
for describing states of the symbol-based world including the propositional and the

2530001.indd 22530001.indd 2 12-11-2024 11:43:3612-11-2024 11:43:36

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 3

predicate calculi. Symbol-based AI was also enabled by association-based represen-
tations including semantic networks and conceptual graphs [5].

Examples of symbol-based artificial intelligence include game-playing programs
for chess, checkers and go; expert systems, where knowledge is encoded in explicit
rule relationships; and control algorithms for robots and craft exploring deep space.
The explicit-symbol system approach has been highly successful, although, as its
critics point out, the resulting programs can be inflexible, poorly representing an
evolving world. For example, how can an explicit symbol system adjust when a
problem changes over time and is no longer exactly as encoded as in the original
program? How can such a system compute useful results from incomplete or impre-
cise information?

The symbol-based approach to modeling human intelligence began even before
the 1956 Dartmouth summer workshop. The Logic Theorist [6], created at Carnegie
Institute of Technology, was a program to solve problems in the propositional logic,
solving many of the problems in Whitehead and Russell’s [7] second volume. A sec-
ond early program was Gelernter and Rochester’s [8] program at IBM that solved
secondary school geometry problems. Samuel [9], also working at IBM, designed a
program that played checkers. With these and other early game-playing programs,
symbol-based AI became an important component of early AI.

The psychological and philosophical foundations for symbol-based AI came pri-
marily from Newell and Simon working at what is now Carnegie Mellon University.
Their representational mechanism was the production system originally proposed
as a model for computation by Emile Post in the 1930s. Newell and Simon’s [10]
Turing Award lecture was entitled Computer Science as Empirical Inquiry: Symbols
and Search. In this lecture, they hypothesized that the production system offered
a necessary and sufficient model of human intelligence. Edward Feigenbaum, the
designer at Stanford University of the expert system technology, Sec. 2.2, was Herb
Simon’s PhD student.

Some historical highlights of the symbol-based approach to AI include:

In the early 1960s, Marvin Minsky and John McCarthy began the MIT AI Laboratory.
For his early AI research, Minsky received the ACM Turing Award in 1969.

In 1962, John McCarthy moved to Stanford University where he began the Artificial
Intelligence Project. He was awarded the ACM Turing Award in 1971.

In the 1960s, through the 1980s researchers including Ross Quillian, Yorick Wilks,
Roger Schank and John Sowa were created semantic networks, conceptual depen-
dencies, scripts and conceptual graphs, association-based data structures intended to
model human language use.

The development of the LISP (McCarthy), PROLOG (Marseille and Edinburgh
Universities) and Smalltalk (Xerox Palo Alto Research Center) programming environ-
ments was critical for designing the early representations for the challenges of AI. In
2003, Alan Kay received the ACM Turing Award for his work in developing Smalltalk,
the prototype for object-oriented languages.

2530001.indd 32530001.indd 3 12-11-2024 11:43:3612-11-2024 11:43:36

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

4 G. F. Luger

The Physical Symbol System hypothesis, research of Allen Newell, Herbert Simon
and colleagues at CMU, described how intelligence could be modeled in humans
and represented on machines. Newell and Simon received the ACM Turing Award
in 1975.

In 1965, Ed Feigenbaum, whose PhD research was at CMU with Herb Simon, his
dissertation director, went to Stanford University. Feigenbaum led his research group
developing the first expert systems. Feigenbaum is considered the “Father of Expert
Systems” and received the ACM Turing Award in 1994.

In 1966, Raj Reddy received his PhD at Stanford, as John McCarthy’s student. Reddy
moved to the faculty at CMU where he became the founding director of the Robotics
Institute. He developed Hearsay I, the first program capable of continuous speech
recognition. Reddy received the ACM Turing Award in 1994.

Symbol-based artificial intelligence was the primary focus of research in AI from
the 1950s through the 1990s. It didn’t disappear at that time, rather its successes
became an important component of, and merged into, modern computer-based
problem-solving practice. As an example, the inheritance hierarchies of the 1960s
semantic networks [11] built into the early Smalltalk language, became a critical
component of modern object-oriented programming.

2.1. Symbol-based example: Game playing and heuristics

After the creation of a state space of problem situation, a search algorithm is
needed to explore this space. Best-first or heuristic search takes the “best” next
state from all possible “next” states in the state space graph. Consider, for exam-
ple, a heuristic in the game of tic-tac-toe, Fig. 1. The costs for exhaustive search
for tic-tac-toe are high but not insurmountable. Each of the nine first moves have
eight possible continuations, which in turn have seven moves, and so on through all
possible board placements. An analysis puts the total number of states considered
in exhaustive search as 9 × 8 × 7 × … × 1 or 9!, or 362,880 paths.

Symmetry reduction decreases this search space. Using symmetry there are not
nine possible first moves but only three, as seen in Fig. 2: a corner, the center of a
side, or the center of the grid. Use of symmetry on the second level further reduces
the number of paths through the space to 12 × 7!, a best-first search heuristic can,
in this case, eliminate search almost entirely, as seen in Fig. 3.

If you have first move and x, plan to go to the state in which x has the most
possible winning opportunities. The first three states in the tic-tac-toe game are
measured in Fig. 2. The best-first algorithm selects and moves to the state with
the highest number of opportunities. In the case of states with equal numbers of
potential wins, take the first such state found. In our example, x takes the center
of the grid. Note that not only are the other two alternatives eliminated, but so
will be all their descendants. Two-thirds of the full space is pruned away with the
first move!

2530001.indd 42530001.indd 4 12-11-2024 11:43:3612-11-2024 11:43:36

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 5

After the first move, the opponent, o, can choose either of two moves, as seen
in Fig. 3. Whichever state is chosen, the “most winning opportunities” heuristic
is applied again to select among the possible next moves. As search continues,
each move evaluates the children of a single node. Thus, exhaustive search is not
required. Figure 3 shows the reduced search after three steps in the game, where
each state is marked with its “most wins” value. For the first two moves of the X
player only seven states are considered, considerably less than the 72 considered in
exhaustive search. For the full game, “most possible wins” search has an even larger
savings when compared to exhaustive search.

2.2. Symbol-based example: The expert system

The expert system, enabled by the production system technology, was created by
Edward Feigenbaum’s research group at Stanford University in the mid-1960s [5].

Fig. 1.  The first three moves in the tic-tac-toe game where the state space is reduced by symmetry.
The figure is adapted from [5].

Fig. 2.  The “most wins” strategy applied to the first move in tic-tac-toe.

2530001.indd 52530001.indd 5 12-11-2024 11:43:3612-11-2024 11:43:36

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

6 G. F. Luger

In a goal-driven rule-based expert system, where focus is on a problem to be solved
or a diagnosis to be made, the problem’s goal is considered: the problem is X. The
program then finds an if... then... rule whose conclusion matches that goal and then
focuses on that rule’s premises. This action corresponds to working back from the
problem’s goal to supporting sub-goals. The process continues in the next iteration,
with these sub-goals becoming the new goals to match against the rules’ conclu-
sions. This process continues until sufficient sub-goals are found to be true and thus
indicate that the original goal is satisfied.

In an expert system, if a rule’s premises cannot be determined to be true by
given facts or using rules in the knowledge base, it is common to ask the human
user for help. Some expert systems specify certain sub-goals that are to be
solved by the user. Others simply ask the user about any sub-goals that fail to
match rules in the knowledge base. Consider an example of a goal-driven expert
system that has user queries when no rule conclusion is matched. This is not a
full diagnostic system, as it contains only four simple rules for the analysis of
automotive problems. It is intended to demonstrate the search of a goal-driven
expert system, the integration of new data and the use of explanation facilities.
Consider the rules:

Fig. 3.  The state space for tic-tac-toe reduced by using best-first search. The “most wins” strategy is
used, with the bold arrows indicating the best moves. The figure is adapted from [5].

2530001.indd 62530001.indd 6 12-11-2024 11:43:3712-11-2024 11:43:37

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 7

Rule 1:
If
  the engine is getting gas, and
 the engine will turn over,
then
  the problem is spark plugs.

Rule 2:
if
  the engine does not turn over, and
  the lights do not come on
then
  the problem is battery or cables.

Rule 3:
if
  the engine does not turn over, and
  the lights do come on
then
  the problem is the starter motor.

Rule 4:
if
  there is gas in the fuel tank, and
  there is gas in the carburetor
then
  the engine is getting gas.

This is a very simple example. Not only is its automotive knowledge limited
at best, but it also ignores several important aspects of actual implementations,
including that the rules are phrased in English, rather than in a computer lan-
guage. On finding a solution, an actual expert system will tell the user its diag-
nosis, although our example simply stops. If it had failed to determine that the
spark plugs were bad, our expert system would have needed to back up to the top
level and try Rule 2 next. Despite its simplicity, however, this example under-
scores the importance of rule-based search and representation by and/or graph
search.

An important advantage of the expert system is its transparency in reasoning.
First, all the rules are considered independent of each other, so in debugging an
expert system, rules can simply be removed and replaced by “better” rules. This
is an important example of the iterative refinement process: when the program
produces results that are “wrong” in some sense, we replace them with better rules.
The designer corrects his/her understanding of a problem by continuous improve-
ment of rules that generate solutions.

2530001.indd 72530001.indd 7 12-11-2024 11:43:3712-11-2024 11:43:37

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

8 G. F. Luger

A second advantage of the expert system is the transparency of the reasoning
process. For example, suppose the automotive expert system has an explanation
facility, and assume that the consultation has reached the stage represented by
Fig. 4. The dialogue begins by the expert system asking the user about a goal it is
unable to prove. User responses are in bold type:

gas in fuel tank?
yes
gas in carburetor?
yes
engine will turn over?
why

Here the user enters a why query, i.e., the user asks, “why do you want to know
whether the engine will turn over?” The system responds with the presentation of
the rule under question:

It has been established that:
the engine is getting gas,
therefore if
the engine will turn over,
then the problem is spark plugs.

Because the user answered yes to the first two questions, Rule 4 is satisfied,
verifying the first premise of Rule 1. When the why query was made, the system
was trying to solve the second premise of Rule 1. Note that the explanation for the
system’s behavior is simply a restatement of the current rule under consideration
as this explains why the program wants to know whether the engine will turn over.

Fig. 4.  The and/or graph the expert system searches to determine the problem is spark plugs. A rule’s
and constraints are linked by an arc. The figure is adapted from [5].

2530001.indd 82530001.indd 8 12-11-2024 11:43:3712-11-2024 11:43:37

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 9

In the response to the why query, the system states that it has concluded that the
engine is getting gas.

Suppose the user then asks:

how the engine is getting gas

The system will respond to how it concluded that the engine is getting gas. The
response is a trace of the reasoning that led to this conclusion, working back from
the goal along the rules that support it to the user responses:

This follows from Rule 4:
if
  gas in fuel tank, and
 gas in carburetor
then
  engine is getting gas
gas in fuel tank was given by the user
gas in carburetor was given by the user

2.3. Symbol-based example: Controlling a deep space vehicle

Planning has been an important component of symbol-based AI from the begin-
ning. Planning takes a set of world-based descriptions and searches through them
to find a goal or solution state. Planning has been used in the early days for finding
a configuration of a set of blocks that satisfy certain constraints [12] or to get a
robot to solve a particular task. It has advanced from these simple tasks to address
more complex situations, such as assembly line production.

An example of a more complex planning task is designing a control system
for Livingstone, NASA’s deep-space reconnaissance vehicle, as seen in Fig. 5.
Williams and Nayak [13, 14] created a model of the propulsion system for space

Fig. 5.  The Mode Configuration of the propulsion system and the operations that change the state of
the system. The figure is adapted from Williams and Nayak [13].

2530001.indd 92530001.indd 9 12-11-2024 11:43:3812-11-2024 11:43:38

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

10 G. F. Luger

vehicles and a set of logic-based reasoning rules to address possible adverse situ-
ations, such as a blocked valve or a disabled thruster. The spacecraft’s controller
addresses these failings by changing the state of the system represented by a
graph of possible next states that are chosen by the control system. As seen in
Fig. 5, different control operations can take the system to different states. The
Williams and Nayak [13, 14] approach for controlling space vehicles was success-
ful. It remains to be seen if these control algorithms will be successful in even
more complex situations, such as self-driving vehicles [15, 16].

2.4. Symbol-based example: Information-based decision trees: ID3

One final success story of symbol-based AI is data mining technology. Decision
tree analysis programs, such as ID3 [17], are used on large sets of human data.
The analysis of purchasing patterns, for example, is often used to predict a per-
son’s future credit needs and options. We next present the ID3 algorithm of a
small sample of data.

Suppose a bank or department store wants to analyze the credit risk for new
customers whose annual income is below $50,000. The bank or store considers
earlier records of customers in this same income group. It then asks for equivalent
information from the new credit applicants: that is, to build a profile of known
customers’ data to determine the risk for the new customers that wants credit. In
a simplified example, Table 1 presents the data of 14 previous customer applicants.

In Fig. 6, ID3 uses information theory [18] to build a decision tree that ana-
lyzes the previous customers’ data to determine credit RISK. The algorithm,
using Shannon’s formula, considers each of the four information sources, CREDIT
HISTORY, DEBT, COLLATERAL and INCOME, to determine which piece of
information best divides the population in the question of credit RISK. INCOME
does this as is reflected in the first choice of Fig. 6.

Since the group in the left-most branch of Fig. 6 all have high credit RISK,
that part of the search is finished: if you earn $15,000 or less, your credit rating is
high RISK. The algorithm then considers the group on the middle branch to see
which factor divides these people best for credit RISK and that factor is CREDIT
HISTORY. The search continues until the decision tree of Fig. 6 is produced. Note

Table 1.  The data of 14 lower income people that applied for credit.
Data table is adapted from Quinlan [17].

No. Risk Credit history Debt Collateral Income

1. High Bad High None $0–15k
2. High Unknown High None $15–35k
3. Moderate Unknown Low None $15–35k
4. High Unknown Low None $0–15k
5. Low Unknown Low None over $35k
6. Low Unknown Low Adequate over $35k
7. High Bad Low None $0–15k

2530001.indd 102530001.indd 10 12-11-2024 11:43:3812-11-2024 11:43:38

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 11

that the COLLATERAL factor is not important. ID3 helps minimize the amount of
information needed for analysis of new customers applying for credit: their amount
of COLLATERAL is not useful for determining RISK. Full details on ID3 are avail-
able in Luger [19, Sec. 10.3.2].

3. Genetic and Emergent AI

A second theme of current artificial intelligence is the genetic and emergent
approach to problem solving. Holland [20] of the University of Michigan, was a pri-
mary designer of genetic algorithms. Holland’s algorithms are a natural extension
of the “Randomness and Creativity” goal of 1956 Dartmouth workshop. Genetic
algorithms use operators including mutation, inversion and crossover, to pro-
duce potential solutions for problems. The best of these possible solutions is then
selected, using a fitness function, to create the next generation of possible solutions.

Genetic algorithms are another example of the space–space search we saw in
Sec. 2.1. The difference is that new states are created by the “genetic” operators
that transform the current states of a problem. Further, instead of focusing on
single states as we saw in the examples of the previous section, these operators
transform the “fittest” members of the current population of states. In this sense,
they emulate the “survival of the fittest” members of that population.

Evolutionary programming goes back to the creation of digital computers. In
1949, John von Neumann asked what levels of organizational complexity were nec-
essary for self-replication. John von Neumann’s goal according to Burks [21] was

… not trying to simulate the self-reproduction of a natural system at the level of
genetics or biochemistry. He wished to abstract from the natural self-reproduction
problem its logical form.

Finite state automat offered the representational medium for artificial life
research and von Neumann’s research in the late 1940s. The development of genetic

Fig. 6.  The final decision tree produced from the data of Table 1 to be used for assessing the credit risk
of new lower income customers. Example and figure are adapted from Quinlan [17].

2530001.indd 112530001.indd 11 12-11-2024 11:43:3812-11-2024 11:43:38

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

12 G. F. Luger

algorithms and programming began in the 1960s and extended into the late 1990s.
Research in a-life, that now includes work in synthetic biology and chemistry, con-
tinues to the present [5, Sec. 6.3].

Some highlights of the genetic and emergent approaches to AI problem solving
include:

In the late 1940s, John von Neumann studied finite state machines for properties of
self-organization and replication.

From the 1960s through the 1990s, John Holland at the University of Michigan created
genetic algorithms and classifier systems.

The Game of Life, created in the 1970s by the mathematician John Horton Conway and
made popular in Scientific American by Martin Gardiner, popularized a-life technology.

In the 1990s, John Koza at Stanford University used concepts from genetic algorithms
to create genetic programming.

Current researchers [22–24] continue to explore creative issues in artificial chemistry
and biology.

There are several genetic operators that produce offspring having features of
their parents; the most common of these is crossover. Crossover takes two candi-
date solutions and divides them, swapping components to produce two new candi-
dates. Figure 7 illustrates crossover on bit string patterns of length 8. The operator
splits them in the middle and forms two children whose initial segment comes from
one parent and whose tail comes from the other. Note that splitting the candidate
solution in the middle is an arbitrary choice. This split may be at any point in
the representation, and indeed, this splitting point may be randomly adjusted or
changed during the solution process. Before showing problems solved by genetic
algorithms, we present pseudocode for that algorithm:

Let P(t) be a list of n possible solutions, x1
t, at time t:

P(t) = {x1
t, x2

t,..., xn
t}

procedure genetic algorithm;
begin
 set time t to be 0;
 initialize the population P(t);
 while the termination condition of the problem is not met do
 begin
            evaluate fitness of each member of the population P(t);
            select pairs of members from population P(t) based on fitness;
            produce the offspring of these pairs using genetic operators;
            replace, based on fitness, weakest candidates of P(t);
 set new time to be t +1
 end
end.

2530001.indd 122530001.indd 12 12-11-2024 11:43:3812-11-2024 11:43:38

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 13

For example, suppose the target class is the set of all possible bit strings of
length 8 beginning and ending with a 1. Both the parent strings in Fig. 6 would
have performed relatively well on this task. However, the first offspring would be
much better than either parent: it would not have any false positives and would
fail to recognize fewer strings that were in the solution class. Note also that its
sibling is worse than either parent and will likely be eliminated over the next few
generations.

Mutation is another important genetic operator. Mutation takes a single candi-
date and randomly changes some aspect of it. For example, mutation may select a
bit in the pattern and change it, switching a 1 to a 0 or #. Mutation is important
in that the initial population may exclude an essential component of a solution. In
our example, if no member of the initial population has a 1 in the first position,
then crossover, because it preserves the first four bits of the parent to be the first
four bits of the child, cannot produce an offspring that does. Mutation would be
needed to change the values of these bits. Other genetic operators, for example
inversion, which reverses the order of the components of the representation, could
also accomplish this task.

We next present three problems and discuss representation issues and fitness
functions appropriate for their solutions. Three things should be noted: first, all
problems are not easily or naturally encoded as bit level representations. Second,
the genetic operators must preserve crucial relationships within the population, for
example, producing usable components of code for a genetic programming problem.
Finally, we discuss an important relationship between the fitness function(s) for a
problem and the encoding of that problem.

3.1.  Genetic/emergent example: CNF satisfaction

The conjunctive normal form (CNF) satisfiability problem is straightforward: an
expression of the propositional calculus is in CNF when it is a sequence of clauses
joined by an and (∧) relation and each of the sequence of clauses is in the form of
a disjunction, the or (∨) of the literals. For example, if the literals are, a, b, c, d, e
and f, and ~ indicates that a literal is false, then the expression

 (~a ∨ c) ∧ (~a ∨ c ∨ ~e) ∧ (~b ∨ c ∨ d ∨ ~e) ∧ (a ∨ ~b ∨ c) ∧ (~e ∨ f)

is in CNF. This expression is the conjunction of five clauses, each clause is the
disjunction of two or more literals. CNF satisfiability means that we find an
assignment of true or false (1 or 0) to each of the six literals, so that the CNF

Fig. 7.  Use of crossover on two bit strings of length eight. # is a “don’t care” bit.

2530001.indd 132530001.indd 13 12-11-2024 11:43:3912-11-2024 11:43:39

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

14 G. F. Luger

expression evaluates to true. The reader should confirm that one solution for the
CNF expression is to assign false to each of a, b and e. Another solution has e
false and c true.

A natural representation for the CNF satisfaction problem is a sequence of six
bits, each bit, in order, representing true, 1, or false, 0, for each of the six literals,
again in the order of a, b, c, d, e and f. Thus:

1 0 1 0 1 0

indicates that a, c and e are true and b, d and f are false, and the example CNF
expression is false.

We require that the actions of each genetic operator produce offspring that are
truth assignments for the CNF expression, thus each operator must produce a
six-bit pattern of truth assignments. An important result of our choice of the bit
pattern representation for the truth values of the literals of the CNF expression
is that any of the genetic operators discussed to this point will leave the resulting
bit pattern a legitimate possible solution, i.e., crossover, inversion and mutation
all leave the resulting bit string a possible solution of the problem. Even other less
frequently used genetic operators, such as exchange, interchanging two different
bits in the pattern, leave the resulting pattern a legitimate possible solution of the
CNF problem. In fact, from this viewpoint, it is hard to imagine a better suited
representation than a bit pattern for the CNF satisfaction problem.

The choice of a fitness function for this population of bit strings is not quite as
straightforward. From one viewpoint, an assignment of truth values to literals will
make the expression either true or false. If a specific assignment makes the expres-
sion true, then the solution is found; otherwise, it is not. At first glance it seems
difficult to determine a fitness function that can judge the “quality” of bit strings
as potential solutions.

There are several alternatives, however. One would be that the full CNF expres-
sion is made up of the conjunction of five clauses. Thus, we can make up a rating
system that will allow us to rank potential bit pattern solutions in a range of 0–5,
depending on the number of clauses that pattern satisfies. The pattern:

1 1 0 0 1 0 has fitness 1,
1 0 0 0 1 0 has fitness 2,
0 1 0 0 1 1 has fitness 3, and
1 0 1 0 1 1 has fitness 5 and is a solution.

This genetic algorithm offers a reasonable approach to the CNF satisfaction
problem. One of its most important properties is the use of the implicit parallelism
that is afforded by operating on the entire population of potential solutions. The
genetic operators have a natural fit to this representation. Finally, the solution
search seems to fit naturally a parallel “divide and conquer” strategy, as fitness is
judged by the number of problem components that are satisfied.

2530001.indd 142530001.indd 14 12-11-2024 11:43:3912-11-2024 11:43:39

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 15

3.2. Genetic/emergent example: Genetic programming

Koza [25, 26] has suggested that a working computer program might evolve through
successive applications of genetic operators. In genetic programming, the structures
adapted are hierarchically organized segments of computer programs. The learning
algorithm maintains a population of candidate programs. The fitness of a program
is measured by the ability to solve a set of tasks, and programs are modified by
applying crossover, mutation and other operators to a program’s subcomponents.

Genetic programming searches a space of computer programs of varying size and
complexity. The search space is of possible computer programs composed of func-
tions and terminal symbols appropriate to the problem to be solved. These pieces
consist of standard mathematical functions, logical and domain-specific procedures
and other related programming operations; this search is random, largely blind and
yet surprisingly effective.

The production of new programs comes with application of genetic operators
such as crossover and mutation. These operators must be customized to produce
new computer programs. The fitness of each new program is then determined by
seeing how well it performs on the problem under consideration. Programs that
do well on this fitness task survive to produce the children of the next generation.

We next present several examples, adapted from Koza [25] of genetic operators
producing new programs. The Lisp computer language, created in the late 1950s by
John McCarthy, one of the organizers of the 1956 AI Dartmouth summer workshop,
is functional. Lisp program components are symbol expressions, or s-expressions.
These symbol expressions have a natural representation as trees, where the func-
tion is the root of the tree and the arguments of the function, either terminating
symbols or other functions, descend from the root. Figure 8 offers examples of
s-expressions represented as trees. Operators map these structures of s-expressions
into new trees that are Lisp program segments.

When setting up a domain for creating programs to address a set of problems,
first analyze what terminal symbols are required. Next select program segments
sufficient for producing these terminals. As Koza notes [25, p. 86] “... the user of
genetic programming should know ... that some composition of the functions and

Fig. 8.  The random generation of a program of Lisp s-expressions. The operator nodes, +, *, are from
the set of Lisp functions. The figure is adapted from Koza [25].

(b)(a) (c)

2530001.indd 152530001.indd 15 12-11-2024 11:43:3912-11-2024 11:43:39

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

16 G. F. Luger

terminals he supplies can yield a solution of the problem.” The functions can be as
simple as {+, *, −, /} or more complex functions such as sin(X), cos(X), or matrix
operators. Terminals can be the integers, real numbers, matrices, or more complex
expressions. The terminal symbols must include all symbols that the create func-
tion set defined can produce.

A population of initial “programs” is generated by randomly selecting elements
from the union of the functions and terminals. Start with an element from the
functions, say +, and get a root node of a tree with two potential children. Suppose
the initialization then selects *, with two potential children, as the first child, and
then terminal 6 from as the second child. Another random selection might yield
the terminal 8 and then the function +. Assume it concludes by selecting 5 and 7
from the terminals.

The program just produced is represented in Fig. 8. Figure 8(a) gives the tree
after the first selection of +, Fig. 8(b) after selecting the terminal 6 and Fig. 8(c)
the final program. A population of similar programs is created to begin the genetic
programming process. Sets of constraints, such as the maximum depth for pro-
grams to evolve, can help control population growth. A more complete description
of these constraints, as well as different methods for generating initial populations,
may be found in Koza [25].

The discussion to this point addresses the issues of representation, s-expressions,
and the set of tree structures necessary to initialize a situation for program evolu-
tion. Next, we require a fitness measure for populations of possible programs. The
fitness measure is problem-dependent and usually consists of a set of tasks the
evolved programs are intended to solve. The fitness measure itself is a function of
how well each program does on these tasks. One example fitness measure is called
raw fitness. This score adds the differences between what a program produces and
the results that the actual task of the problem required. Thus, raw fitness is the
sum of errors across a set of tasks. Normalized fitness divides raw fitness by the
total sum of possible errors which puts all fitness measures within the range of 0 to
1. Fitness measures can also include an adjustment for the size of the program, for
example, to reward smaller, more compact programs. An example of a fitness test
is presented in Sec. 3.3.

Genetic operators, besides transforming program trees, also include the exchange
of structures between trees. Koza [25] describes the primary transformations as
reproduction and crossover. Reproduction simply selects programs from the pres-
ent generation and copies them unchanged into the next generation. Crossover
exchanges subtrees between the trees representing two programs.

For example, suppose we are working with the two parent programs of
Fig. 9, and that the random points indicated by | in parents a and b are selected
for crossover. The resulting children are shown in Fig. 10. Crossover can also be
used to transform a single parent by interchanging two subtrees within that parent.
Two identical parents can create different children with randomly selected crossover
points. The root of a program can also be selected as a crossover point.

2530001.indd 162530001.indd 16 12-11-2024 11:43:4012-11-2024 11:43:40

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 17

The state of the solution is reflected by the current generation of programs.
There is no record keeping for backtracking or any other method for skipping
around the fitness landscape. From this viewpoint, genetic programming is like
hill-climbing [27] where the “best” children are selected at any time, regardless
of what the ultimate best program might be. The genetic programming parallels
nature in that the evolution of new programs is a continuing process. Nonetheless,
lacking infinite time and computation, termination conditions are often necessary.

The fact that genetic programming is a technique for the computational gen-
eration of computer programs also places it within the automated programming
research tradition. From the earliest days, AI practitioners have worked to cre-
ate programs that automatically produce programs and solutions from fragmen-
tary information. Genetic programming is another tool in this important research
domain.

3.3. Genetic/emergent example: Kepler’s third law of planetary motion

Koza [25, 26] describes many applications of genetic programming that solve
interesting problems, but most of his examples are rather large and very com-
plex. Mitchell [28] has created an example that illustrates many of the concepts of

Fig. 9.  Two programs, selected for fitness, are randomly chosen for crossover. The “|” represents the
point selected for crossover. The figure is adapted from Koza [25].

(b)(a)

Fig. 10.  The child programs produced by the crossover operator applied in Fig. 8. The figure is
adapted from Koza [25].

(b)(a)

2530001.indd 172530001.indd 17 12-11-2024 11:43:4012-11-2024 11:43:40

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

18 G. F. Luger

genetic programming. Kepler’s Third Law of Planetary Motion describes the func-
tional relationship between the orbit period, P, of a planet and its average distance,
A, from the sun, as is shown in Table 2.

Kepler’s Third Law, with c a constant, is

 P 2 = cA3.
If we assume that P is expressed in units of earth years, and A in units of earth’s
average distance from the sun, then c = 1. An s-expression representing this rela-
tionship is
 P = (sqrt (* A (* A A))).

Thus, the program we want to evolve for Kepler’s third Law is represented by the
tree structure of Fig. 11. The selection of the set of terminal symbols in this exam-
ple is the single real value given by A. The set of functions are {+, −, *, /, sq, sqrt}.

We begin with a random population of programs. This population might include:

 (* A (− (* A A) (sqrt A))), with fitness = 1,

 (/ A (/ (/ AA) (/ AA))), with fitness = 3,

 (+ A (* (sqrt A) A)), with fitness = 0.

Fig. 11.  The target program for relating the orbit P to the period for Kepler’s Third Law. A is the
average distance of the planet from the sun. The figure is adapted from Mitchell [28].

Table 2.  A set of observed plane-
tary data, adapted from Urey [29],
used to determine the fitness of
each evolved program. A is Earth’s
semi-major axis of orbit and P, the
length of time for an orbit, is in units
of earth-years.

Planet A (input) P (output)

Venus 0.72 0.61
Earth 1.0 1.0
Mars 1.52 1.87
Jupiter 5.2 11.9
Saturn 9.53 29.4
Uranus 19.1 83.5

2530001.indd 182530001.indd 18 12-11-2024 11:43:4012-11-2024 11:43:40

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 19

As noted earlier, the initial population often has a priori limits, both of size and
search depth, given knowledge of the problem. These three examples are repre-
sented with the program trees of Fig. 12. We next determine a fitness test for the
population of programs using the planetary data we want our evolved program to
explain, i.e., the data of Table 2.

Since our task is to create a function reflecting the data points of Table 2, a
fitness measure is the number of results, within a 20% tolerance, from running each
program. Using this criteria, Fig. 12 shows the fitness of each program. It remains
for the reader to create more members of this initial population, to build crossover
and mutation operators that can produce further generations of programs, and to
determine termination conditions.

4. Probabilistic Models

The third theme for contemporary AI research and practice is probabilistic model
building for diagnosis. In the mid-18th century, a Church of England clergyman,
Bayes [30], proposed a formula for relating information already learned, the prior,
to newly observed data, the posterior.

In many complex situations, the task of computing all Bayesian relationships,
i.e., all the probabilistic information required to support full Bayesian reasoning,
can be prohibitive. Where there are multiple hypotheses and large amounts of sup-
porting data, the information required for Bayesian analysis is large. For example,
a medical application where there are 200 possible diagnoses with 2000 possible
symptoms requires the collection of more than 800,000,000 distributions [19, p.
185]. Nonetheless, Bayes’ theorem has been used to support the reasoning process
in several early expert systems, for example, in searching for mineral deposits and
diagnostic systems for internal medicine [19, Sec. 5.3].

Pearl’s 1988 book [31], Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference, introduced the Bayesian belief network, or BBN, technology.
The BBN is a reasoning graph with the assumptions that the network is directed,

Fig. 12.  Members of the initial set of random programs generated to solve the orbital/period problem.
The figure is adapted from Mitchell [28].

2530001.indd 192530001.indd 19 12-11-2024 11:43:4112-11-2024 11:43:41

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

20 G. F. Luger

reflecting causal relationships, and is acyclic, i.e., has no loops from a node back to
itself. With the creation of the BBN, several computationally efficient algorithms
became available for reasoning. Pearl [32] also wrote Causality: Models, Reasoning
and Inference, in which his do-calculus offered a mathematical framework for build-
ing models in which, over time, supported reasoning about plausible causal rela-
tionships or “what if” scenarios.

The stochastic approach is used extensively in machine learning and robotics.
It is especially important for human language understanding, leading to important
results in computer-based speech and written language analysis. Dynamic Bayesian
networks or DBNs, offer a representation able to characterize how the activity of
complex systems can be modeled and understood across time. In the examples that
follow, we demonstrate how stochastic representation and reasoning schemes are
sufficient to capture components of human perception and reasoning.

Some historical highlights in the probabilistic or stochastic approach to AI
include:

Bayes [30] proposed a formula for relating information already learned, the prior, to
data newly observed, the posterior. Other 18th century mathematicians, Pascal and
later Laplace, considering the domain of gambling, began the development of a prob-
abilistic calculus.

In the 1950s and 1960s, probabilistic models for digit and other character recognition
tasks were developed at Bell Labs [33] and elsewhere [34].

Authorship attribution studies used probabilistic language models. The analysis of
text samples supported assigning known authors to anonymous literature [35].

The 1990s demonstrated many new probabilistic algorithms for natural language
understanding and generation [36].

Judea Pearl introduced the Bayesian Belief Net technology [31]. Pearl’s book, Causality
[32] described the potential of dynamic probabilistic systems. Judea Pearl received the
ACM Turing Award in 2011 for his development of a calculus for probabilistic and
causal reasoning.

The primary current interest in probabilistic techniques in AI has been from the
1990s to the present, supporting the goals of language understanding, visual scene
analysis and other classification problems.

4.1. Example of probabilistic reasoning: Bayesian belief networks

Data collection is a limiting factor for using full Bayesian inference for diagnoses in
complex environments. As just noted, to calculate probabilities in medicine, where
there can be hundreds of possible diagnoses, and thousands of possible symptoms,
the data collection problem becomes intractable.

The Bayesian belief network or BBN [31, 32] is a graph whose nodes are rep-
resented by probabilities and whose links are conditional probabilities. The graph

2530001.indd 202530001.indd 20 12-11-2024 11:43:4112-11-2024 11:43:41

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 21

is acyclic, in that there are no link sequences from a node back to itself. It is also
directed, in that links are conditioned probabilities that represent causal relation-
ships between the nodes. With these assumptions, it can be shown that a BBN’s
nodes are independent of all their non-descendants, nodes that they are not directly
or indirectly linked to, given knowledge of their parents, i.e., nodes linking to them.

Judea Pearl’s proposed Bayesian belief networks assume that their links reflect
causal relationships. With the demonstrated independence of states from their
non-descendants, given knowledge of their parents, Bayesian technology comes to
an entirely new importance. Most importantly, the independence assumption that
splits, or factors, the reasoning space into independent components, makes the
BBN a transparent representational model that captures causal relationships in
a computationally useful format. We demonstrate, in our next examples, how the
BBN supports both transparent and efficient reasoning.

The BBN, before new data are presented, represents the a priori state of an
expert’s knowledge of an application domain. These networks of causal rela-
tionships are usually carefully crafted through many hours working with human
experts. When new data are given to the BBN, e.g., road traffic slows as we see
next, the network “infers” the most likely explanation, given its a priori model of
the situation.

Figure 13 shows a BBN model for a typical traveling situation. Suppose you are
driving your car in a familiar area where you are aware of the likelihood of traffic
slowdowns, road construction and accidents. You are also aware that flashing lights
often indicate emergency vehicles at an accident site and that orange traffic control
barrels indicate construction work on the roadway. We name these situations T, C,
A, L and B, as seen in Fig. 13. The likelihood of each parameter is reflected in the
partial probability table of Fig. 13, where the top row indicates that the probability
of both construction, C and bad traffic, T, being true, t, is 0.3.

For full Bayesian inference, this problem would require a 32-row probability table
of 5 variables, each either true or false. In the separation, or factoring, that BBN
reasoning supports, this becomes a 20-row table where Flashing Lights is indepen-
dent of Construction, Orange Barrels is independent of Accident and Construction
and Accident are also independent. Figure 13 presents a portion of this table.

Suppose that as you drive along and without any observable reasons, the traf-
fic begins to slow down; now Bad Traffic, T, becomes true, t. This new fact means

Fig. 13.  Bayesian belief network (BBN) for the driving example and a partial table of probability
values for Construction, C and Bad Traffic, T. The figure is adapted from Luger [19].

2530001.indd 212530001.indd 21 12-11-2024 11:43:4112-11-2024 11:43:41

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

22 G. F. Luger

that the probabilities of the table in Fig. 13, Bad Traffic is no longer false. The
sum of the probabilities for the first and third lines of the table goes from t = 0.4
to t = 1.0. This new higher probability is then distributed proportionately to the
probabilities for Construction and Accident and, as a result, both situations
become more likely.

4.2. Example of probabilistic reasoning: The dynamic Bayesian network

A dynamic Bayesian network, or DBN, is a sequence of identical Bayesian networks
whose nodes are linked in the directed dimension of time. This representation
extends BBNs into multi-dimensional environments and preserves the same trac-
tability in reasoning toward best explanations. With the factoring of the search
space and the ability to address complexity issues, the dynamic Bayesian network
becomes a potential model for exploring diagnostic situations across both changes
of data and time. We next demonstrate the DBN.

Continuing the driving example, suppose as you travel farther you notice Orange
Barrels, B, along the road that partially redirect traffic. This indicates that, on
another probability table not shown here, B is true, with its probabilities summing
to 1.0. The probability of Construction, C, gets higher, approaching 0.95. As the
probability of Construction gets higher, with the absence of Flashing Lights, L, the
probability of an Accident decreases. The most likely explanation for what you now
experience is road Construction. The likelihood of an Accident goes down and is
said to be explained away. The calculation of these higher probabilities as new data
are encountered is called marginalization and, while not shown here, may be found
in Luger and Chakrabarti [37].

Figure 14 represents the changing dynamic Bayesian network for the driving
example just described. The perceived information changes over the three time
periods: driving normally, cars slowing down and seeing orange traffic control bar-
rels. At each new time with new information, the values reflecting the probabilities
for that time and situation change. These probability changes reflect the best
explanations for each new piece of information the diver perceives.

Finally, in Fig. 14, consider the state of the diagnostic expert at the point where
Time = 2. Once traffic has slowed, the driver may begin an active search for Orange
Barrels or Flashing Lights, to try to determine, before Time = 3, what might be
the most likely explanation for the traffic slowdown. In this situation, the driver’s

Fig. 14.  Dynamic Bayesian network. Each time the driver perceives new information, the DBN’s prob-
abilities change to reflect these observations. The figure is adapted from Luger [19].

2530001.indd 222530001.indd 22 12-11-2024 11:43:4112-11-2024 11:43:41

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 23

expectations motivate his/her active search for supporting information. These
changing situations and their explanations are shown again in the next example.

4.3.  Probabilistic reasoning: Monitoring the nuclear
production of energy

Our final example comes from building computational models to monitor poten-
tial problems in producing electric power using a sodium-cooled nuclear reactor.
Nuclear accidents are rare, but their effects are extremely harmful for people, the
environment and the economy. Jones et al. [38] and Darling et al. [39] in research
supported by the US Department of Energy, designed a computational monitor-
ing system based on dynamic Bayesian networks to support the observations and
knowledge of the human nuclear power experts. There are several reasons for
employing the DBN technology in this challenging environment.

First, the Bayesian network is composed of nodes and links that reflect expert
human knowledge and judgment in the field of reactor physics. This fact is import-
ant as the day-to-day monitors are usually not as skilled as the experts that
designed the system. The probabilities of the DBN also reflect the results of multi-
ple tests on individual components of the power system, such as sensors, as well as
on simulations of the full working environment. Thus, the resulting model contains
both explicit human physics and engineering knowledge as well as a probabilistic
account of the reactor’s running health.

Second, in the very complex environment on nuclear power generation, the DBN
can produce faster than real-time analytic and diagnostic results. Murphy [40] has
described the transparent and tractable reasoning powers of DBN-based technol-
ogy. The human monitor can be made aware of events as soon as, and often before,
they happen. The monitor also receives from the model suggestions and recommen-
dations for remediating potential problems.

Figure 15 presents a schematic for a sodium-cooled nuclear reactor to produce
electric power. The reactor system’s model has multiple sensors monitoring the
states of the pumps, the temperatures of the various vessels, the positions of the
control rods and the turbine speeds. The 10 monitors of the state of the power gen-
eration system are represented by the rectangular boxes of Fig. 16. The circles of
Fig. 16 represent the nodes of the DBN and the cylinders extending off the circles
represent the values of each circle changing over time.

Training the dynamic Bayesian network takes place as the power generation
system runs across multiple scenarios and time cycles. First, we train the basic
components of the model on near normal data to establish a state of equilibrium
for the system. The model, in a near normal running situation, can also provide
approximate values for missing sensor data from the system. The values proposed
for missing information or for damaged sensors are what the model determines to
be most likely, given the current state of the running system [41, 42].

Once the equilibrium model was trained, the research group generated multiple
accident sequences using their simulation system. In each scenario, for example, having

2530001.indd 232530001.indd 23 12-11-2024 11:43:4112-11-2024 11:43:41

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

24 G. F. Luger

differential pressures within the plant’s cooling system or performing control rod inser-
tion, the model captured the state of the system as the “accident” evolved. This
allowed visualization of all parameters related to each accident as well as presented
options for remediation. The fact that these options could be realized in faster than
real time supports the human operators’ ability to make decisions for remediation.

Fig. 16.  The dynamic Bayesian network of the sodium cooled reactor of Fig. 15. The ten rectangular
boxes represent monitors collecting reactor sensor data. The circles represent the nodes of the DBN,
lines from the rectangles to the circles represent the probabilistic links of the network, and the cylinders
emanating from these nodes represent the nodes changing over time. The figure is adapted from [39].

Fig. 15.  The schematic of a sodium-cooled nuclear power generation system. The various reservoirs,
pumps, control rods, turbine, etc. have sensors reporting their states to the DBN, as seen in Fig. 16.
The figure is adapted from [39].

2530001.indd 242530001.indd 24 12-11-2024 11:43:4212-11-2024 11:43:42

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 25

Once the DBN model was trained, the research group generated multiple acci-
dent sequences using their simulation system. In each scenario, for example, having
differential pressures within the plants cooling system or performing control rod
insertion, the model captured the state of the system as situations evolved. This
allowed visualization of all parameters related to each accident as well as presented
options for remediation. The fact that these options could be realized almost incau-
tiously supports the human operators’ steps toward remediation.

Hypothetical reasoning is supported by the fact that the computational model
offers an accurate reflection of the power-producing reactor. The knowledge-based
probabilistic model allows monitors to try out different control strategies and get
almost immediate feedback on what would happen, as well as the time sequence
for it to occur. Examining these possible responses can direct the reactor monitors
to make the most informed decisions at appropriate times. This trained computa-
tional model captures the human-like reasoning that an informed diagnostic expert
would offer in similar situations.

5. Neural Networks: Deep Learning

The final major approach to current AI technology is the neural, or connectionist,
network. Neural network research began with conjectures in the 1940s by the neu-
roscientist McCulloch and the logician Pitts [43] and by Hebb [44] a psychologist.

The basis for neural network computing is the artificial neuron, an example of
which may be seen in Fig. 17. The artificial neuron consists of input signals xi, and
often a bias that comes from the environment or from other neurons. There is also
a set of weights, wi. that enhance or weaken the strengths of the input values. Each
neuron also has an activation level, Σwi xi, the value of net: the summed strengths
of the input times their weight measures. Finally, there is a threshold function, f,

Fig. 17.  (Top) A single artificial neuron whose input values, multiplied by trained weights, produce a
value, net. Using some function, f(net) produces an output value that may, in turn, be an input for other
neurons. (Below) A supervised learning network where input values move forward through the nodes of
the network. During training, the network’s weights are differentially adjusted, error propagation, for
incorrect responses to input values.

2530001.indd 252530001.indd 25 12-11-2024 11:43:4312-11-2024 11:43:43

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

26 G. F. Luger

that computes the neuron’s output by determining whether the neuron’s activation
level is above a predetermined threshold.

 net = x1w1 + x2w2 + (bias)w3.

In addition to the properties of individual neurons, the network also has global
properties including the numbers and pattern of connections between the indi-
vidual neurons and the different layers of neurons. Further properties include
learning rates, training batch sizes and activation functions. Finally, there is the
encoding scheme that interprets problem data input as well as the output result.
Encoding/decoding determines how an application is presented to the nodes of
the network as well as how the results from the network are interpreted after
network processing.

There are two primary approaches to neural network learning: supervised and
unsupervised. Figure 16 (below) shows supervised learning. In unsupervised learn-
ing, there is no feedback to the input weights wi, given output values. In fact, some
algorithms don’t require weights at all. Output values are calculated by the struc-
ture of the data itself interacting with the network or combining with other outputs
as they self-organize into useful clusters.

With the advent of very high-performance computing and parallel algorithms
for computing, it has now become common to have networks with multiple internal
layers and complete networks passing data off to other networks. This approach,
sometimes referred to as deep learning, has brought an entirely new dimension to
the power and possibilities of connectionist computing.

Some historical highlights of the neural network approach to AI include:

The research of D.O. Hebb and W.S. McCulloch and W. Pitts at MIT in the late 1940s.

An early network, the Perceptron, was created by Rosenblatt [45].

Minsky and Papert’s book Perceptrons [46] demonstrated limitations of the percep-
tron technology. AI interest and funding slowed at that time.

The Boltzmann machine [47] and the backpropagation algorithm [48] addressed the
problem of error propagation through multiple layered networks.

In 1989, the publication of Parallel Distributed Processing by Rumelhart and col-
leagues [48] in the PDP Group at UCSD, renewed interest in neural networks.

In the 2000s, Hinton and his colleagues [49] demonstrated improvements to image
processing using convolutional neural networks.

In 2018, Yoshua Bengio, Geoffrey Hinton and Yann LaCun were given the ACM Turing
award for their many engineering improvements supporting deep learning technology.

In 2024, Geoffrey Hinton and John Hopfield received the Nobel Award in physics for
work on neural networks.

2530001.indd 262530001.indd 26 12-11-2024 11:43:4312-11-2024 11:43:43

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 27

From the late 2010s, deep learning computing was greatly enhanced by the wide avail-
ability of tensor processors and server farms. This generation of networks, the large
language models, or LLMs, is called transformers.

The major emphasis in neural network computing was from the mid-1940s until
the late 1960s and from the late 1980s until the present day. We next present four
examples.

5.1. Neural network example: AlphaGo Zero and Alpha Zero

AlphaGo Zero is an extension of the original AlphaGo program created by Google’s
DeepMind research group. Its major strength is that it taught itself to play go
without any experience against human players. It was simply given the rules of
the game and then started playing against a version of itself. After 40 days and
29 million games the program proved better than all earlier versions of AlphaGo
[50, 51]. This result is interesting in that it demonstrates that knowing only the
rules of a game and playing against itself, the program learns sufficient skills to
defeat the best human players.

AlphaZero, also created by Google’s DeepMind, takes deep learning coupled an
important step beyond AlphaGo Zero. AlphaZero, joins deep learning with rein-
forcement learning [5, Sec. 11.4.2] to create an architecture general enough to play
several different games. Besides go, AlphaZero also learned to play chess and shogi.
With only three days of training, it was able to outperform all chess and shogi
programs and a version of AlphaGo Zero. With reinforcement learning, AlphaZero
searched 1000 times fewer states than did its computer-based opponents.

5.2. Neural network example: Robot navigation: PRM-RL

We noted in Sec. 2.3 that AI robotics programs used the state space and search to
accomplish tasks. Modern robotics has taken these earlier search-based approaches
to entirely new levels, using deep learning coupled with reinforcement learning to
support exploring environments. At Google Brain, Faust and her colleagues [52]
created a robot navigation system, PRM-RL, that uses probabilistic roadmaps and
reinforcement learning to find paths in complex environments.

A probabilistic roadmap planner [53] has two phases: first, a graph-based map is
built that approximates the movements the robot can make within its environment.
To build this roadmap, the planning algorithm first constructs a set of possible
partial paths by considering links between accessible locations it discovers in the
environment. In the second phase, the actual goal for the robot is linked to the
graph and the algorithm determines the shortest path to that goal.

The reinforcement learning component of PRM-RL is trained to execute point-
to-point tasks, to learn constraints, system dynamics and sensor noise indepen-
dent of the ultimate task environment of the robot. In the testing environment,
the PRM-RL program builds a roadmap using reinforcement learning to deter-
mine connectivity. The reinforcement learning algorithm joins two configuration

2530001.indd 272530001.indd 27 12-11-2024 11:43:4312-11-2024 11:43:43

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

28 G. F. Luger

points only when search finds point-to-point connectivity between them, avoiding
all obstacles. Figure 18(a) shows the training map within a 23 m by 18 m building.
Figure 18(b) shows the testing environment, the 134 m by 93 m floor of a building.

All these approaches are, as mentioned earlier, computer time- and cost-
intensive. Because of this complexity, a major challenge to deep reinforcement learn-
ing is analyzing frequently long successful search paths and identifying appropriate
states within that search to “reinforce”. It is also very impressive that Google’s
PRM-RL robot can be trained in one environment and then transfer that learning
to a new related but different situation, as seen in Fig. 18.

5.3. Neural network example: Deep learning and video games

Deep learning algorithms that play video games use similar approaches to those of
Google’s AlphaZero [50, 51], introduced in Sec. 5.1. The input values for the net-
work are the game’s pixelated video screen and the current game score. There is
no model for the game situation, as would be needed in a symbol-based approach.
For example, the symbolic approach would represent the agent that is playing and
learning the game, the target goals and the tools or weapons for achieving these
goals, as well as rules for attack, defense, escape and so on.

Given the current screen and game score, reinforcement learning represents the
state of the player and the game choices available. In video games these choices can
be very large, estimated about 1050, while the maximum number of choices a go
player has is about 102. The video game choices are in multiple categories, includ-
ing movement, weapon use and defensive strategies. The reinforcement algorithm
has probabilistic estimates of the quality of each of these choices, given the current
state of the game. These probabilistic measures are determined by the previous
successes of making that choice, given that state.

When the reinforcement learning begins, there is very little reward information
and the agent’s moves will seem both exploratory and erratic. As multiple games
are played, the reward algorithm gets more “success” information, and the agent’s
choices improve and eventually so does winning. The learning process for a video

Fig. 18.  (a) represents the training environment for the robot and (b) the testing environment. The
heavier line indicates the actual path taken by the robot. The figure is adapted from [52].

2530001.indd 282530001.indd 28 12-11-2024 11:43:4412-11-2024 11:43:44

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 29

game playing computer requires multiple millions of games of a program playing
against a version of itself and can cost several millions of 2018-dollars.

Deep learning video game programs including Google’s DeepMind’s AlphaStar
program playing StarCraft II [54] have successfully outperformed humans
in single player games. AlphaStar achieved Grandmaster status in August
2019. A single agent game program, with full explanations and code that uses
Q-leaning, a model-independent reinforcement learning algorithm, to play the
video game Snake can be found at https://medium.com/@hugo.sjoberg88/
using-reinforcement-learning-and-q-learning-to-play-snake-28423dd49e9b.

Many interesting video games require teamwork. Jaderberg et al. [55] designed
a program that plays Quake III Arena in Capture the Flag mode. Its agents learn
and act independently to cooperate and compete with other agents. Again, the
reinforcement learner uses only screen images and the game score as input. The
population of reinforcement learning agents is trained independently and in paral-
lel. Each agent learns its own reward pattern that supports its active interactions
within the game environment.

5.4. Deep learning example: Large language models

From the early 1990s until about 2015, the traditional computer methods used
to understand human language, summarize documents, answer questions and to
translate speech and text from one language to another were probabilistic. More
recently, alternative technologies, including deep learning, address these same
human language tasks.

A language model characterizes how the components of a language work together
in communication. These models capture relationships including noun verb agree-
ment, proper use of adjective and adverbs, how clusters of words are often used
together and much more. Many deep learning-based language models are currently
available, with perhaps two, Google’s BERT [56] and OpenAI’s GPT-3 [57] most
widely used; see Table 2.

Deep learning neural language models are trained networks that capture the
relationships between words in a language. There are several regimens for training
these models. One more traditional approach asks, given the n words that precede
an unknown word, what is the most likely word that would be. Google’s BERT [56]
also considers the n words that follow that unknown token to determine what word
is most likely to precede these words.

Training takes place by giving these learning networks an extremely large num-
ber of sentences, for example all the Wikipedia corpora. As of December 2020, this
had more than 6 million articles with almost 4 billion words. Other large corpora
include the Google Books Corpus, the International Corpus of English and the
Oxford English Corpus. The original BERT training took about 4 days on 4 cloud
TPUs. A TPU is a tensor processing unit, a special purpose processor built by
Google for processing the very large arrays used in training deep neural networks.
Google search engines are currently supported by the BERT technology.

2530001.indd 292530001.indd 29 12-11-2024 11:43:4412-11-2024 11:43:44

https://medium.com/@hugo.sjoberg88/using-reinforcement-learning-and-q-learning-to- play-snake-28423d
https://medium.com/@hugo.sjoberg88/using-reinforcement-learning-and-q-learning-to- play-snake-28423d

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

30 G. F. Luger

OpenAI has taken the BERT approach to language models one important step
further. After creating a language model like BERT, GPT, the Generative Pre-
Trained Transformer [57] adds a second task-specific training set. The primary
training is task-agnostic and is just a general-purpose language model like BERT.
With the addition of task-specific training, GPT can focus on targeted applica-
tions. For example, if the task-specific training is the writing of a specific author,
the user can request what that author thinks about a particular topic. GPT’s
response, in the words and style of that author, is then often cogent and believable.

Since 2018 the transformer architecture has become the predominant method-
ology used in building LLMs. Transfer learning in AI is a technique that leverages
the knowledge gained from one task to improve performance on another task.
The “transfer” practice for transformers is, as we have just noted, to first pretrain
these large-scale models on enormous corpora optimizing self-supervised learning.
After pretraining, the models are then fine-tuned by users with data appropriate
for a particular application task, as we see in Fig. 19. When using this pretraining
approach, the original transformers are referred to as foundation models [58].

Fine-tuning consists of four steps:

(1) Determine the model to be tuned and its parameters, e.g., the learning rate.
(2) Aggregate new training data, where format and other parameters depend on

the model.
(3) Compute losses, the error measure and gradients, to change the model to min-

imize error.
(4) Update the model through backpropagation.

Prompt engineering is the practice of querying the trained LLM with specific
pieces of information to elicit the most appropriate responses from the model.
There are several approaches to prompt engineering. Zero-shot queries request

Fig. 19.  The pretrained transformer transfers its learning to related domains. The new domain is con-
ditioned by using a smaller task-specific dataset. The figure is adapted from Luger [5].

2530001.indd 302530001.indd 30 12-11-2024 11:43:4512-11-2024 11:43:45

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 31

information that is not part of the model’s training; the model will, however, gen-
erate a result. This technique makes LLMs useful for many different tasks. Few-shot
prompting is a strategy where the model is given several task-specific examples
before presenting the actual query. Few-shot queries enable the model to generalize
over the queries. To summarize:

Chain-of-thought prompting is a style of few-shot prompting, where prompts
contain a series of intermediate reasoning steps. Chain-of-thought prompting
encourages the model to reason the way that the prompts are proposed, i.e., in
a series of steps. Surprisingly, the answers from chain-of-thought prompting are
often more accurate and interpretable than the answers from other prompts.
Chain-of-thought prompting also discourages the model from generating quick
easy answers.

There are now several suggestions for organizing the processes just described
that move from the foundation model through fine tuning to prompt engineering.
One process is called LLM alignment. Another is RLHF or Reinforcement Learning
from Human Feedback [59]. There are still major questions about the utility of these
approaches [60]; see Shen et al. [61] for a survey of alternative approaches. Table 3
presents a list of the transformer models currently available for exploration.

We have only touched the surface of how deep learning and LLMs support
human language analysis. There are now many successes in language tasks, includ-
ing finding documents that are similar such as patents [62], producing document

Table 3.  Currently, June 2024, available software for generative AI. Note that information on several
models is company confidential. A “token” is the piece of information used to train the model. Having
more tokens or parameters does not guarantee better results, as the quality of code and processing is
also critical. Interested readers should search these software tools for more current information as AI
companies are known to change names, merge or simply dissolve.

Model Capabilities Parameters Training data URL

BERT Question answering, finds semantic similarity 345 million 3.3 billion words URL 1
PaLM 2 Generates text, essays and reports, answers

questions, uses desired style and tone.
Tuned to follow instructions

340 billion 3.6 trillion
tokens

URL 2

ChatGPT,
powered by
GPT

Generates text, essays and reports, answers
questions, uses desired style and tone.
Tuned to follow instructions.

175 billion 300 billion
tokens

URL 3

Gemini created
by Google
DeepMind

Generates multimodal output from
multimodal input. Generates documents
with both text and images.

Information
not public.

Information not
public.

URL 4

Llama 2 Generates text, essays and reports, answers
questions using desired style and tone.

70 billion 2 trillion tokens URL 5

Notes:
URL 1: BERT https://github.com/google-research/bert
URL 2: https://blog.google/technology/ai/google-palm-2-ai-large-language-model/
URL 3: ChatGPT https://chat.openai.com
URL 4: https://blog.google/technology/ai/google-gemini-ai/
URL 5: https://ai.meta.com/llama/

2530001.indd 312530001.indd 31 12-11-2024 11:43:4512-11-2024 11:43:45

https://github.com/google-research/bert
https://blog.google/technology/ai/google-palm-2-ai-large-language-model/
https://chat.openai.com
https://blog.google/technology/ai/google-gemini-ai/
https://ai.meta.com/llama/

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

32 G. F. Luger

translations [63] and answering questions about speech and text [64]. Further anal-
ysis of the LLM technology may be found in [5]. For further details on LLM tech-
nology, the interested reader should consult the papers published by Google who
created BERT [56] and OpenAI who created the GPT software [57].

6. Some Limitations of Current AI Practice

Symbol-based AI, Sec. 2, is created through the abstraction process. Specific sym-
bols are created to describe the states of a problem situation. These symbols might
be the specific words of a sentence, configurations of a complex mechanism, or sit-
uations in a game. Abstractions, of necessity, leave important information outside
of the problem-solving process. A word only has meaning in a particular practical
context. Complex systems can change in unpredictable ways. A game state, by
itself, can be misunderstood, for example, if an opponent is in the process of sacri-
ficing a game piece or position to achieve a greater goal.

There are other issues with symbol-based AI. Has the program designer iden-
tified all necessary states for useful solutions? Can the search process be accom-
plished in a practical time? What if part of the problem situation changes during
the solution search? The symbol-based approach to AI has been very successful
where it is used properly; the point of these criticisms is to be always aware of its
intrinsic limitations.

Genetic and emergent AI takes a different approach to solving problems. The
insight at the foundation of this approach is Darwin’s notion of evolving systems
and the survival of the fittest. With computation, this evolution can happen in
multiple ways. We demonstrated genetic operators and example applications in
Sec. 3.

In artificial life and emergent computing, the representation problem is critical.
How are the input values created? What are the constraints for evolving the next
generation of possible solutions? What criteria are used for measuring the “fitness”
of the current generation’s progeny? A deeper critique can ask how artificial life
algorithms can create new species of life or how new life forms might originate. All
current artificial life and genetic algorithm practice can only produce results con-
tained within the computational closure of their originally defined domains.

Section 4 described why the computational cost of full Bayesian reasoning is not
computationally usable in many practical situations such as most medical appli-
cations [19, Sec. 5.3]. The insights of Judea Pearl offered important contributions
to making Bayesian-based AI models useful in practical situations. The Bayesian
belief network [31, 32] allowed probabilistic representations to be viewed as causal
relationships that, when factored, become computationally tractable. As a result,
Bayesian belief network solutions are computable with reasonable time and mem-
ory usage.

There remains the representation problem for probabilistic reasoning, i.e., how
best to abstract an application into sets of probabilistic symbols that combine to

2530001.indd 322530001.indd 32 12-11-2024 11:43:4512-11-2024 11:43:45

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 33

create a model for reasoning. Do the data for training a probabilistic classifier come
from a normal distribution? When is a normal distribution assumption important?
Section 4 offers examples of Bayesian belief net solutions, including the use of
dynamic Bayesian networks.

Connectionist, or neural network problem solving, addresses many of the lim-
iting factors of symbol-based AI. Many limitations of symbol abstraction can dis-
appear by focusing on relationships between input symbols. There remain other
issues including the choice of “appropriate” input symbols for describing a problem.
When trying to recognize the meaning of spoken language expressions is it better
to analyze individual words or syllables? Are picture points, pixels, optimal for
recognizing different human faces? What are the best “tokens” for a network repre-
sentation for a chess playing program?

Further questions relate to network architectures. What is the best number
of input nodes? How many hidden layers are required? What is the connectiv-
ity scheme for the nodes on the hidden layers? These engineering questions are
sometimes answered with massive computing power where the full connectivity of
multiple layers, each with a very large number of nodes, is possible. For example,
OpenAI’s GPT-3 has more than 175 billion parameters.

There are further problems inherent with connectionist problem solving, and
we briefly name three. First the problem of overlearning. How much training does
a network need to recognize categories of data? Too much training and only the
training data itself will be recognized. Second, even with billions of parameters,
many interesting problems are underspecified. Retraining with different initialized
weights can produce different network solutions.

Although BERT and GPT produce impressive language models successful at
multiple tasks, they only reflect the patterns found in text-based human language.
There is no semantics in the human sense, only the presentation of the patters of
words found in human communication. As Haven [65] claims in an MIT Technology
Review, GPT-3 is completely mindless, capable of producing total nonsense, and
even at times racist and sexist utterances. Finally, there is the matter of the trans-
parency of the solution process and explanations of results, as we discuss further
in Sec. 7.

Many consequential challenges remain for creating intelligent systems. We pro-
pose two general questions that need to be addressed to continue to build more
intelligence into mechanical systems: the role of embodiment in intelligence and the
importance of meaning or grounding in machine-based LLMs.

7. A Summary

One of the main assumptions of the hypothesis supporting computational “intel-
ligence” is that the implementation of a symbolic or network model is irrelevant:
all that matters is appropriate representations and algorithms. This viewpoint
has been challenged by several thinkers [66, 67]. These philosophers argue that

2530001.indd 332530001.indd 33 12-11-2024 11:43:4512-11-2024 11:43:45

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

34 G. F. Luger

intelligent action must be supported by a physical and social embodiment that
allows the agent to be integrated into the natural world of practical purposes, both
personal and social.

The interfaces and architectures of modern computing do not support this degree
of “situatedness”. They require that an artificial intelligence interact with its world
through the extremely limited window of contemporary input/output devices. If
this “situated” challenge is correct, although some forms of machine intelligence
may be possible, more general intelligence will, at the very least, require a very
different machine than that afforded by contemporary computers.

Further, intelligence must also be regarded as a social as well as an individual
construct. In a meme-based theory of intelligence [68], society itself carries essen-
tial components of intelligence and accumulated knowledge. It is possible that an
understanding of the social context of knowledge and human behavior is as essen-
tial a component for a theory of intelligence as is an understanding of the dynamics
of the individual mind/brain. Making machines that are analogues of human brains
in their operations may not be sufficient: we may need machines appropriately
immersed in social contexts.

What is the nature of meaning and interpretation, or how does AI address the
grounding problem? Most computational models in traditional AI operate within
an already interpreted domain. With this approach, there is an implicit and a pri-
ori commitment by the system’s designers to a set of “meanings” for the program.
Once this commitment is made, there is very little flexibility for shifting contexts,
goals, or representations as the problem-solving situation evolves.

There are, of course, and will continue to be AI winters, a term used by the AI
community to indicate deep changes in financial and research support for various
projects. AI winters are the result of a schism between society’s expectations of AI
and the reality of AI’s practice. AI winters reflect differences between AI’s prom-
ises and the actual delivered product, between what we claim to produce and what
we actually develop. A further topic too often overlooked in AI practice is ethics
issue. There is currently much more interest both from industry and government in
addressing these issues, e.g., see Luger [69, Sec. VIII].

The most exciting aspect of work in artificial intelligence is that to be coherent
and contribute to the endeavor we must address a wide range of tasks and goals.
To understand problem-solving, learning and language, we must expand our phil-
osophical understanding of what it means to know and to represent our world. We
are asked to resolve Aristotle’s tension between theoria and praxis, to fashion a
union of understanding and practice, to live between science and art.

Artificial intelligence researchers and practitioners are toolmakers. We create
representations, algorithms and languages. These artifacts enable the design and
building of mechanisms that exhibit intelligent behavior. Through experimenta-
tion, we test our tools’ functional adequacy for addressing problems, and in that
process examine our own understanding of the world we inhabit. There is a tradi-
tion for this: Descartes, Leibniz, Bacon, Pascal, Hobbes, Boole, Babbage, Turing

2530001.indd 342530001.indd 34 12-11-2024 11:43:4512-11-2024 11:43:45

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 35

and the AI researchers of the past seventy years. The AI vision thrives through the
insights of engineering, computing, psychology, linguistics and philosophy as our
exploration continues to address the nature of understanding, knowledge, meaning
and intelligence.

ORCID

George F. Luger  https://orcid.org/0009-0001-8164-5964

References
 [1] A. A. Turing, Computing machinery and intelligence, Mind 59 (1950) 433–460.
 [2] H. Dreyfus, What Computers Can’t Do: The Limits of Artificial Intelligence (Harper

and Row, New York, 1972).
 [3] H. Dreyfus, What Computers Still Can’t Do: A Critique of Artificial Reason (MIT

Press, Cambridge MA, 1992).
 [4] J. Haugeland, Artificial Intelligence: The Very Idea (MIT Press, Cambridge/Bradford,

MA, 1985).
 [5] G. F. Luger, Artificial Intelligence: Principles and Practice (Springer Nature, New

York, 2025).
 [6] A. Newell and H. A. Simon, The logic theory machine, IRE Trans. Inf. Theory 2 (1956)

61–79.
 [7] A. N. Whitehead and B. Russell, Principia Mathematica, 2nd edn. (Cambridge

University Press, London, 1950).
 [8] H. Gelernter and N. Rochester, Intelligent behavior in problem-solving machines, IBM

J. Res. Dev. 2(4) (1958) 336–345.
 [9] A. L. Samuel, Some studies in machine learning using the game of checkers, IBM

J. Res. Dev. 3 (1959) 211–229.
[10] A. Newell and H. A. Simon, Computer science as empirical inquiry: Symbols and

search, Commun. ACM 19(3) (1976) 113–126.
[11] A. Collins and M. R. Quillian, Retrieval time from semantic memory, J. Verbal Learn.

Verbal Behav. 8 (1969) 240–247.
[12] T. Winograd, Understanding Natural Language (Academic Press, New York, 1972).
[13] B. C. Williams and P. P. Nayak, Immobile robots: AI in the new millennium, AI Mag.

17(3) (1996) 17–35.
[14] B. C. Williams and P. P. Nayak, A reactive planner for a model-based executive,

in Proc. Int. Joint Conf. Artificial Intelligence (MIT Press, Cambridge, MA, 1997),
pp. 1178–1185.

[15] S. Thrun, R. Brooks and H. Durrant-Whyte (eds.), Robotics Research: Results of
the 12th International Symposium, Advanced Series in Mathematical Physics, Vol. 28
(Springer, Heidelberg, 2007).

[16] S. J. Russell, Human Compatible (Viking Press, New York, 2019).
[17] J. R. Quinlan, Induction of decision trees, Mach. Learn. 1(1) (1986) 81–106.
[18] C. Shannon, A mathematical theory of communications, Bell Syst. Tech. J. 27 (1948)

623–656.
[19] G. F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem

Solving (Addison Wesley-Pearson, New York, 2009).
[20] J. H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan

Press, Michigan, 1975).

2530001.indd 352530001.indd 35 12-11-2024 11:43:4512-11-2024 11:43:45

https://orcid.org/0009-0001-8164-5964

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

36 G. F. Luger

[21] A. W. Burks, Essays on Cellular Automata (University of Illinois Press, Illinois, 1971).
[22] C. G. Langton, Artificial Life: An Overview (MIT Press, Cambridge, MA, 1995).
[23] R. Wellhausen and K. Oye, Intellectual property and the commons in synthetic biology:

Strategies to facilitate an emerging technology, in Atlanta Conf. on Science, Technology
and Innovation Policy (IEEE, New York, 2007), pp. 1–12.

[24] O. Purcell and T. K. Lu, Synthetic analog and digital circuits for cellular computation
and memory, Curr. Opin. Biotechnol. 29 (2014) 146–155.

[25] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection (MIT Press, Cambridge, MA, 1992).

[26] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs (MIT
Press, Cambridge, MA, 1994).

[27] J. Pearl, Heuristics: Intelligent Strategies for Computer Problem Solving (Addison-
Wesley, Reading, MA, 1984).

[28] M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, MA,
1996).

[29] H. C. Urey, The Planets: Their Origin and Development (Yale University Press, New
Haven CT, 1952).

[30] T. Bayes, Essay towards solving a problem in the doctrine of chances, in Philosophical
Transactions of the Royal Society of London (The Royal Society, London, 1763),
pp. 370–418.

[31] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
(Morgan Kaufmann, Los Altos, CA, 1988).

[32] J. Pearl, Causality (Cambridge University Press, New York, 2000).
[33] K. H. Davis, R. Biddulph and S. Balashek, Automatic recognition of spoken digits,

J. Acoust. Soc. Am. 24(6) (1952) 637–642.
[34] W. W. Bledsoe and I. Browning, Pattern recognition and reading by machine, in Proc.

Eastern Joint Computer Conf. (IEEE Computer Society, New York, 1959), pp. 225–232.
[35] F. Mosteller and D. L. Wallace, Inference in an authorship problem, J. Am. Stat.

Assoc. 58(302) (1963) 275–309.
[36] D. Jurasky and J. H. Martin, Speech and Language Processing, 3rd edn. (Prentice Hall-

Pearson, Upper Saddle River, NJ, 2020).
[37] G. F. Luger and C. Chakrabarti, Chapter 23: Expert systems, in Handbook of

Probability: Theory and Applications, ed. T. Rudas (Sage Publications, Las Angeles
CA, 2008), pp. 383–401.

[38] T. J. Jones, M. C. Darling, K. M. Groth, M. R. Denman and G. F. Luger, A dynamic
Bayesian network for diagnosing nuclear power plant accidents, in Proc. FLAIRS
Conf.-16 (AAAI Press, 2016), pp. 179–184.

[39] M. C. Darling, G. F. Luger, T. B. Jones, M. R. Denman and K. M. Groth, Intelligent
monitoring for nuclear power plant accident management, Int. J. AI Tools, World
Scientific 27(2) (2018) 1–25.

[40] K. P. Murphy, Dynamic Bayesian networks: Representation, inference and learning,
PhD dissertation, Computer Science Department, University of California, Berkeley
(2002).

[41] D. Pless and G. F. Luger, Towards general analysis of recursive probability models,
in Proc. Uncertainty in Artificial Conf. — 2001 (Morgan Kaufmann, San Francisco,
2001), pp. 429–436.

[42] D. Pless and G. F. Luger, EM learning of product distributions in a first-order stochas-
tic logic language, in Artificial Intelligence Soft Computing: Proc. IASTED Int. Conf.
(IASTED/ACTA Press, Anaheim, 2003), p. 6.

2530001.indd 362530001.indd 36 12-11-2024 11:43:4512-11-2024 11:43:45

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

Current AI: A Survey and Critique 37

[43] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous
activity, Bull. Math. Biophys. 5 (1943) 115–133.

[44] D. O. Hebb, The Organization of Behavior (Wiley, New York, 1949).
[45] F. Rosenblatt, The perceptron: A probabilistic model for information storage and orga-

nization in the brain, Psychol. Rev. 65 (1958) 386–408.
[46] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry

(MIT Press, Cambridge, MA, 1969).
[47] G. E. Hinton and T. J. Sejnowski, Analyzing cooperative computation, in Proc. 5th

Annual Congr. Cognitive Science Society (Rochester, New York, 1983), p. 5.
[48] D. E. Rumelhart, J. L. McClelland and The PDP Research Group, Parallel Distributed

Processing (MIT Press, Cambridge, MA, 1986).
[49] G. E. Hinton, S. Osindero and Y. W. Teh, A fast learning algorithm for deep belief

nets, Neural Comput. 18(7) (2006) 1527–1554.
[50] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den
Driessche, T. Graepel and D. Hassabis, A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play, Science 362 (2017) 1140–1144.

[51] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den
Driessche, T. Graepel and D. Hassabis, Mastering the game of go without human
knowledge, Nature 550 (2017) 354–359.

[52] A. Faust, O. Ramirez, M. Fiser, K. Oslund, A. Francis, J. Davidson and L. Tapia,
PRM-RL: Long-range robotic navigation by combining reinforcement learning with
sampling-based planning, in Proc. ICRA-18 (IEEE Press, 2018), pp. 5113–5120.

[53] L. E. Kavraki, P. Svestka, J.-C. Latombe and M. H. Overmars, Probabilistic road-
maps for path planning in high-dimensional configuration spaces, IEEE Trans. Robot.
Autom. 12(4) (1996) 566–580.

[54] K. Arulkumaran, C. Antoine and J. Togelius, AlphaStar: An evolutionary computation
perspective, in Proc. Genetic and Evolutionary Computation Conf. Companion (ACM
Digital Library, 2020), arXiv:1902.01724.

[55] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G. Castañeda,
C. Beattie, N. C. Rabinowitz, A. S. Morcos, A. Ruderman, N. Sonnerat, T. Green, L.
Deason, J. Z. Leibo, D. Silver, D. Hassabis, K. Kavukcuoglu and T. Graepel, Human-
level performance in 3D multiplayer games with population-based reinforcement learn-
ing, Science 364 (2019) 859–865.

[56] J. Devlin, M. Chen, K. Lee and K. Toutanova, BERT: Pre-training of deep bidirec-
tional transformers for language understanding, arXiv:1810.04805 (2019).

[57] T. B. Brown et al., Language models are few-shot learners, arXiv:2005.14165 (2020).
[58] R. Bommasani et al., On the opportunities and risks of foundation models,

arXiv:2108.07258 (2021).
[59] R. Rafailov, S. Archit, E. Mitchell, E. Stephano, C. D. Manning and C. Finn, Direct

preference optimization: Your language model is secretly a reward model, in 37th Conf.
Neural Information Processing (NeurIPS-23) (Curran Associates, 2023), pp. 1–27,
arXiv:2305.18290.

[60] S. Casper, X. Davies et al., Open problems and fundamental limitations on reinforce-
ment learning from human feedback, arXiv:2307.1517 (2023).

[61] T. Shen, R. Jin, Y. Huang, C. Liu, W. Dong, Z. Guo, X. Wu, Y. Liu and D. Xiong,
Large language model alignment: A survey, arXiv:2309.15025v1 (2023).

2530001.indd 372530001.indd 37 12-11-2024 11:43:4512-11-2024 11:43:45

  WSPC/214-IJSC  2530001  ISSN:1793-351X 2nd Reading

38 G. F. Luger

[62] L. Helmers, F. Horn, F. Biegler, T. Oppermann and K-R. Muller, Automating the
search for a patentfoundation modelss for language understandingme, PLoS One 14(3)
(2019) e0212103.

[63] Y. Wu, M. Schuster, Z. Chen, Q. V. Le and M. Norouzi, Google,Norouzi, earch
for a patentfoundation modelss for language understandingment learningd plan,
arXiv:1609.08144 (2016).

[64] M. M. A. Zaman and S. Z. Mishu, Convolutional recurrent neural networks for question
answering, in 3rd Int. Conf. Electrical Information and Communication Technology
(IEEE Press, New York, 2017).

[65] W. D. Heaven, OpenAI’s new language generator GPT-3 is shockingly good — And
completely mindless, MIT Technol. Rev. (MIT Technology Review, Cambridge MA,
2020).

[66] P. Agre and D. Chapman, Pengi: An implementation of a theory of activity, in
Proc. 6th National Conf. Artificial Intelligence (Morgan Kaufmann, CA, 1987),
pp. 268–272.

[67] F. J. Varela, E. Thompson and E. Rosch, The Embodied Mind: Cognitive Science and
Human Experience (MIT Press, Cambridge, MA, 1993).

[68] G. M. Edelman, Bright Air, Brilliant Fire: On the Matter of the Mind (Basic Books,
New York, 1992).

[69] G. F. Luger, Knowing Our World: An Artificial Intelligence Perspective (Springer
Nature, New York, 2021).

2530001.indd 382530001.indd 38 12-11-2024 11:43:4512-11-2024 11:43:45

