Journal Title

XX(X):1-12

©The Author(s) 2017

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

®SAGE

Katrina M. Groth', Matthew R. Denman?, Michael C. Darling®>®, Thomas B. Jones?, and
George F. Luger®

Building and using dynamic
risk-informed diagnosis procedures for
severe accidents

Abstract

Severe accidents pose unique challenges for nuclear power plant operating crews, including limitations in plant status
information and lack of detailed diagnosis and response planning support. Advances in severe accident simulation and
Dynamic Probabilistic Risk Assessment (PRA) provide an opportunity to garner detailed insight into severe accidents.
In this manuscript, we demonstrate how to build and use a framework which leverages dynamic PRA, simulation, and
dynamic Bayesian networks to provide real-time diagnostic support for severe accidents in a nuclear power plant.
We use general purpose modeling technology, the dynamic Bayesian network ', and adapt it for risk management of
nuclear reactors. This paper presents a prototype model for diagnosing system states associated with loss of flow
and transient overpower accidents in a generic sodium fast reactor. We discuss using this framework to create a
risk-informed accident management framework called SMART Procedures. This represents a new application of risk
assessment, expanding PRA techniques beyond static decision support into dynamic, real-time software for accident

diagnosis and management.
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Introduction

Dynamic Probabilistic Risk Assessment (PRA) offers a
comprehensive understanding of the possible accident
scenarios and their associated plant states. Recent advances
in computing enable simulation-based dynamic PRA
approaches to explore thousands of accident scenarios via
mutliple approaches . Coupling these scenarios with plant
simulations allows for prediction of plant parameters and the
consequences associated with the unfolding of each possible
accident sequence. However, to date, PRA has largely been
used as a static technology, but as noted by Goble and Bier’,
dynamic risk assessment has significant “game-changing”
potential.

In this work we present a new view of PRA as
a valuable tool for management of severe accidents.
Simulation-based dynamic PRA methods can provide a
scientific basis for supporting diagnosis and response
planning for current and future reactor designs. Running
thousands of dynamic PRA simulations allows experts to
explicitly map out the relationships between known accident
scenarios and observable reactor parameters. However, these
simulations cannot currently be used in real-time to support
accident management because the methods provide too
much information to process in real-time, and even simple
scenarios can take days to execute due to the complexity of
the underlying physics models involved.

We introduced the new “SMART (Safely Managing
Accidental Reactor Transients) procedures” methodology
in®'9. The SMART approach uses dynamic Bayesian
networks (DBNs) to aggregate the results of dynamic PRA
into an efficient probabilistic framework for propagating
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information. In the present paper we have extended our
earlier models to include a much larger coverage of the
reactors “state space” i.e., the set of states or situations
that the reactor can be in under normal as well as possible
accident scenarios. In our case studies we show how an
operator can diagnose the state of the reactor by inputting
the values of observable parameters.

The SMART procedures system leverages advances in
simulation and computations to build a comprehensive
understanding of a large range of accidents before they are
experienced. This is accomplished by processing reactor
state information through dynamic Bayesian networks before
an accident occurs, thus harnessing the results of dynamic
PRA simulations in a probabilistic framework that can
handle uncertainty across time. This framework explicitly
ties plant observables to possible accident scenarios and can
be used to support real-time decision making.

This model provides the means to infer the state of a
reactor during an accident even when only a limited amount
of information about plant status and plant parameters is
available. This parameter fitting, with most likely values for
missing information, given the system’s current priors, is
usually accomplished in stochastic models with some form

"University of Maryland, College Park MD, USA
2Sandia National Laboratories, Albuquerque NM, USA
3University of New Mexico, Albuquerque NM, USA

Corresponding author:
Katrina M. Groth, Department of Mechanical Engineering, University of
Maryland, Glenn L. Martin Hall, College Park, MD 20742

Email: kgroth@umd.edu



Journal Title XX(X)

of the expectation maximization (EM) algorithm''. In the
near term, parameter fitting can be used to help determine the
reactor parameters that should be instrumented in the control
room. We demonstrate two examples of parameter fitting in
this manuscript. In the longer term, this technology results in
a first step toward a full SMART procedures system.

In summary, this paper demonstrates the SMART
procedures methodology across a significant component
of the state space of a Sodium Fast Reactor (SFR) as
well as, through case studies, presents expanded accident
preventing decision making capabilities once the reactor
achieves various states.

Related work

Bayesian network-based decision support systems have
been successfully implemented in many industries and
are especially prevalent for diagnostic support in medical
applications '*'*. Bayesian Networks (BNs) offer a language
for understanding and documenting causal relationships
among variables as well as for diagnosis and prediction '+,
Previous researchers have explored the use of Bayesian
methods for nuclear power plant diagnosis, using expert
knowledge and simple rules to generate models'®'”. Zhao
et al. apply a DBN to nuclear fault diagnostics while
also relying on expert judgment for probabilities®”. Early
attempts to use Al technology in support of nuclear power
generation focused on the components of the nuclear power
plants?!.

BNs have been used within human reliability analysis
(HRA) to improve modeling of human error. In 2015,
Mkrtchyan et al. reviewed applications of BNs for HRA??,
and in 2016, they reviewed methods for populating BN
conditional probability tables’’. Like most of the work
with BNs in HRA, all of the reviewed methods rely on
probabilities calculated, at least in part, on expert judgment.
Fenton et al.?* and Baraldi et al.>> use Bayesian networks to
encapsulate expert knowledge in their conditional probability
tables. Podofillini et al. use a combination of expert judgment
and an interpolation method for calculation of conditional
probabilities>®. With the use of interpolation Podofillini’s
work introduces rigor in BNs applied to HRA. Furthermore
the approach extends the use of BNs beyond analyzing
human reliability, using familiar models to enhance human
performance by enabling more reliable diagnosis.

However, a key gap remains: there is little research
that uses PRA information to support the development
of BNs for diagnosis. One notable exception is the work
of Kim and Seong?’, which proposed a BN model to
mimic operator reasoning, including diagnosis. They used
existing procedures to develop the BN structure and causal
relationships found in a static “Level 17 PRA to assign
probabilities to the causal relationships. This approach
demonstrates the utility of BNs as an operator model, yet it
is not coupled to the physical behavior of the reactor.

No research to date has employed the use of reactor
simulations or dynamic PRA to build dynamic Bayesian net-
works for nuclear reactor diagnosis.The SMART procedures
methodology in this manuscript advances upon previous
work by bringing the rigor of both dynamic PRA and DBNs
into nuclear reactor diagnosis.
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Building SMART procedures

The Bayesian network (BN) is a directed acyclic graph
where the nodes of the graph represent the states of the
components of the power producing reactor system and
the directed links reflect the causal relationships between
the components of the reactor. The graph is built, and
probabilistic data determined, using both the knowledge
of human experts as well as data derived from modeling
and simulation of the power system and its components.
An important advanatage of the bayesian network is that it
moves from the foundational assumption of correlation in
traditional bayesian models to the attribution of causality
within linked components of the statistical model *®.

The theoretical framework for developing SMART pro-
cedures involves coupling dynamic PRA, system simula-
tion codes, and Bayesian Networks to provide fast-running
diagnostic support®’. The methodology, as shown in Figure
1, takes outputs from an advanced PRA and aggregates
them into a Bayesian Network to provide decision support.
This coupled approach provides a process for extensive and
comprehensive modeling of both the accident space and the
plant response, in a better-than-real-time framework.

The research team develops and executes a full spectrum
of runs using Discrete Dynamic Event Trees (DDETSs)
coupled to a reactor systems simulation code (e.g.,
MELCOR %, SAS4A30); these runs are designed to simulate
representative subsets of the expected state-space of the
accident. DBNs are used to synthesize and reduce this
information into a framework that can be used for faster-
than-real-time decision support. This information is used in
combination with PRA information, such as system failure
probabilities, to provide a detailed, probabilistic model of
the accident sequence space. The resulting BN model is
an extensive knowledge base covering a wide spectrum of
behaviors possible within the two modeled accidents. It
encodes the best-available knowledge from PRA to be used
when needed.

Accident Scenarios
(Discrete Dynamic Event Trees)

Knowledge Base (Bayesian Network)
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Figure 1. Conceptual process to develop risk-informed “Smart
SAMG” procedures for nuclear power plant diagnostic support.

We implement the SMART procedures framework using
general purpose representation and reasoning software for
data simulation and Basyesian network modeling. Many
software tools could be used in the SMART procedures
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framework to generate data and build Bayesian networks.
In this paper we used the Structural Modeling, Inference,
and Learning Engine (SMILE) and its associated Graphical
Network Interface (GeNle)®!', to generate the Dynamic
Bayesian Network (DBN) models. We also use SAS4A ",
which is a system-level code that is capable of simulating
SFR thermal-hydraulics (core and Reactor Coolant System),
neutronics, and liquid metal reactor accident phenomena.
Since dynamic PRA produces a large amount of data for each
simulated scenario, we created a data processing system,
ALADDIN??, to automate post-processing of the SASA4A
data for use in GeNle.

Figure 2 illustrates how the structure of the model is
defined to accurately capture known causal and temporal
relationships. The development team designs a model by
placing one node for each accident state and each modeled
reactor system and component. A temporal plate is added
to capture nodes whose values dynamically vary with
time. A node is added inside the temporal plate for each
plant parameter. Arcs are directed based on known causal
relationships between the accident sequences, the reactor
system components, and the plant parameters.

The team selects the number of possible states for
each node based on PRA states for reactor systems and
components; based on PRA definitions of accident states;
and defines the desired number of time steps to be included
in the model. The nodes representing the reactor systems
are quantified by direct assignment in GeNle using available
system reliability and PRA data.
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Figure 2. lllustration of the structure of the reactor diagnostic
model. In the top figure, the dynamic nodes are placed in the
temporal plate. In the bottom figure, the network has been
unrolled: the dynamic nodes are replaced with nodes for each
time step.
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The parameter nodes are quantified using the results of the
dynamic PRA simulations. ALADDIN, which is shown in
Figure 3, automates the quantification of the DBN model
by parsing and consolidating the SAS4A data to match the
number of time steps and node states in the the DBN. The
data for each parameter are partitioned using Equal Width
Binning based on the parameter’s value at each time step.
The parameter node states are a user-defined number of
bins e.g., high, medium, low. Whether Equal Width Binning
is the most effective discretization scheme is an area for
further research. ALADDIN uses the discretized data to build
a conditional probability tree (which is a catalog of the
conditional probabilities of each observed variable for every
possible combination of node states). These probabilities are
conditioned on the state of the reactor component system and
accident state variables. ALADDIN then unrolls the GeNle
model and assigns a conditional probability for each node at
each time step.
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Figure 3. A data flow diagram of the SAS4A data parser
(where rectangles denote processes and ovals denote inputs
and outputs). Data is first read by the data parser, and then time
steps are selected by the discretizer. This data is then
transported by the network builder to the conditional class which
calculates the conditional probabilities of each of the observed
variables.

Case study
Problem Description

The prototype model is intended to focus on diagnosis of
earthquake-induced Transient Overpower (TOP) scenarios
and long-term reduction in heat removal, such as degraded
cooling functionality, and primary pump trip (loss of flow,
LOF).

The reactor model used in this study is a generic, small
modular metallic fueled SFR with features adopted from
the Advanced Liquid Metal Reactor design (see Figure 4).
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Figure 4. High level diagram of Sodium Fast Reactor used in
SAS4A simulations. The primary system pumps (E6) flow
relatively cold sodium over the reactor core. The fuel in the core
(at a rate managed by control rods) heats the sodium which
then transfers energy through the heat exchanger to secondary
sodium. This secondary sodium heats water in a steam
generator (E21) which drives a steam turbine. The secondary
pumps (E12) return the cooled sodium from the steam
generator to the heat exchanger for reuse.

Some key design features which are relevant to modeling the
selected accident sequences are:

Four Electro-Magnetic Pumps
which provide force circulation in the primary system
to cool the reactor core. Displayed as one pump
element (E6) in Figure 4; each pump is assumed to
contribute 25% of the maximum flow. These pumps
may fail above 500 °C (773K) operating temperature.

Direct Reactor Auxiliary Cooling System
DRACS is a passive decay heat removal system which
uses natural circulation to transfer heat to air (seen in
Figure 4 as E9).

Inherent reactivity shutdown the reactor system exhibits
strong negative reactivity feedback to increases in
overall system temperature; thus the reactor can move
from fission to decay heat levels without control rod
insertion.

DDET / SAS4A simulations

The simulations provided for the prototype focuses on four
types of accidents: both seismic and non-seismic-induced
TOP and LOF. Each accident sequence might be either
“protected” or “unprotected” depending on whether scram
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occurs. Each accident sequence has the potential for long-
term reduction in heat removal, such as degraded auxiliary
cooling functionality or primary pump trip damage.

The DDET was designed to branch on multiple conditions
for the magnitude of an earthquake, balance of plant (BOP)
availability, scram state, DRACS state, secondary pump
power, reactivity response, and coolant pump status. The
reactivity excursion occurs between 1 s and 50 s, pump trip
effects occur between 80 s and 1000 s, and long-term cooling
(or lack thereof) by the DRACS is important between 1000 s
to the end of the simulation (48 hours or 1.7 x 10? seconds).

This branching is designed to cover all possible
combinations of states of the modeled components. Some
branching conditions, such as time of thermal pump
failure, are determined dynamically by SAS4A. Thermal
pump DDET branches occur if SAS4A predicts cold pool
temperature exceeding 878.5K. Pump trip can also occur
as an operator action in some branches once cold pool
temperature reaches 798K.

The accident scenarios investigated in this work are
earthquake-induced TOPs that involve axial and radial
oscillations of the reactor, which are represented as
sinusoidal functions of reactivity insertion near time =
Os. The axial oscillations characterize movement of the
control rods. Oscillations may affect control rod (scram
system) functionality: Control rods may scram correctly (full
insertion), jam in a nominal state, or fully withdraw. Control
rod expansion feedback is neglected. This assumption is
somewhat conservative since the control rods tend to expand
into the core as temperatures increase, thereby inserting
negative reactivity; some thermal expansion into the core
might still occur even with the rods oscillating.

BOP can be operational, decayed, or shutdown; in the
latter the loss is simultaneous with the earthquake reactivity
insertion (near time = 0 s). The DRACS is treated as
functional, but the tube-to-air heat transfer coefficient for
the Air Dump Heat Exchanger (ADHX) is variable (i.e.,
a DDET branch parameter) which can enhance or degrade
DRACS functionality (the DBN states for DRACS). The
pump torque and external reactivity tables are disabled in
the SAS4A input to support dynamic pump trips and various
reactivity insertions (e.g., earthquake and/or scram); instead,
pump torque and external reactivity is linked to the control
system input. Finally, pump coast-down is assumed constant
in all scenarios with a 10 s halving time. Coast-down of
the EMPs is an important safety feature for power and flow
transients.

The event tree also includes nominal scenarios with no
earthquake and thus no reactivity excursion. These nominal
scenarios include various combinations of states of the other
variables, including variations in occurrence of scram and
balance of plant failures and variable DRACS and pump
states. Such scenarios are investigated in order to provide
baseline conditional probabilities in the BN.

Each SAS4A run corresponds to an event tree branch
for various accident scenarios, operator actions, and
dynamically-determined bifurcations in accident progres-
sion. The main event tree is comprised of 7188 distinct
SAS4A simulations. Each simulation has 2588 time steps
corresponding to the first 48 hours of the scenario. Example
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output of fuel temperatures for 50 of the 7188 scenarios is
presented in Figure 5.
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Figure 5. SAS4A results for Maximum Fuel Temperatures. Red
lines correspond to simulations with degraded decay heat
removal, blue lines correspond to simulations with functional
decay heat removal, black lines signify simulations with varying
degrees of decay heat removal functionality.

The DBN model for TOP/LOF diagnosis

The DBN Model Structure

Figure 6 provides the DBN structure for the TOP and
LOF diagnosis problem. This figure contains a plate-based
DBN modeling the relationship between reactor systems
and components (denoted by gray, rectangular nodes), one
unmonitored physical state (denoted by the blue, rectangular
node), plant parameters (denoted by green, oval nodes), and
accident types (denoted by yellow rectangular nodes).

The model in Figure 6 contains two accident states, seven
reactor systems and components (the DRACS, the BOP, four
EMPs, and the scram system), and one unmonitored physical
state (Differential Pressure, which is produced by operational
EMPs). The model also contains twelve plant parameters
which may provide insight into the status of the reactor
systems and the accident states. These plant parameters and
their ranges from the SAS4A data are shown in Table 1. The
model structure shows that the four EMPs directly influence
the amount of differential pressure; we assume each pump
contributes up to 25% of the differential pressure. The time-
varying reactor parameters are duplicated once for each time
step, which were distributed as follows:

24 time steps for the first 0.1 hr

24 time steps from 0.1 hr to 1 hr
24 time steps from 1 hr to 10 hr

24 time steps after 10 hr

DRACS availability, scram status, BOP status, and pump
differential pressure each influence the state of all twelve
(including four monitored) plant parameters at each time
step in the model. In this example model, the status of the
DRACS, BOP, scram system, and EMPs remain constant
throughout the duration of the accident (i.e., they are
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modeled in the DBN to either have failed at time O or remain
operational: they do not fail during the accident).

The scram system influences the state of the TOP node;
this represents the definitional relationship wherein an
unprotected TOP is defined by failure of the scram system.
Similarly the differential pressure influences LOF via a direct
definitional relationship since a LOF accident is defined by
loss of differential pressure.

Probability Tables

For reactor system and accident type nodes the probabilities
were extracted from the PRISM reactor preliminary safety
information document*>.

Accident State Nodes The conditional probability table for
the LOF node in the DBN is shown in Table 2. Since the
LOF accident is defined by a loss of differential pressure, the
conditional probability table for LOF is deterministic; this
means that the state of LOF is completely determined by the
state of differential pressure. If there is 0% of the required
differential pressure, a Total LOF has occurred. If there is
25% or 50% of the required differential pressure, a partial
LOF has occurred. If there is approximately 100% of the
required differential pressure, there is no LOF.

The conditional probability table for the TOP node is
shown in Table 3. Since there is minimal available data on
the reliability of SFR systems, the probability of transient
overpower was assigned directly by the analysis team. The
team will update these values if additional SFR reliability
data becomes available.

Reactor Systems and Physical State Nodes The con-
ditional probabilities for differential pressure are derived
directly from the causal relationships between flow from the
EMPs and differential pressure. The conditional probabilities
for differential pressure are shown in Table 5. High probabil-
ities (0.95 and above) are assigned to the expected state of
differential pressure based on EMP status. To accommodate
the possibility that unmodeled factors could impact the rela-
tionship between EMPs and differential pressure, a nominal
probability (ranging from 0.0001 to 0.025) was assigned to
some states. The probabilities have been assigned based on
expert judgment about the likely state of differential pressure
given the status of the pumps.

The marginal probability tables for the reactor systems
(DRACS, EMPs, BOP, and the scram system) are shown
in Table 4. With all four pumps working, the differential
pressure is expected to be 100%. With one of four pumps in
the failed state, the differential pressure is likely to be around
50%. With three pumps failed, the differential pressure is
likely to be at 25% of what is necessary. If all four pumps
are failed, the DP will have none of the necessary flow.
These most likely states are thus assigned high probabilities.
To accommodate the possibility that unmodeled factors
could impact the relationship between EMPs and differential
pressure, smaller probabilities have been assigned to other
states that are possible.

Monitored Parameters The SAS4A data are used to
quantify the monitored reactor parameter nodes. The SAS4A
data matrices map the states of the system nodes onto
the states of each plant parameter at each time step. This
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Figure 6. DBN Model Structure for the diagnosis of loss of flow and transient overpower accidents. The reactor parameters are

dynamic nodes, and therefore, placed on a temporal plate.
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Figure 7. Unrolled DBN of figure 6: the dynamic nodes are replaced by a node representing the value of the parameter at each

time step.

time series data was parsed and discretized using an N-ary
discretization procedure. Multiple simulations are run for
many possible system configurations to cover as much of the
accident state space as possible.

After parsing and discretization, ALADDIN calculates the
conditional probabilities for each of the nodes in our DBN.
If we let P be the number of plant parameter nodes, T’
be the number of time steps, N be the number of bins for
each plant parameter node, and .S be the number of reactor
system state combinations, then the number of conditional
probabilities is P - N - S - T'. For this example model where

=12, T =96, N = 3, and S = 108, we have 373,248
conditional probabilities. Due to space considerations we
have not included the probabilities for the plant parameter
nodes.
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Example results from the DBN

In this section we illustrate how to use the model to reason
about specific scenarios. The DBN is a knowledge-based
system capable of inferring current and future states of
reactor systems and plant parameters. In some cases, the
input of just a few observations change the predicted plant
state.

The user sets evidence on any number of nodes in the
model. This evidence automatically propagates to generate a
posterior distribution of the probability of every unobserved
node in the model. Since evidence can be added or retracted
at any time, the DBN allows the user to experiment with
the model in multiple ways. For example, to diagnose
specific accidents the user assigns evidence to the plant
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Table 1. Plant Parameter Nodes and their range of values as parsed into 3 discrete states by ALADDIN.

Node ID Meaning Min. Bin0 Max | Binl Max | Bin2 Max
axialExp Axial Expansion Reactivity Feedback -0.62 -0.34 -0.07 0.22

(%)
coldpoolT Cold Pool Temperature (K) 400 438.89 828.79 1230.5
coldpoolL Cold Pool Level (m) 5.68 3.3x10% 6.6x10% 1.0x10°
coolantFeed | Coolant Reactivity Feedback ($) -0.28 0.54 1.37 2.23
D5clad_TH Cladding Thickness (Fraction of 0.0 0.34 0.66 1.0

nominal)
doppler Doppler Feedback Reactivity ($) -0.29 0.21 0.71 1.23
flow_ch5 Flow Rate in Channel 5 (kg/s) -96.47 -40.92 14.63 71.86
P_Gas Cover Gas Pressure (Pa) 1.4x10% | 7.4x10° 1.5x10° 2.2x10°
radialExp Radial Expansion Reactivity Feedback | -0.62 -0.22 0.18 0.60

$)
Reactivity Net Reactivity ($) -24.60 -16.04 -7.47 1.35
T_Coolant Peak Coolant Temperature (K) 400 571.56 1078.45 1600.7
T_Fuel Peak Fuel Temperature (K) 400 Melt Melt Melt

Table 2. Conditional Probabilities for LOF, given Differential
Pressure

Diff. Pres. Opct 25pct 50pct 100pct
Total 1 0 0 0
Partial 0 1 1 0
No_LOF 0 0 0 1

Table 3. Conditional Probabilities for TOP, given scram State

Scram Fullyin Nominal Withdrawn
Unprotected 0 9.59x10~ % 2.9x1077
Protected 1 3311077 "1
None 0 "1 0

Table 4. Marginal Probabilities for DRACS, the four EM Pumps,
scram, and BOP.

State Probability
Enhanced 1.19x10~ 2
DRACS Available "1
Unavailable 3.97x10°13
Operational 0.9996
EMPumps  piled 4.38x10*
CRs_fully_in 0.0150
Scram CRs_nominal 0.985
CRs_withdrawn 3.04x1076
Operational 0.985
Shutdown 0.0150
BOP Decay 7.95x10~12

parameter states and examines the posterior probability of
those accidents. To predict possible future states the user sets
evidence on the state of reactors systems and/or the observed
plant parameters and examines the plant parameter states at
subsequent time steps.

Tables 6 and 7 show the results of inputting evidence
of specific conditions to illustrate diagnosis of the reactor’s
state. To identify the plant parameters most significant for
diagnosis of the accident, we performed an Information Gain
analysis (see next section and Figure 8).

Table 6 illustrates an example scenario for diagnosing the
reactor systems and accidents given knowledge of a few
plant parameters. The results of this example show that a
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few critical pieces of information about the plant state can
make a significant change in the belief about the state of
the reactor and which accident scenarios the reactor is and
is not experiencing. The second column of Table 6 provides
the prior probabilities for the reactor system states (i.e., the
initial state of the DBN model). As shown in column 2, the
differential pressure is highly likely to be at 100% of the
needed flow, P(DP = 100pct) = 0.998, and the probability
of atotal LOF, P(LOF = Total),is only 1.69x 107!, Now
we make two observations about the coolant temperature
during the accident (column 3): we set the value of the
coolant temperature to binl (between 571.5 K and 1078 K)
at time steps 48 and 49 (3980 s and 4900 s, approximately 66
and 81 minutes into the accident).

Once the evidence is propagated, the posterior proba-
bilities of the plant system nodes are calculated as seen
in column 4. Column 4 shows a significant change in the
probability of the state of differential pressure and thus also
the probability of a LOF accident. In this situation, the
differential pressure is highly likely ("96%) to be at 0% of
the needed flow. The probability of LOF=TOTAL went from
1.69x 10711 to almost 96%. Notice also that the probability
distributions for the BOP, DRACS, and scram systems and
the TOP accident have experienced almost no change as a
result of this evidence: Both BOP and DRACS are highly
likely to be operational and scram is highly likely to be
nominal. Therefore, based on the evidence we have, it is
highly likely that this reactor is experiencing a total LOF
accident with no TOP.

Table 7 illustrates a second diagnostic example. The
results of this example show that a few pieces of information
can change the belief about the plant state without being
entirely deterministic about the scenario, i.e., this is a case
where the information supports narrowing down beliefs to
a few possible conditions or accident states. The second
column of Table 7 provides the prior probabilities for the
reactor system states (these are identical to the prior situation
presented in Table 6).

Now we can make a series of observations about the
cold pool temperature being high (between 828.79K and
1230.5K’) — we set the value of cold pool temperature to bin?2
at time steps 13, 24, 31, 32, 38 (30.7 s, 440 s (7.3 min), 1000
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Table 5. Conditional probability table for differential pressure.

EMP1 Operational Failed

EMP2 Operational Failed Operational Failed

EMP3 Operational Failed Operational Failed Operational Failed Operational Failed

EMP4 Op. Failed Op. Failed Op. Failed Op. Failed Op. Failed Op. Failed Op. Failed Op. Failed

x0% 0 0 0 0 0 0 0 0.05 0 0 0 0.05 0 0.05 0.05 0.9999

x25% 0 0 0 0.05 0 0.05 005 09 0 005 005 09 005 09 0.9  0.0001

x50% 0.0001 099 099 025 099 025 025 005 099 025 025 005 025 005 0.05 0
x_100% 0.9999 0.01 0.01 0.7 0.01 0.7 0.7 0 0.01 0.7 0.7 0 0.7 0 0 0

Table 6. Comparison of prior and posterior probabilities for reactor system states given evidence about coolant temperature at time

steps 48 and 49 (3980 s and 4900 s).

System Prior Evidence Posterior
Operational = 0.985 Operational = 0.985
BOP Shutdown = 1.5 x 1072 Shutdown = 1.5 x 1072
Decay = 7.95 x 1072 Decay = 8.63 x 10~ '2
Enhanced = 1.19 x 102 Enhanced = 1.71 x 10~ 2
DRACS Operational ="1 Operational ="1
Degraded = 3.97 x 10713 Degraded=5.53 x 10713
O_pct=1.69 x 10~ 11 0_pct="0.96
Differential | 25_pct=5.79 x 1078 25 pct =2.18 x 107
Pressure 50_pct = 1.83 x 1073 . 50_pct = 6.91 x 1075
100?pct =~0.998 t-coolant48 = bin 100?pct ="3.76 x 102
Fully In=1.5 x 102 t-coolant-49 = binl g i =5 65 % 10—
Scram Nominal =~0.985 Nominal ="1
Withdrawn = 3.04 x 1076 Withdrawn = 4.03 x 1077
Unprotected = 9.76 x 10~ 3 Unprotected = 2.16 x 10~ 13
TOP Protected = 1.50 x 1072 Protected = 5.66 x 10~*
None ="0.98 None ="1
Total = 1.69 x 10~ 1 Total ="0.96
LOF Partial = 1.83 x 10~ Partial = 6.90 x 107°
None ="0.998 None = 3.76 x 102

s (16.7 min), 1160 s (19.3 min), 2120 s (35.5 min). Once
the evidence is propagated, the posterior probabilities of the
plant systems node are calculated (again shown in column
4).

Column 4 shows a significant change in the probability
distribution of each of the plant systems and both accident
states. The model now illustrates a 19% chance of a protected
TOP and an 81% chance of no TOP, along with a 19% chance
of a total LOF and an 81% of a total LOF. Given the limited
observations, either accident condition is plausible. This
uncertainty about accident state is consistent with expected
plant behavior. In a LOF accident, the channel coolant
temperatures would be high early in the accident. In most
protected TOP scenarios, the EM pumps also trip, reducing
flow and increasing coolant temperature. In essence, the
coolant temperature behaves similarly for both accidents.

The current information is sufficient to indicate that there
is a high likelihood that the BOP is in a decayed state (the
posterior is 81%, compared to the prior of 7.95 x 10~12).
However, we would need more information to fully diagnosis
this accident. In this model, additional evidence about the
cold pool temperature or about flow in channel 5 would
help to differentiate further among the scenarios since the
the cold pool temperature will likely stay low longer into
a LOF accident. If we add evidence that ColdPoolT_45 =
bin0 (less than 438.89K), the probability of LOF=total and
TOP=protected both increase above 99.8%, demonstrating

Prepared using sagej.cls

that together all of this evidence indicates that both a total
LOF and protected TOP are occurring.

Value of Reactor Parameters

To provide insight into which plant parameters are most
useful for diagnosing the system failures that cause
the two accident scenarios, we use Kullback-Leibler
(KL) divergence*. KL divergence is commonly used in
the machine learning community to measure impact of
parameters on the results of a modeling process. The result
of using KL divergence in our model confirmed the insight
of our nuclear engineers that the most important parameters
are coolant and cold pool temperatures, as demonstrated in
tables 6 and 7.

KL divergence, also referred to as information gain
or relative entropy, measures the informational “distance”
between two related probability distributions. We use KL
divergence to measure the information lost when a node
is removed from the model?’. Thus, conclusions about the
importance of a particular parameter can be drawn. If a
sufficient amount of information is lost when a parameter
is removed, then it can be considered important. If a low
amount of information is lost when a particular parameter
is removed, then that data is not very relevant to the model
and, therefore, not very useful for diagnosis of the accident.
For a detailed explanation of our use of KL divergence, plus
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Table 7. Comparison of prior and posterior probabilities for reactor system states given evidence about cold pool temperature at

time steps 13, 24, 31, 32, 38 (30.7 s, 440 s, 1000 s, 1160 s, 2120 s)

System Prior Evidence Posterior
Operational = 0.985 Operational = 0.19
BOP Shutdown = 1.5 x 102 Shutdown = 2.95 x 1073
Decay = 7.95 x 10712 Decay = 0.81
Enhanced = 1.19 x 10712 Enhanced = 0.53
DRACS Operational ="1 Operational = 0.19
Degraded = 3.97 x 10~ '3 Degraded= 0.27
0_pct=1.69 x 10~ 11 0_pct="0.19
Differential | 25_pct=5.79 x 1078 ColdPoolT_13 =bin2 | 25_pct = 7.46 x 1078
Pressure 50_pct = 1.83 x 1073 ColdPoolT 24 =bin2 | 50_pct=1.11 x 1073
100_pct =70.998 ColdPoolT 31 =bin2 | 100_pct = 0.81
Fully In=1.5 x 10~?2 ColdPoolT_32 =bin2 | Fully In=2.18 x 10~ °
Scram Nominal = ~0.985 ColdPoolT_38 = bin2 | Nominal = 0.81
Withdrawn = 3.04 x 10~° Withdrawn = 0.19
Unprotected = 9.76 x 10~13 Unprotected = 5.53 x 10~
TOP Protected = 1.50 x 1072 Protected = 0.19
None ="70.98 None = 0.81
Total = 1.69 x 10~ 11 Total = 0.19
LOF Partial = 1.83 x 10™* Partial = 1.10 x 103
None =70.998 None = 0.81

numerical values to describe “sufficient” or “low” amounts

of information in the measurement of reactor parameters,
10

see .

Figure 8 contains the results of KL divergence calculated
as a function of time for the twelve plant parameters. The
KL divergence results indicate that coolant temperature,
cold pool temperature, radial expansion reactivity, doppler,
cladding temperature each have high diagnostic power for
the accident scenarios in this model.

Figure 8 also indicates that T_fuel, P_Gas, cold pool
level, and axial expansion reactivity have relatively low
information gain. Doppler and radial expansion reactivity
provide high information gain early in the accident, but drop
off sharply around 120000 s (“34hrs into the accident).

The KL divergence results in Figure 8 affirms our nuclear
engineer’s prior beliefs regarding which parameters would
be most useful when diagnosing these types of accidents.
The conclusion that coolant outlet temperature has a high
diagnostic value throughout the accident sequence is intuitive
because: the low thermal capacity of sodium compared to
water, the high dynamic operating range of the liquid phase
of the coolant, between approximately 300 and 900 Celsius,
and because the coolant output is the first measured location
of the coolant after it was heated in the reactor core. The
coolant outlet is also a measurable parameter, thus allowing
for easy integration of the DBN results into the reactor
digital control system without the need to develop additional
Sensors.

Although the fuel temperature is not measurable during
normal operations, it should still have diagnostic potential
which the DBN model fails to realize. This diagnostic
potential should be due to the fact that the fuel temperature
and coolant temperature need to equalize for the accident
to stabilize. The relative trajectory that the fuel and coolant
temperature take to reach an equilibrium should be unique
for each type of accident. Unfortunately, the N-ary binning
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used to discritize this variable was dominated by an outlier
sequence which reduces its diagnostic capability.

Many of the other parameters have a significant degree of
diagnostic capability early in the accident which decreases
as the accident progresses. The observable target node for
the cold pool sodium temperature is one such variable. The
cold pool temperature will fluctuate as a strong function of
balance of plant operations, DRACS effectiveness, and EM
pump performance. As the impact of these systems decrease
into the accident, e.g., most unprotected simulations migrate
toward loss of flow due to the high pressure trip on the
EM pump, the ability for the variable to offer diagnostic
information is reduced.

The cold and hot pool levels and cover gas pressure target
nodes have little diagnostic value. These variables were
included in the model because they are measured variables
in the plant. These measured variables are included in the
plant to diagnose accidents, such as vessel leakage, that were
not simulated in our SAS4A data training data set. Thus,
while the lack of diagnostic value in the current model is
expected, an expansion of the accident training set may see
the diagnostic value of these nodes increase in future models.

The results of the KL divergence analysis can be
used to provide insight into which instruments operators
should consult or which instruments should be hardened to
withstand severe accident conditions. Based on the results
of the prototype model, two instruments would be most
valuable: one for measuring hot pool temperature, and one
for measuring cold pool temperature.

Limitations of Current Model and Future
Work

Our DBN model contains the consolidated information about
the probability of a wide range of LOF and TOP scenarios,
system states, and the progression of the plant parameters; in
a Bayesian sense this is the prior model. This model can be
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4 Information Gain Values For Plant Parameters
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Figure 8. Information gain values for the plant parameters: The X-axis represents time; the Y-axis represents the information gain

measured in bits.

used for reasoning tasks, such as diagnosing system failures,
or for predicting the evolution of key reactor parameters for
known system statuses. While it shows promising results, we
must continue to expand and calibrate the model parameters
and also expand the model in depth and breadth.

Key next steps include examining the impact of time
discretization and reactor parameter discretization®® and
to assess whether different modeling choices would have
greater predictive power. In the longer term, our focus will
be on expanding the model to include a wider spectrum
of accident scenarios. In future research the DBN could be
enhanced such that it dynamically updates by receiving real-
time evidence from SAS4A as simulations progress through
time.

It is desirable to look at all internal and external
events that cover all possible accident states of the
reactor, our research is currently proof-of-concept; we have
limited our models to two accident scenarios and seven
system/components. Within these accident scenarios we
comprehensively simulate the state space of possible changes
in the reactor environment. To achieve the long-term vision,
the model and data must be expanded in both the number of
systems modeled and in accident scenarios.

In order to capture these critical simulations, we have
created a set of dynamic and static variables in the model.
The static variables reflect “boundary values” such as a
certain pump failing at a specific time, that allow us to see
the resulting effects within the set of dynamic parameters. To
control the complexity of the model and to highlight certain
scenarios, we chose all system state nodes to be static and
measured the effects their states had on the dynamic reactor
parameters. In future models, it will be desirable to make all
of the nodes dynamic so we can capture variations in system
failure times.
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Conclusions

In this work we detail how to build a “SMART Procedures”
risk-informed accident management model. These models
have the potential to expand the use of risk information
to provide real-time, dynamic support for severe accident
management. The foundation of the methodology is to use
dynamic PRA and severe accident simulations to build a map
of the complex relationships between known accidents and
evolving reactor parameters. Dynamic Bayesian networks
provide a framework for reasoning with this information in
real time when the plant status is uncertain.

This paper also demonstrates the use of the SMART
Procedures methodology with a proof-of-concept model
for diagnosing two types of accidents in SFRs. Our
model is a first step toward a SMART procedures system
which could provide real-time diagnostic support for TOP
and LOF accidents. The model offers real-time insight
into the expected temporal progression of these accidents.
Our approach also provides essential insight into which
reactor parameters are most useful for diagnosing and
responding to severe accident situations. During severe
accident progression, it may be difficult for operators to
correctly diagnose and robustly manage the accident. Putting
PRA simulation data into a probabilistic framework enables
operating crews and other interested parties to use this
knowledge base to facilitate accident diagnosis and response
planning.

This system can result in increases in plant safety through
accurate and timely response to critical conditions. Even if
an accident experienced by the operators was not directly
simulated by the advanced PRA, the probabilistic nature
of the DBN will be able to use similar sequences in
order to diagnose the state of the system. By formally
encoding advanced PRA knowledge in SMART SAMGs,
we can reduce the socio-technical challenges associated with
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responding to severe accidents, and provide a new, powerful
line of defense against events which have traditionally been
called “Beyond Design Basis” or “residual” risk.

Definitions
BN: Bayesian Network

DBN: Dynamic Bayesian Network

DDET: Discrete Dynamic Event Tree

DRACS: Direct Reactor Auxiliary Cooling System
EMP: Electromagnetic Pump

HRA: Human Reliability Analysis

KL: Kullback-Leibler

PRA: Probabilistic Risk Assessment

LOF: Loss of Flow

SAMG: Severe Accident Management Guideline
Scram: Control rod insertion

SFR: Sodium Fast Reactor

SMART: Safely Managing Accidental Reactor Transients

TOP: Transient Overpower
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