Building a Spoken Programming Language: Exploiting
Program Structure to Disambiguate Utterances

Benjamin M. Gordon?, George F. Luger®*

% Department of Computer Science, University of New Mexico, Albuquerque, New Mexico

Abstract

Existing speech recognition systems perform poorly for the task of dictating
program text (spoken programming). The systems that have been built tend to
require extensive user training or exhibit high error rates. We have developed
a new programming language with “English-like” syntax that produces major
improvements in accuracy. In this paper, we examine how providing the speech
recognition engine with additional context in the form of scoping and type in-
ference further improves users’ ability to dictate programs. Finally, we provide
empirical validation of our system through a small study of programmers using
the system to dictate programs.

Keywords: spoken programming, programming-by-voice

1. Introduction

Speech recognition systems have improved dramatically in the last decade
for many real-world uses, but one important area that has not received much at-
tention is spoken programming, i.e., the task of entering and editing a program’s
source code via dictation. Since programming in most mainstream languages
is a heavily text-oriented endeavor, our initial intuition might suggest that we
could reuse the same systems that work so well for word processing and email
to dictate program source code. Unfortunately, this is not the case, or at least
not in terms of practical daily usability.

A preliminary question for this type of research is why somebody would want
to program through spoken input. Why not use the perfectly good keyboard
already attached to their computer? We believe that the answer is twofold.
First, consider all the people who have an injury or disability that impairs their
ability to type. A person in this situation may have as much mental capacity
and intelligence as anybody, but still be unable to write a program without a
second person to do their typing. This is both inefficient and disempowering.

*Corresponding author
Email addresses: bmgordon@cs.unm.edu (Benjamin M. Gordon), luger@cs.unm.edu
(George F. Luger)

Preprint submitted to Elsevier March 11, 2018

For the second half of the answer, we suggest that with the rise of mobile
computing, this group of people-those who know how to program but can’t type
very well-has expanded to include everybody using a smartphone or tablet. No
matter how proficient a typist a person might be, they aren’t likely be very
quick at entering large quantities of text on a tablet’s soft keyboard, especially
when that text includes all the non-alphanumeric characters used in a typical
programming language.

A number of other researchers have developed systems that facilitate spoken
programming in existing languages, such as Java. These systems have enjoyed
some success, but they also face many difficulties arising from the challenge
of bridging human language and the artificial, mathematical syntaxes of com-
puter languages. We have taken an alternative approach of designing a new
programming language with syntax that more closely matches English sentence
patterns. The change in language syntax alone shows promising results in terms
of increased recognition accuracy [1]. In this paper, we describe how further im-
provements have been achieved by exploiting the program structure embedded
in the source code to create additional context for the recognizer.

In section 2, we provide a description of the spoken programming task and
related research in the area. We also briefly describe our system. In section 3, we
give further details of our chosen syntax and the implementation of the system.
In section 4, we describe the reasoning behind adding type inference and the
mechanism for doing so. In section 5, we describe our testing methodology and
study design. In section 6, we describe the results of running our study. Finally,
in section 7, we provide some conclusions and ideas for future work.

2. Background

We first give a brief history of spoken programming and other related re-
search. In this section, we also describe the key factors in the design of our new
system, in particular the language syntax and its integration into a programming
environment.

2.1. Spoken Programming

The idea of spoken programming is not new. Researchers have been experi-
menting with at least partial voice control of a programming environment since
the Formulate [2] language in the 1980s.

In more recent years, there have been several notable attempts to build
spoken programming environments. In 2006, Désilets, Fox, and Norton cre-
ated VoiceCode [3, 4], a combination of the Emacs text editor with a com-
mercial speech recognizer that supports speech-based input of multiple existing
programming languages. VoiceCode handles the differences between language
syntaxes by defining a generic higher-level spoken syntax to describe program
features like classes and functions. When the user speaks one of these items,
VoiceCode uses a language-specific template to generate appropriate code for
the language being produced.

Another spoken programming environment called Spoken Java was created
by Begel and Graham around the same time [5]. Their environment, being fo-
cused on Java only, used a spoken syntax that was meant to evoke the types
of phrases that developers were observed to use when describing Java code to
each other. The Spoken Java environment filled in all the necessary punctua-
tion and syntax that was missing from users’ utterances. They evaluated their
environment with a small user study and found that it worked overall, but with
approximately a 50% word error rate (WER) [6].

Arnold, Mark and Goldthwaite proposed a system called VocalProgram-
ming [7]. Their system was intended to take a context free grammar (CFG) for
a programming language and automatically create a “syntax-directed editor,”
meaning an editor that makes use of the programming language syntax for nav-
igation and editing rather than merely allowing text entry. For example, they
suggested that a navigation command like “move down to the next statement”
would move to the next statement in the program regardless of how many lines
that represented. After the initial paper, the system appears to have never been
implemented, nor have any follow-on papers been published. It was described
as abandoned by Begel and Graham [5].

The final project we will mention here is a fascinating presentation by Tavis
Rudd at PyCon 2013 [8]. After Rudd developed severe RSI, he created a sys-
tem in which he could rapidly create and edit LISP programs using various
grunts and nonsense syllables to control indentation, function calls, and so on.
His system required him to spend several months learning an entirely made-up
language in order to use it productively, but his demo during his presentation
makes a convincing case for the idea that special-purpose spoken syntax can be
very effective when it matches the programming language.

2.2. An Alternative Approach

The previously described projects have each enjoyed some degree of success.
However, they all suffer from either large user training periods or low input ac-
curacy. We believe this is largely due to the major differences between the typ-
ical programming language syntax and the spoken phrases that humans use to
“speak” them. Existing speech recognition programs are trained on and heavily
biased towards producing valid English sentences, so they perform poorly when
asked to recognize phrases that do not correspond to proper sentences.

One potential approach to this problem would be to develop a large corpus of
spoken programming fragments, then retrain a recognizer on this data. Because
such data does not currently exist, this would be labor-intensive, as well as
losing much of the decades of research and tuning that has gone into existing
English recognizers. Our approach has been to instead adapt the programming
language syntax to more closely match typical English sentence patterns. For
example, instead of using “x = 5;” we would say “set x to 5”. Instead of defining
a function with “void f(a,b,c)” we would say “define function f taking parameters
a and b and ¢”. More complete examples can be found throughout this paper,
and the complete language grammar is available elsewhere [1].

3. New Language Implementation

In this section, we describe the details of the new programming language
syntax. We also provide a brief description of the implementation.

8.1. A Brief Tour of the Language

As mentioned, our language syntax is intended to evoke the feeling of speak-
ing English. While not being fully general English sentences, the individ-
ual statements are built from phrases that are either grammatical—though
restricted—English phrases or are at least plausible chunks that would be spo-
ken by an actual person. The specific syntax of each construct was determined
in a fairly ad hoc manner by informal surveys and discussions around the UNM
Computer Science department. Most constructs had a single dominant popular
choice of phrasing. In the cases where there were alternatives with no clear win-
ner, we chose one based on what felt most natural to ourselves. While certainly
not a rigorously formal syntax development process, we feel that the end result
is natural enough to be easily learnable and comfortably speakable by a fluent
English speaker. The truth of this claim will be explored in Section 6.

The most popular languages today (Java, C, Python, etc.) are all imperative
languages. The functional and logic programming paradigms offer some appeal-
ing benefits for the design of a language, but the use of these would require
many potential users to learn both a new spoken syntax and a new program-
ming paradigm at once. This would have made it difficult to design a study
that tests the effectiveness of the syntax unless we limited testers to people who
already had existing functional programming experience. We felt that this re-
striction would have unduly restricted our ability to run the study described in
section 5.3. Therefore, to maximize accessibility of the language, we chose to
make it an imperative language.

Even in the imperative paradigm, there is a wide variety of capabilities pro-
vided by the programming language, ranging from assembly to modern high-
level object-oriented languages. Because the purpose of this research is not
programming language features per se, we have chosen to omit many of the
more complex features. The language we have built provides similar functional-
ity to C in terms of control structures and data types, but we have incorporated
some higher-level features such as automatic memory management and type
inference. The individual features will be described below.

Also like C, our language is statically typed. While the common trend
among recent languages seems to be in the direction of dynamic typing (con-
sider Javascript, Python, etc.), the use of dynamic typing discards a significant
amount of contextual information that can be used prior to runtime. Because
the use of extra context to improve programming performance is one of the key
ideas in this research, we did not wish to sacrifice this source of information;
thus, static typing.

However, just because the language is statically typed does not mean we
must force the programmer to litter their code with type declarations. Instead,
we use type inference [9] to automatically recover this information at compile

time (or even at program dictation time). This allows the programmer to focus
on their algorithms rather than on the specifics of variable types, while still
allowing us to make use of type information for speech recognition purposes.

While the combination of features above do not make an interpreter impos-
sible, they do mean that the entire source file must be processed to infer types
and resolve forward references before execution can begin. Because the design
of runtime language environments is also outside the scope of this research,
we found it more expedient to simply generate an executable after the initial
processing rather than create an additional runtime interpreter.

The overall combination of the decisions above results in a minimalist, C-
like language for spoken programming. Though minimal, our language is Turing
complete [1]. Nevertheless, it is not meant to be a “production-ready” language
in the sense of being usable to build large, real-world systems. Many features
that are considered indispensable for modern software engineering are missing,
but this is not a problem for our initial purposes of investigating spoken pro-
gramming.

Next, we describe the individual language features and their syntax. The
following gives an intuitive description of the syntax and the reasons for choosing
it. A full formal grammar of the complete language is available elsewhere [1].

3.1.1. Variables and Data

The core of any imperative language is state manipulation, and the standard
way to provide this is through variables and variable assignments. In order to
assign variables, it is also necessary to have a syntax for literals of each of the
supported types. It seems necessary to support string and integer variables in
order to perform any non-trivial tasks. Booleans can be trivially emulated using
integers, so they are not included as a separate type. Similarly, characters can
be treated as a special case of strings. We also provide arrays of the above, but
more sophisticated combinations such as sum types (variants), product types
(records/structures), and user-defined types are all omitted.

The basic statement to create and update variables is called set. It takes
an expressions and stores it into the named variable or array reference. If
the variable did not previously exist, this creates the symbol and assigns its
initial type. If the variable already existed, the type of the new value must be
compatible with the previous type.

Examples:

1 set n to 1

2 set y to the string Hello
3 set element n of x to y

Note that string literals are introduced by the words “the string.” The
string value extends from there to the end of the line. When speaking, this is
indicated by pausing at the end of the string. This is one of the few concessions
to the use of non-visible features to indicate meaning. This decision was ne-
cessitated by practicality; further study is needed to determin a more complete
mechanism for delimiting spoken strings.

In order to perform computations with its state, the language needs to in-
clude statements that can combine and manipulate variables. For numeric vari-
ables, this consists of arithmetic expressions. We have implemented addition,
subtraction, multiplication, and division. More complicated expressions can be
built using standard order of operations to enforce precedence.

Sensible basic manipulations for string variables are concatenation, substring
extraction, and simple search (like the strstr function in C). Other string func-
tionality can be easily built on top of these basic operations, so additional
functionality has not been built in.

Modern languages also typically provide automatic memory management. In
languages with pointers and references, this is often provided through garbage
collection or reference counting. In this language, there are no pointers and no
references, so memory for scalars can be automatically allocated and deallocated
based on the call stack at runtime. Arrays with dynamic length can require
dynamic memory allocation at any time, but this is handled automatically by
a small runtime support library we have written. Since the array variables
cannot outlive their scope, they do not introduce any additional difficulties
with deallocation. Thus, our language does not need to provide any explicit
memory management facilities.

Examples:

1 set x to 5

2 set z to x + 1

3 set element z of y to z + 5 % x

3.1.2. Functions

Since Dijkstra’s famous letter on structured programming [10], it has been
considered inconceivable to program in any language that did not include struc-
tured programming facilities. The most important such constructs are functions
and loops.

Our language supports definition of simple functions that accept zero or
more positional parameters with the types described above. Functions return
single values, again of any of the supported variable types. Functions may also
return nothing (the equivalent of void in C). More advanced parameter schemes
like optional parameters, default values, and named parameters are not present.
Because the language does not include pointers, all function parameters are
passed and returned by value.

Examples:

1 define function main taking no arguments as
2

3 end function

4

5 define function foo taking arguments x as
6 return x + 1

7 end function

9 define function bar taking arguments m and n as

10

11 end function

12

13 define function baz taking arguments m and n and z as
14

15 end function

There are two small oddities to notice here: the word arguments is always
plural, and argument lists are joined with and instead of commas. This is in-
tended both to keep the syntax regular and to avoid non-spoken content. While
“taking arguments x” may be ungrammatical, we have found that it causes
no problems for users; additionally, the speech recognizer can automatically
correct if the person says “taking argument x,” so there is no impediment to
users’ potential word choice here. The unusual list structure is slightly more
disconcerting for people, but the alternatives were to explicitly say “comma”
between words (which would be at cross-purposes to our design goals) or to use
pauses to distinguish between identifiers (which was neither robust nor easy for
users to discover).

Unlike variable symbols, which are created at their time of first assignment,
all functions are conceptually in scope from the first line of code. Naturally,
this requires the compiler to make multiple passes over its internal abstract
syntax tree (AST), but this is not uncommon. More importantly, it enables
forward references to functions (but not variables) that have not yet been defined
at the point of their reference, and it enables recursion. Functions may call
themselves recursively, and they may be mutually recursive through some chain
of intermediate functions.

Like variables, function parameter types and return types are determined
via type inference. However, functions are not polymorphic; all of a particular
function’s return types must resolve to a single type solution. This limitation is
not inherent in the language grammar, but is simply an implementation limita-
tion caused by the underlying code that the compiler generates. This limitation
could be lifted without modifying the language syntax, but because polymor-
phism itself is not part of this research, we have not done so.

In addition to defining functions, a programmer must be able to call them.
In order to keep the natural English feel of the language, we found it necessary
to provide two syntaxes for this. For functions where the result is thrown away
(called for purposes of side effects), the syntax is call function. If the function
takes arguments, one must append with arguments. For function calls where
the result will be stored in a variable or used in an expression, the syntax is the
result of calling function. Arguments are appended the same way as the
call statement.

Examples:
1 call f
2 call f with 1

3 call f with 2 and x
set x to the result of calling f
5 set x to b + the result of calling factorial with 10

N

From a language design standpoint, it seems mathematically inelegant to
offer two syntaxes for the same purpose (of calling functions). However, the al-
ternative requires either verbal gymnastics or the creation of unnatural sounding
statements such as “set x to 5 + call {’. Does that statement mean “set x to
5, plus (also) call 7, or does it mean “call f, add 5 to the result, and store
that value in x?” We know from the grammar restrictions that it means the
second, but our casual daily use of “plus” to mean “also” can lead to the wrong
intuition. Rather than either of these alternatives, we provide the two separate
function call syntaxes.

3.1.3. Looping

There are two basic kinds of loops: definite and indefinite. In a definite
loop, the loop body will execute some fixed number of times, while an indefinite
loop is repeated an arbitrary number of times as long as its guard condition
remains true. It is simple to simulate a definite loop using an indefinite loop
plus a counter variable, but it is impossible to simulate an indefinite loop using
a definite loop. Therefore, the language includes syntax for indefinite loops and
omits definite loops.

The syntax for indefinite loops is the very typical while condition do.
Exactly as one would expect, the condition is evaluated each time the while
statement is reached, and the body will be executed repeatedly as long as it
remains true.

Examples:

1 while 1 = 1 do
2

3 end while

4

5 while x < 5 do
6

7 end while

The body of the loop is a nested scope. It inherits the symbols visible in the
parent scope, but any new variables created within the loop body will not be
visible beyond the execution of the loop.

8.1.4. Conditionals

In theory, it is possible to simulate conditional statements (if-then-else) using
a combination of indefinite loops and extra guard variables. The same reasoning
that justifies omitting definite loops could also justify omitting conditionals.
However, conditionals are so common, and the emulation is so cumbersome in
comparison, that this seems unreasonable. Therefore, in the interests of avoiding
the Turing tar pit [11], we have also included a built-in syntax for conditional

statements. Like many functional languages, our if-then always includes an
else and an explicit terminating end if. The primary purpose of this decision
is simply consistency, although it does also have the benefit of avoiding the
“dangling-else” problem.

Because this may then result in unwanted else blocks, we also provide the
statement nothing, which allows the user to state that nothing should happen.
This statement is primarily intended for use in otherwise-empty else blocks,
but it is valid anywhere a statement can go.

Examples:

1 if x < 5 then

2

3 else

4

5 end if

6

7 if x > 1 and x < 10 then
8

9 else

10 nothing

11 end if

12

13 if not z =y or y > 0 then
14 nothing

15 else

16

17 end if

Like the body of the while loop, both the true and false branches of the
conditional introduce new nested scopes.

3.1.5. Booleans

Although we declared in section 3.1.1 that Boolean variables were unnec-
essary due to the inclusion of integers, both conditionals and indefinite loops
require Boolean tests. Thus, simple Boolean tests and logic must be provided.
These values can be used in while conditions and if statements, but cannot be
directly stored into variables or otherwise treated as first-class values.

For all variables, we include tests for equality via the normal equals sign (=).
For numeric variables, we also permit numeric comparisons (<, >, <=, >=). In
order to complete Boolean logic, we will also need to be able to combine these
with AND, OR, and NOT.

Examples can be found in the previous two sections.

8.1.6. Input and Output

Any program that cannot perform input and output is only useful for turning
your CPU into a space heater. Thus, we have naturally provided some basic I/0
facilities. The print statement evaluates an expression and prints the result to

standard output. It does not produce a new line after its output. We provide
the new line statement to explicitly control line breaks.

Examples:

1 print 5

2 print x x 2

3 print element 5 of a
4 new line

5 print the string Hello

The read statement reads a value from the user and stores it in the named
variable. Like the set statement, this automatically creates the variable if it
did not previously exist within the current scope. The type of the variable is
automatically determined by the type inference procedure based on other uses
of the variable, and the read statement automatically coerces the input into the
correct type.

Examples:
1 read x
2 read element 1 of y

All modern operating systems provide support for redirection of a program’s
standard input and output to and from files. Therefore, we have chosen not to
provide explicit support for file I/O. Network sockets, shared memory, and other
interprocess communication facilities are also omitted.

Most languages support some kind of external library linkage. This is a
vital feature that would need to be present in any programming language made
for serious use, but it is not necessary to demonstrate the viability of spoken
programming. In addition, interfacing to external libraries written in other
languages re-introduces the problem of trying to create a spoken syntax for
other programming languages. Therefore, this feature has been omitted, but
this will be an important area for future study.

3.2. Programming Environment Implementation

The first component of our system is a compiler for the new language. It
works much like a traditional compiler, accepting text files containing programs
written in the appropriate syntax and producing an executable as output. When
using the compiler directly, the user could hypothetically use any speech recog-
nition system to dictate his code. However, this gives up much of the ability
to influence the speech recognizer through programming context. In order to
regain this, we need an entire spoken programming environment.

To create a complete programming environment, we created a plugin for
the popular Eclipse IDE [12]. Our plugin uses the CMU Sphinx [13] speech
recognition system to allow the user to dictate directly into a text editor within
Eclipse. As the programmer dictates her program, background tasks analyze
the code and update the speech recognizer to incorporate the ongoing context.
Once the user is ready to compile, the plugin also integrates the Eclipse build

10

system with our compiler to produce complete executables in the form of jar
files that can run directly on a standard Java JVM.

To test the effectiveness of this system, we performed a small user study.
Our users had varying levels of experience programming with a variety of other
languages, but all of them had at least some basic programming knowledge. We
found that users were able to begin dictating original programs with our new
syntax with less than an hour of training. We observed informally that dictation
speed and accuracy are much higher than reported by the spoken programming
projects mentioned previously. Unfortunately, the source code for these earlier
projects was not available at the time of our study, so we were unable to make
a direct comparison.

More details about our system’s performance and evaluation can be found
in section 5, and a full description of the system implementation, baseline per-
formance, and how it compares to other methods of spoken programming can
be found elsewhere [1]. In the following section, we will describe the types of
programming context that were considered and how they were integrated into
the programming environment.

4. Adding Context

Next, we describe the improvements that were achieved by incorporating
more programming context into the speech recognizer. The idea that context
is important to understanding has been a part of Al and speech recognition
for decades. Having a baseline spoken programming language, we wished to
determine if the same idea would apply here. The two types of additional
context we tested were scoping and type inference.

4.1. Scoping

Scoping is a very common idea in programming languages; it simply means
that at any particular point in the program text, certain names (variables,
functions, etc.) are visible, while others are not visible. For a statically scoped
language like ours, the scope of a name corresponds to its position within the
text. Typically, nested scopes are permitted, with names defined in inner scopes
hiding symbols of the same name defined in outer scopes. Our language follows
this typical paradigm through the use of nested blocks.

Knowledge of this structure can be exploited by the speech recognizer to
improve its accuracy by favoring symbol names that are in scope. In this basic
form, changing the probability of variable names based on scopes is similar to
what many text-based IDEs already do during code completion. The major
difference is that when speaking, the speaker does not say a partial word and
then choose from a list of completions. Instead, the speaker says an entire
utterance and expects the recognizer to choose the best option. As an example
of how this might apply in practice, consider the partial program in Listing 1.

Listing 1: Scoping Example
1 set x to O

11

2 while x < 10 do
3 set y to x + 1
4 print =x

At the point marked *, imagine the user says something that sounds like
“eye.” What symbol should the recognizer insert? Going on pronunciation
alone, potential English words might be “i”, “eye”, or “aye.” However, a human
following along with this conversation would easily realize that the intended
word is “y.” By incorporating scoping, we can give the speech recognizer this
same knowledge.

In our plugin, this knowledge of scoping is implemented by splitting the
Sphinx grammars that refer to variables into multiple grammar rules. Each
time a new scope is entered, the existing grammar rules that refer to variable
names are pushed onto a stack. When a new variable is brought into scope, any
rules that recognize variable names are modified to include the new variable as a
high-probability word choice. From that point through the end of that variable’s
scope, the speech recognizer will be biased in favor of using that variable name
in appropriate slots. When that variable goes out of scope at the end of the
block, the stack is popped so that the previous grammar rules are restored.

This mechanism also implements a second scope-related heuristic based on
the principle of locality of reference. Much like a compiler uses this idea to
generate more efficient code, the recognizer can guess that a person is more
likely to refer to a recently-used or nearby variable than to a variable defined
far away. Listing 2 contains a short example to illustrate this idea.

Listing 2: Locality of Reference Example

1 set i to the string Hello
2 set x to O

3 while x < 10 do

4 set y to x + 1

5 if *x = 5 then

Again, imagine that the user’s utterance at the point labeled % sounds like
“eye.” Unlike the previous example, both “i” and “y” are valid choices (*“eye”
and “aye” are still out of scope and therefore unlikely). However, y in this case
seems like the more likely variable that was meant to be used. Because the
scope containing y is at the top of the grammar rule stack, the extension from
using scoping to favoring closer scopes is straightforward.

One thing that might stand out in the previous example is that there appears
to be no way for the user to indicate that they really meant “i” when they said
“eye.” One mechanism for improving this difficulty is discussed in the next
section.

4.2. Type Inference

The next type of context we added beyond scoping is type inference. In lan-
guages that use type inference, the types of symbols are typically still statically

12

chosen at compile time, unlike dynamic languages. However, the compiler au-
tomatically chooses types based on the observed operations that are performed,
freeing the programmer from much of the drudgery of declaring or changing
variable types.

4.2.1. Motivation

Referring back to Listing 2, we can start to see how this can provide another
source of context for the recognizer. When the user says “eye” at the point
marked *, we can tell that the variable needed here should be something that
can be compared to a number. Since ¢ has been assigned a string, we can infer
that its type is not numeric. For y, we can reason that x is a number and y has
been assigned to something that is added to x, so it must also be numeric. This
is just what is needed to fit in the slot, so “y” is the most likely word the user
is trying to speak.

Because type inference provides additional restrictions on which variables
can fit into a particular spot in the source code, it provides a natural override
for the locality of reference heuristic described above. If a variable can’t be used
in an expression then it doesn’t matter how local it is.

The program in Listing 2 actually provides a second place where type infer-
ence is useful. We have been claiming that the sounds for “i” and “y” are quite
similar, so how does the recognizer know to insert a “y” when the user speaks
line 47 The answer is partially that the user may pronounce the two sounds
with extra care, of course, but it also lies in the fact that the two variables
have different types. When i is created on line 1, it starts off as a string type.
When line 4 is spoken, the user is attempting to assign a numeric type to some
variable. Since the language uses static typing, the type of ¢ can’t change in
the middle of a function, which means the user must expect a new variable (or
they’re creating a bug). Thus, because the recognizer has information about
the inferred types of variables, it can conclude that the user is more likely to
want “y” than “i” in the context of line 4.

4.2.2. Implementation

As mentioned in section 4.1, our programming environment does not just
have one grammar rule for matching variable names. It has a rule for each
scope, and the scope’s rule gets modified as additional variables come into scope.
To pass type inference information to the speech recognizer, we extended this
idea by splitting the rules again. Instead of a single rule that matches variables
everywhere they might be needed within a scope, we have one rule that matches
numeric variables, one for string variables, etc. The grammar rule for arithmetic
expressions then refers to the numeric variables only, and so on. These rules are
updated as type inference is performed so that the recognizer incorporates the
current state of the program in progress.

While our compiler performs full type checking, we found this to be too slow
for use in the recognizer. Instead, we perform “light” type checking by watching
for patterns of use and marking variables with their probable types. A variable
may be simultaneously marked with multiple probable types if it is used in

13

contexts that provide insufficient information on their own. For example, the
statement read X reads a number or string from the user, but this line alone
does not indicate the type of X, so X is marked as both a probable string and
a probable number. The recognizer will then accept X in contexts that require
either type. When the full compiler is run, the type of X will either be fully
determined, or any incompatible mixed uses will produce an error.

5. Evaluation

All of this description of how and why the language works is very nice,
but how can its effectiveness be measured? This is a challenging question for
any programming language, because most languages are judged on subjective
measures like readability, expressiveness, consistency, etc. Even developing the
“sense” of a programming language enough to form opinions on these measures
takes time and practice with a language. Moreover, we do not want to evalu-
ate the language in isolation; we want to evaluate the language together with
its spoken programming environment. Speech recognition systems have their
own evaluation challenges even when the phrases being recognized are meant
to be things like common English sentences or simple commands. In this sec-
tion, we describe how we came up with a repeatable mechanism that produces
quantifiable results for evaluation.

5.1. Making Human Interaction Reproducible

Since we are dealing with human interaction, the first natural suggestion
for evaluating the system is to conduct a user study. This is, in fact, what
we did. There are several variations that we would ideally like to compare:
the performance of our programming environment with the base recognizer,
the performance after adding scoping, and the performance with both scoping
and type inference turned on (type inference requires scoping, so evaluating type
inference without scoping would be meaningless). The traditional way to do this
might be to divide participants into groups and give each group the same task
with a different version of the environment. The drawback to this approach is
that it requires a large number of participants, and we did not anticipate finding
enough volunteers.

Another approach is to ask each volunteer to use the system multiple times,
e.g., once for each variation of interest. This allows for a smaller number of
participants, but unfortunately introduces confounding training effects. For
example, if a participant performs better on their third session, is that because
the type inference is helping them, or have they merely gotten better with
practice? In addition, it is very difficult to control for factors like ambient
noise, distance between the speaker and the microphone, speech timing, etc.

We attempted to extract the best of each approach by recording and re-
using the speech input from our participants. We experimentally verified that
Sphinx’s behavior when decoding files was deterministic, i.e., feeding the same
audio input to Sphinx multiple times produced consistent output as long as

14

the configuration was unchanged. We then modified the Eclipse plugin to ac-
cept audio input from a file instead of directly recording from the microphone.
Thus, a single recorded input could be reused multiple times to simulate addi-
tional sessions on the same program text. Any differences in the textual output
could be attributed with confidence to changes in the recognizer rather than to
environmental effects.

An additional step we took to improve the reproducibility of our results was
to ask participants to spend part of their session reading pre-written programs
instead of composing on the fly. This ensured that participants were not stum-
bling over syntax issues or uncertainty about how to solve the problem. It also
has the advantage that the pre-written program has a canonical correct output,
namely, the original program text. This eliminates the common step of having
a human carefully listen to and transcribe the person’s audio to produce the
expected textual output.

Finally, to further reduce any disfluences, we asked each participant to read
each program twice, then discarded the first recording. All of this resulted in a
set of audio files that we used to generate the textual output by passing it to
the programming environment as described above. We then hand-classified each
difference between the generated output and the original program text based
on several categories that are explained in the next section.

5.2. Creating Correct Programs

Within the framework established by our study setup, we were able to test
the effect of each variation on several potential measures of program correct-
ness. We did not measure the commonly-used word error rate (WER) primarily
because in our environment, errors are not independent. For example, if the rec-
ognizer misses the beginning of a while statement, the grammar will constrain
it to also miss the do that starts the contained block and the end while that
terminates the whole construct. Thus, a single mistake would be reported as
at least four errors. Moreover, it is possible that other constructs might not be
syntactically valid without the while loop, and might thereby add even more
erTors.

Instead, we came up with several measurements that we believe more accu-
rately reflect the task of generating a program. We measured the following;:

e Correct block structure
e Compilable program
e Correct block structure and compilable program

e Full functional equivalence

To explain each of these, we refer to the following short program that calcu-
lates the factorial of a non-negative integer:

15

Listing 3: Factorial

1 define function f taking arguments n as
2 if n < 2 then

3 return 1

4 else

5 set r to 1

6 set z to 2

7 while z <= n do

8 set r to r x z
9 set z to z + 1
10 end while

11 return r

12 end if

13 end function

5.2.1. Correct Block Structure

Correct block structure is the idea that the output program contains the
same blocks nested in the same manner as the intended input program. In
Listing 3, an output program must contain a while loop inside the else block
of an if-else statement inside a function. With the other statements stripped
and nesting indicated by indentation, it looks something like this:

function
if
else
while

If one of these levels is missed, an extra level is added, or they are nested
incorrectly, the result does not have the correct block structure. The block
structure indicates whether the overall outline of the program is correct. The
program still may contain errors (and may not even compile), but it at least
contains the core of the algorithm the user intended.

5.2.2. Compilable

Another measure of code correctness is a compilable program. This means
the compiler is able to produce an executable from the input. The input must
not contain syntax errors or erroneous constructs. However, it does not mean
that the code is bug free. In fact, it doesn’t even mean that the block structure
is correct. For example, if the three parts of the if-else block are removed
from lines 2, 4, and 12 in Listing 3, the block structure changes to this:

function
while

This is clearly a different program, but it does still compile. Of course, the

resulting function will not return the correct factorials of any numbers except 0
and 1.

16

5.2.3. Structure and Compilable

A much higher level of program correctness combines the previous two mea-
sures: A compilable program that also contains the correct block structure is
getting close to a correct program. At this point, the program must not contain
any syntax errors or invalid constructs. Errors found at this point are often go-
ing to be relatively simple bugs rather than unrecognizable changes to the code.
For example, the 2 in line 2 could be substituted with another value without
preventing compilation. An observer might even argue that it was essentially
the same algorithm, but the output would be incorrect (i.e., a bug).

5.2.4. Functional Equivalence

The final measure of program correctness that we evaluated is full func-
tional equivalence. With this measure, the program will compile and run, and
will produce the same output as the original intended code. However, even at
this level, we permit minor textual variations that do not change the program
behavior. For example, if z in lines 6-9 of Listing 3 were uniformly replaced
with ¢, the program would still perform the same computations and produce
the same output. We would describe it as functionally equivalent rather than
identical.

With a good set of unit tests, intuition suggests that it would be possible
to check this level automatically by feeding a set of test data to the canonical
program and the test program and comparing the two outputs. However, we did
not perform this automatic verification because sometimes a different program
structure can still produce identical output. This wrinkle is illustrated in our
test program: Because of the structure of the function, the else block is actually
unnecessary. That is, these two block structures are equivalent for this specific
function:

function function
if if
else while
while

Because we want to measure whether the programming environment gener-
ates the source code the user is speaking, we classified this situation as a failure
even though the program output meets the definition of functional equivalence.

5.8. Study Design

Putting together everything from the previous two sections, we describe the
full study here.

5.3.1. Participant Demographics

We started with thirteen initial participants, but one was removed because
his accent differed from General American by too much for Sphinx to produce
usable results. Of the twelve subjects who were included in the final results,

17

ten were male and two were female. Two had prior experience with voice recog-
nition software, but ten reported having never used it. Two participants were
self-described as novice programmers, five as intermediate, and five as expert.
Two participants were undergraduates, two were non-students, and eight were
graduate students.

5.8.2. Non-Interactive Reading

Each participant came in for a single recording session that lasted approx-
imately an hour. The session was divided into three parts, made up of three
different ways of interacting with the programming environment. During the
first part of each participant’s session, they were asked to read ten pre-written
programs as described in section 5.1. During this part, participants were simply
reading into a microphone; they were not interacting with the programming
environment.

The programs themselves were structured to ensure that every syntactical
feature of the language was exercised. Further, many of the programs pur-
posefully included variable names that differed only in sound patterns that are
often difficult for speech recognition engines to distinguish (e.g., n versus m or
s versus f).

We took the recordings and used our programming environment to generate
three text outputs from each audio file: one with the base recognizer, one with
scoping enabled, and one with both scoping and type inference enabled. We
then compared each text file to the corresponding original source code and
hand-classified the differences according to the scheme described in the previous
section. Finally, we used the Wilcoxon signed-rank test to evaluate the results
for statistical significance. The results are described in section 6.1.

5.8.8. Interactive Reading

The audio files generated this way are excellent for isolating and measuring
the results of changes to the programming environment. Unfortunately, they do
not do much to measure actual user interactions with the software. To address
this, the second part of the recording session involved re-reading the same ten
programs a third time, but this time using the programming environment “live.”
Participants were shown how to make basic corrections and asked to attempt to
reproduce the pre-written programs directly into the programming environment.

The results of this part are much less robust than the first part, due to all
the factors described in section 5.1. Nevertheless, we did collect and analyze
some basic information, such as successful completions and corrections required.
These results are discussed in section 6.2.

5.8.4. Live Programming

The final test, of course, is to attempt live programming. One hour is not
very long to learn a new programming language, and many of our participants
were not necessarily strong programmers to begin with. Nevertheless, for those
participants who had time left after the first two parts, we offered them three
very simple challenge problems and let them try to use the live programming

18

environment to write programs that solved the challenges. Because this last
part was just for fun, we did not attempt to measure their performance, but we
have recorded a few anecdotal observations in section 6.3.

6. Results

We next present the results of our user study on the spoken programming
environment. We present non-interactive pre-written program reading in sec-
tion 6.1, interactive program reading in section 6.2, and spontaneous interactive
programming in section 6.3.

6.1. Results For Pre-written Programs

In this section, we present the results for each of the four metrics that we
calculated on the pre-written program reading section of the user study. Each
cell in the table shows how many programs meet the criteria for that particular
metric. There were 12 total participants and 10 programs, so the maximum
score in each cell is 10.

From the raw scores, we used the Wilcoxon signed-rank test to determine
whether adding scoping and/or type inference produced a statistically significant
improvement. We chose the Wilcoxon test instead of the common t-test because
we cannot assume users’ performance is normally distributed. Different users
will have different disfluencies, speech speeds, etc., and even the same user will
vary across different programs.

Because we are testing 12 hypothesis from the same data (3 combinations
of context on 4 different tasks), we have applied a Bonferroni correction and
will use p = 0.004 as the threshold of significance instead of the usual p = 0.05.
More advanced corrections, such as the Benjamini-Hochberg method, would
have given more power but would not have changed the final decision about
which results are significant.

6.1.1. Correct Block Structure

Table 1 shows the raw counts for successful block structure. The majority of
subjects experienced no change in the number of programs with correct block
structure as a result of the context-based features. Of those who saw a differ-
ence, some were positive and some negative. However, the differences are not
statistically significant. Using Wilcoxon’s test, we have W = 71.5 with a p-value
of 0.52 moving from the baseline to scoped context. Adding typed context to
scoping, we have W = 76, p = 0.42. Finally, going from baseline to fully typed,
we have W = 75,p = 0.44. This result is not much of a surprise, since the
context-based improvements we have been considering should affect identifier
recognition much more than the overall program structure or basic statement
constructs.

19

Subject | Baseline | Scoped | Typed
1 5 5 4
2 6 6 6
3 8 8 7
4 8 8 9
5 9 8 9
6 8 8 8
7 10 10 10
8 7 8 8
9 9 9 9
10 10 10 10
11 8 8 8
12 8 8 8

Table 1: Block Structure Successfully Produced in Contexts

Subject | Baseline | Scoped | Typed
1 3 4 6
2 5 5 6
3 3 6 7
4 6 6 10
5 3 7 7
6 5 7 8
7 8 8 10
8 5 5 7
9 4 6 9
10 4 6 10
11 5 6 8
12 3 6 9

Table 2: Compilable Programs Produced in Contexts

6.1.2. Compilable Programs

The next test is for compilable programs. Raw counts are shown in Table 2.
Compared to the block structure test, we should expect to see a larger effect
for compilable programs from the context-based features. Errors such as using
undefined variables or calling non-existent functions should be reduced or elim-
inated by the scoping, and we can expect errors such as adding a string to a
number to be similarly reduced by the addition of typing.

Unlike the block structure test, no users experienced a decrease when adding
context-based features. Some had an increase in compilable programs when
adding scoping, some when adding typing, and some in both cases. Intuitively,
this tells us that the context-based features have the expected effect, but for-
mally we can check using Wilcoxon’s test again. We find that W = 117,p =
0.0039 for adding scoping to the baseline. Adding typing to scoping, we get

20

W = 125,p = 9.4 x 10~%. Finally, going from baseline to fully typed, we get
W =137,p = 8.7x107°. These p-values indicate very strongly that the increase
in the number of compilable programs is not due to chance. The scoping and
typing are individually statistically significant improvements, and the combina-
tion even more so.

6.1.3. Compilable and Correct Block Structure

Subject | Baseline | Scoped | Typed
1 2 3 3
2 5 5 6
3 3 6 7
4 6 6 9
5 3 7 7
6 5 7 8
7 8 8 10
8 5 5 7
9 4 6 8
10 4 6 10
11 5 6 8
12 3 6 8

Table 3: Correctly Structured Compilable Programs in Context

Next, we consider the combination of correct block structure and compilable
program output. The raw counts shown in Table 3 are quite promising. Even
at a glance, we can see that there are improvements for every subject and
no regressions, so the context-based features appear to be a clear improvement.
Performing our usual Wilcoxon test to verify this formally, we find W = 115,p =
0.006 for adding scoping to the baseline, not quite significant at our threshold
of 0.004. Adding typing to this, we get W = 118.5,p = 0.0033. And finally,
going from the baseline to full typing, we get W = 128,p = 6.0 x 10~%. In this
case, scoping did not produce a statistically significant improvement by itself,
but the combination of scoping and typing did.

6.1.4. Functional Equivalence

Finally, we have our strongest test: full functional equivalence. Table 4 shows
the raw counts. Unfortunately, the results here are not quite so clear-cut. Eight
out of 12 participants did show improvements with the context-based features
turned on, but the results are not statistically significant. Adding scoping to the
baseline, we get W = 92.5,p = 0.12. Adding typing, we get W = 78,p = 0.37,
even less strongly supported. Even going from the baseline to fully typed, we
get W = 96.5,p = 0.08. These all come up short of the normal 0.05 bar of
statistical significance, let alone our lowered threshold of 0.004.

Full functional equivalence is obviously the most desirable outcome from our
system, so the lack of a significant improvement here is disappointing. However,

21

Subject | Baseline | Scoped | Typed
1

Ju—y

D S| 0| oo | o otf | ol o) =
no| wo| co| wof wr| oof | pof | eo| wo
| cof ot| o on| ~a| ov| | O] | ro| b
SHFS SRS RIS FNER NN

—
\}

Table 4: Functionally Equivalent Programs Produced in Contexts

this is actually where the limitations of re-using the pre-recorded offline data
appear. Once interactivity is added, our results do show significant improvement
due to the context-based features, as we will see in the next section.

6.2. Results For Interactive Reading

The second section of the user session was the interactive tests. As described
in section 5.3, the user was directly interacting with the running programming
environment for this part of their session. They were able—and encouraged—to
make corrections when the system produced incorrect output. This means that
unlike the offline recordings described in the previous section, the interactive
sessions cannot be replayed through the system with different settings later.

Since we could not replay each particpants’s recording multiple times to
evaluate the context-based features, we randomly divided the participants into
two groups. Of our twelve participants, six used the baseline system (group 1)
and six used the full system with scoping and typing (group 2). Because of the
small size of our study, we did not have any participants record with scoping
only. Due to a recording error, interactive data for two of the participants was
unusable; thus, we have five people in each group. Within each group, we have
numbered the subjects from 1-5 without regard to their numbering in the offline
section; thus, subject 1 in group 1 does not necessarily correspond to subject 1
from the offline tests. More importantly, subject 1 in group 1 is not the same
person as subject 1 in group 2. The tables below have been divided by a vertical
space to help visually reinforce this warning.

Because each participant was encouraged to make corrections as needed,
we did not record whether the programs were perfect. For each participant,
we recorded only whether they were able to complete each program within a
5-minute time limit. For completed programs, we also recorded how long it took
and how many corrections were necessary.

22

Since we are comparing separate groups of people instead of comparing each
participant to themselves, we cannot use the Wilcoxon signed-rank test (the
Wilcoxon test requires that the data pairs come from the same population). In
this scenario, the Mann-Whitney U test [14] is more appropriate for determining
if the performance difference between the two groups is significant, so this will be
the statistical test used in the following sections. Since we test three hypotheses
from the same set of recordings, we have applied a Bonferroni correction and
set our significance threshold to p = 0.016.

6.2.1. Completed Programs

Baseline Group | Completed Scoped and Typed Group | Completed
1 2 1 8
2 4 2 10
3 3 3 10
4 2 4 10
5 4 5 10

Table 5: Programs Completed in Interactive Session

The first measure was the number of programs completed. None of the
participants in the baseline group were able to complete more than 4 out of 10
programs within their 5 minute time limit. All of the participants in group 2
completed at least 8 out of 10 programs within 5 minutes, and 4 out of the 5
completed all 10 successfully. From this description alone, it is clear that group
2 was more successful than group 1. However, to present the result formally,
we computed the Mann-Whitney test and found that U = 25, p = 0.0046. The
data is shown in Table 5.

6.2.2. Corrections Needed

In addition to the raw number of programs completed, it is interesting to ask
whether the number of corrections necessary to complete the program changed
with the addition of the context-based features. The programs were differ-
ent lengths, so we cannot simply compare the number of corrections directly.
Instead, we have normalized by computing a “corrections per line of code” cor-
rection rate. In Table 6, we present the average correction rate for participants
over all programs that each participant completed.

We did not include programs that were not completed in the calculation
because it is impossible to know how many corrections might have been needed
to finish whatever part remained. We observed that for incomplete programs,
subjects had typically accumulated dozens of corrections before they either gave
up or ran out of time. Had all of these corrections been included, the correction
rates shown here for the baseline subjects would have been at least an order of
magnitude larger.

Performing the Mann-Whitney test, we find that U = 5, p = 0.07. Thus, this
result was not statistically significant. We can see from Table 6 that the range of

23

Baseline Group (er}r{;llti(r%le) Scoped and Typed Group (efr{?ltifle)
1 0.17 1 0.25
2 0.73 2 0.32
3 0.44 3 0.21
4 2.31 4 0.20
5 0.26 5 0.14

Table 6: Average Correction Rate Interactive Session

correction rates was significantly reduced by the addition of the context-based
features (0.18 versus 2.14), but we cannot say that the overall distribution is
definitely improved.

However, averaging in this way causes different numbers of programs to be
included for each participant. To determine if the rates were affected by the
inclusion of the extra programs for group 2, we performed the same calculation
on a program-by-program basis for programs 1-3 (since these were completed
by most participants). Even comparing indivdual programs directly to each
other, we found no statistically significant differences in the rates of corrections
needed.

6.2.3. Completion Time

The final comparison we performed between the groups was to see if the
context-based features reduce the time needed to dictate a program. Like the
corrections, we cannot directly compare the times. Not only are the programs
different lengths, but different users have different natural speech rates, different
pause lengths, etc. We normalized the times by dividing the seconds needed to
complete the program by the number of lines to yield a seconds per line dictation
rate. We averaged the dictation rates across the completed programs, and the
results are shown in Table 7.

. Rate Rate
Baseline Group (sec/line) Scoped and Typed Group (sec/line)

1 4.8 1 12.20

2 7.14 2 9.96

3 3.86 3 8.77

4 30.0 4 8.54

5 6.33 5 4.87

Table 7: Average Dictation Rates Interactive Session

Calculating our Mann-Whitney test, we find that U = 18, p = 0.16. Thus, we
see the same picture as section 6.2.2: The range of dictation rates is tightened
up considerably with the context-based features in group 2, but the overall
distribution is not improved in a statistically significant way.

24

As in the previous section, we repeated the analysis of programs 1-3 for the
dictation rate measurement to determine if the individual results differed from
the average. We found no statistically significant differences at the individual
program level here, either.

6.2.4. Discussion

Initially, these results seem counterintuitive. If the new context features
do not necessarily reduce errors, and they do not necessarily let users dictate
lines faster, how do they produce such a dramatic improvement in completed
programs? We believe this is due to a combination of two factors. First, there
is a large variability in user speech rates and enunciation. In our sample, this
is most clearly seen in the difference between baseline subject 1 and baseline
subject 4. Poor subject 4 took 6 times as long to dictate each line and made 13
times as many errors. The context-based features damp down this variability,
but do not eliminate it entirely.

The other cause here is the 5-minute time limit that was used in the study.
As mentioned above, for the programs that were not completed within five
minutes, users had often accumulated dozens of errors. If we had allowed these
users extra time to finish their programs, they would have then been counted
into the correction and dictation rates. This would have affected mostly the
baseline group, which would have pushed up their error rates and pushed down
their dictation speeds. This may have been enough to tip it over into statistical
significance.

6.3. Results For Challenge Problems

The third section of the user study was the programming challenges. In
this section, we offered the user three small programming challenges, and they
attempted to write programs to solve one or more of these challenges. Each of
the challenges could be solved with less than 20 lines of code.

Here is an example challenge (introduction, samples, and hints elided):

Read a number n from the user. Create an array that has 2z in each
element = from 1 to n. Print the result.

A solution that follows the prompt in the most direct way possible might
look something like this:

1 define function main taking no arguments as
2 read n

3 set element 1 of a to O

4 set x to 1

5 while x <= n do

6 set element x of a to 2 % x

7 end while

8 print a

9 end function

25

We gave the users freedom to solve the challenges in any way they liked,
and every user had a different approach. Some users thought things through
before they started dictating, while others started dictating immediately and
then paused to think after every couple of lines. Some users had many more
lines than others. Some users wrote almost exactly the solution we had expected,
while others came up with something entirely different.

When counting a successful solution, we simply accepted whatever program
was produced when the user stopped and told us they thought it was solved.
If they stopped short, we counted that as a failure. Some of the programs
actually were solutions to the problems given, but others contained logic errors
or compilation problems that went unnoticed by the programmer. This seems
no different than what one would expect if asking people to use a keyboard
instead of dictating a program.

We observed that the problems were split between difficulties with using the
new language correctly and errors caused by the spoken programming environ-
ment. The users who seemed more comfortable with the language after the first
two sections had little trouble dictating programs to solve the challenges. Their
errors were largely limited to incorrect variable substitutions, literal values, etc.,
similar to the errors observed in the offline testing. Those users who seemed
less comfortable with the language syntax had significantly more trouble solv-
ing the challenges, but it was not necessarily because the spoken environment
was making errors. In many cases, we observed that they were failing to dic-
tate certain constructs because they were speaking incorrect syntax (e.g., “set
function” instead of “define function” or “x equals 5” instead of “set x to 5”).
Based on our observation, these users likely would have done much better with
more practice. Since we did not control for training effects or attempt to ensure
that users fully understood the spoken syntax prior to giving them the challenge
programs, we did not investigate this possibility further.

One user did not attempt any challenges due to running out of time during
the first two sections of the session. The other users all attempted at least one
challenge. Six users attempted two problems, and one subject attempted all
three.

One user did not solve any challenge problems in spite of attempting one,
while the others who tried one or more solved at least one. Three of the six
users who attempted two problems solved both, and the subject who attempted
all three solved all three.

We think this is likely to be another manifestation of the situation described
above, i.e., the people who felt confident in the language syntax had less trouble
with the first challenge, and the positive feedback from completing it success-
fully made them more willing to attempt a second or even a third challenge.
Conversely, the people who struggled to complete the first challenge program
were unmotivated to try any additional spoken programming.

26

7. Conclusions and Future Work

In this paper, we presented a new programming environment that optimizes
for spoken programming. Building upon the base idea of replacing the typical
program syntax with the use of full words and English-like patterns, we de-
scribed how further improvements in accuracy can be achieved by incorporating
additional context-based knowledge into the recognizer. This merges some of
the strengths of existing English speech recognizers with the domain-specific
knowledge and regular structure that come from a programming language.

To evaluate this environment, we completed a user study of our programming
environment in which we analyzed the performance gains contributed by our
added forms of contextual awareness. We found strong statistically significant
improvements in participants’ ability to create correctly structured, compilable
programs. This was especially true when using the system interactively: All
participants who used the context-based features were able to complete more
programs than any participants who did not have the context-based features
enabled. This result was statistically significant with p = 0.0046.

Taken all together, this research paints a picture of a possible future for spo-
ken programming. Lacking physical keyboards, tablets are currently unsuited
for major programming tasks, but being able to enter programs via speech elim-
inates one major obstacle to their use for that purpose. Even given the idea of
speaking programs, speaking C, Java, or other traditional computer languages is
likely to run into similar limitations to those found in previous research. Rather
than attempting to turn human speech into existing computer languages, we
have demonstrated that significantly better spoken results can be achieved by
molding the computer language to human speech patterns.

Of course, before our new spoken language could be a serious alternative to
Java or C, plenty of further research is needed. There are many possible avenues
for further study in this area, but we will only mention a few here.

For spoken programming to be successful, the initial hurdle of remembering
syntax and achieving successful program entry must be overcome. However,
once that is in place, most programmers spend more time editing and debugging
than on the initial program entry, so spoken source code navigation, editing, and
debugging are vital areas for future study.

Spoken navigation is also an area ripe for consideration of multi-modal in-
terfaces. Saying “go up three lines” may be intuitive, but “select this line” with
an accompanying screen touch is probably even more so. Once touch is incor-
porated, many selection or movement tasks can more easily be described with a
gesture than with a wordy description. One can easily imagine the user circling
or tapping variables, lines, or whole functions of interest to tell the editor where
to make their spoken changes.

The final area of future research we mention here is higher-level language
constructs. The language we developed is around the level of C, with a few ad-
ditions like automatic memory management and type inference. However, most
programming languages today supply significantly more built-in functionality.
When a language is Turing complete, it might be argued that all of these fea-

27

tures are merely syntactic sugar, but if that made no difference, people would
never have developed anything beyond C. The syntactic sugar is not merely
pleasant; in many cases it is a core part of a language and a source of pro-
grammer productivity. We suggest that spoken syntax for more advanced type
systems and object-oriented programming represents an important next step.
With this project, we have taken a small step in the direction of a new way
to think about programming environment design: speech first instead of speech
as an afterthought. Tablets and similar devices are here to stay; if programmers
aren’t already asking to program on their tablets, they will be soon. Giving
programmers a bluetooth keyboard and a Java compiler is unlikely to be a
satisfactory answer for long. We hope that more small steps toward spoken
programming will eventually lead to a large jump in the right direction.

[1] B. M. Gordon, Improving spoken programming through language design
and the incorporation of dynamic context, Ph.D. thesis, University of New
Mexico, Albuquerque, New Mexico (2013).

[2] J. L. Leopold, A. L. Ambler, Keyboardless visual programming using voice,
handwriting, and gesture, in: 1997 IEEE Symposium Visual Languages,
1997, pp. 28-35. doi:10.1109/VL.1997.626555.

[3] A. Désilets, D. C. Fox, S. Norton, Voicecode: An innovative speech inter-
face for programming-by-voice, in: CHI '06 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’06, ACM, New York, NY, USA,
2006, pp. 239-242. doi:10.1145/1125451.1125502.

URL http://doi.acm.org/10.1145/1125451.1125502

[4] A. Désilets, D. C. Fox, S. Norton, VoiceCode Programming by Voice Tool-
box, http://sourceforge.net/projects/voicecode/ (Retrieved August
30, 2014).

[5] A. Begel, S. L. Graham, Spoken Programs, in: 2005 IEEE Symposium
on Visual Languages and Human-Centric Computing, 2005, pp. 99-106.
doi:10.1109/VLHCC.2005.58.

[6] A. Begel, S. L. Graham, An Assessment of a Speech-Based Programming
Environment, in: 2006 IEEE Symposium on Visual Languages and Human-
Centric Computing. VL/HCC 2006., 2006, pp. 116-120. doi:10.1109/VL-
HCC.2006.9.

[7] S. C. Arnold, L. Mark, J. Goldthwaite, Programming by voice, VocalPro-
gramming, in: Proceedings of the fourth international ACM conference on
Assistive technologies, Assets 00, ACM, New York, NY, USA, 2000, pp.
149-155. doi:http://doi.acm.org/10.1145/354324.354362.

URL http://doi.acm.org/10.1145/354324.354362

[8] T. Rudd, Using Python to Code by Voice, http://pyvideo.org/video/
1735/using-python-to-code-by-voice (Retrieved August 30, 2014).

28

[9]

B. C. Pierce, Types and Programming Languages, MIT Press, Cambridge,
MA, USA, 2002, Ch. 22: Type Reconstruction, pp. 317-338.

E. W. Dijkstra, Notes on structured programming, in: O. J. Dahl, E. W.
Dijkstra, C. A. R. Hoare (Eds.), Structured programming, Academic Press
Ltd., London, UK, UK, 1972, Ch. 1, pp. 1-82.

URL http://portal.acm.org/citation.cfm?id=1243380.1243381

A. J. Perlis, Epigrams on programming, SIGPLAN Notices 17 (9) (1982)
7-13.

Eclipse - The Eclipse Foundation open source community website., http:
//www.eclipse.org/ (Retrieved December 30, 2014).

CMU Sphinx - Speech Recognition Toolkit, http://cmusphinx.
sourceforge.net/ (Retrieved September 1, 2014).

N. Nachar, The mann-whitney u: A test for assessing whether two indepen-
dent samples come from the same distribution, Tutorials in Quantitative
Methods for Psychology 4 (1) (2008) 13-20. doi:10.20982/tqmp.04.1.p013.
URL http://www.tqmp.org/RegularArticles/vol04-1/p013/p013.pdf

29

