
Multiple-Place Swarm Foraging with Dynamic Robot Chains

Dohee Lee1 and Qi Lu2 and Tsz-Chiu Au1

Abstract— The goal of foraging robot swarms is to search and
deliver resources to a specific central collection zone quickly.
In the previously proposed multiple-place foraging algorithm
with dynamic depots, foraging performance decreases as search
areas and swarm sizes increase: depots need to travel long
distances to deliver resources to the center, and more robots
produce more congestion on their journeys. We propose a novel
extension to the multiple-place foraging in which multiple robot
chains are deployed dynamically. Each robot chain connects
a foraging location to the central collection zone. Instead of
delivering resources by a single robot, resources are passed on
robot chains from foraging locations to the center directly such
that congestion near the central collection zone can be avoided.
Dynamic robot chains can also relocate themselves to get closer
to the resources while avoiding obstacles. We simulate our robot
swarms in the robot simulator ARGoS. Our experiments show
that robots using the MPFA with dynamic chains outperform
the MPFA with dynamic depots and have less congestion.

I. INTRODUCTION

Swarm robotics has been successfully applied to handle
foraging tasks in which the objective of the swarm is to
search for resources distributed in an arena and bring them
back to a collection zone called central depot [1], [2]. Some
common resources such as minerals, water, and fuels are
typically deposited in clusters at unknown locations in a
large area. Existing foraging swarm robot systems focus on
developing an effective decentralized search-and-collection
foraging algorithm for ant-like robot swarms to collect
resources [3]–[5]. Lu et al. proposed a foraging system called
multiple-place foraging systems, which utilizes helper robots
called dynamic depots, which help to transfer resources to
the central depot [6]–[8]. A dynamic depot is a mobile robot
that acts as a depot with limited storage capacity for holding
resources. Foraging robots can put the collected resources to
the nearby dynamic depots, which will return to the central
depot from time to time and dump the resources on behalf of
the foraging robots. Dynamic depots can relocate themselves
according to the demand of foraging robots over time.

The use of dynamic depots can substantially improve
foraging performance. However, foraging systems based on
dynamic depots can suffer from congestion near the central
depot when dynamic depots return to the central depot
to unload the collected resources, especially when there
are many dynamic depots and foraging robots [8]. The
congestion becomes a bottleneck that can quickly degrade

1Department of Computer Science and Engineering, Ulsan Na-
tional Institute of Science and Technology (UNIST), South Korea.
{dohee,chiu}@unist.ac.kr

2Department of Computer Science, The University of Texas at San
Antonio, USA. qi.lu@utsa.edu

Fig. 1: A robot chain consists of three mobile conveyors.

Fig. 2: A robot chain foraging system with four robot chains.
The blue dots are foraging robots, the magenta dots are robot-
chain robots, the block dots are the resources and the gray
cubes are obstacle.

the entire system. Therefore, we propose to replace dynamic
depots with dynamic robot chains, which are essentially
sequences of mobile robots with the ability to pass resources
at a distance. Two consecutive robots in a robot chain can
establish a link on which resources can be moved from one
robot to another. One possible implementation of links is
based on mobile conveyors [9], as shown in Fig. 1. A link
can be implemented by other mechanisms as well (e.g., rope
tows). Suppose some robot chains connect to the central
depot, as shown in Fig. 2. A foraging robot can put resources
on the last robot in a nearby robot chain. The resource will
then be passed along the robot chain to the central depot.
The robot chains are dynamic because the robots are mobile
and hence robot chains can relocate themselves such that the
last robot can get closer to uncollected resources.

The use of robot chains can avoid congestion at the
central depot because our system ensures that one end of
a robot chain is always connected to the central depot.
Unlike dynamic depots, there is no need to compete with
other robots when going to the central depot. Moreover, the
robot chain can transfer resources continuously to the central
depot without any interruption. While congestion of foraging
robots can still occur near the last robots of robot chains, the
congestion does not concentrate at the central depot but is
distributed to multiple robot chains. Our experimental results
in Sec. VI show that multiple-place swarm foraging systems
based on robot chains are more efficient than dynamic depots.

This paper is organized as follows. After presenting the
related work, we define our foraging task in Sec. III, describe
the foraging robots’ controller in Sec. IV, and outline the
robot chains’ relocation procedure in Sec. V. We present the
experimental results in Sec. VI and conclude in Sec. VIII.

II. RELATED WORK

In central-place foraging, robots collect resources scattered
in a large area and transported them to a central collection
zone [3], [4]. Hecker and Moses [5] devised the stochastic
central-place foraging algorithm (CPFA) for robot swarms.
Flanagan et al. [10] significantly improved the foraging
performance of CPFA by sharing the location information
of resources. Fricke et al. [11] presented a distributed de-
terministic spiral search algorithm (DDSA) that guarantees
a complete search of the entire arena. Although the DDSA
outperforms the CPFA in simulation, the CPFA is slightly
better than the DDSA in physical experiments [12].

Inspired by foraging behavior observed in the polydomous
colonies of Argentine ants and wasps [13] with multiple
nests and spider monkeys with multiple sleep site [14], Lu
et al. [6], [7] proposed the multiple-place foraging algo-
rithm (MPFA), which is analogous to global courier and
transportation services in which many distributed warehouses
collect and distribute resources efficiently. When compared
with the CPFA, the MPFA produces higher foraging rates
and lower travel distances. Lu et al. [8] improved the forag-
ing performance of the MPFA by introducing the dynamic
depots MPFAdynamic, in which depots transport resources to
the center directly. However, foraging robots still need to
travel long distances to transport resources. Pini et al. [15]
presented a static partitioning strategy for foraging robot
swarms. Ferrante et al. [16] uses Grammatical Evolution to
divide a foraging task into searching and delivering tasks.

In this paper, we extend the work of MPFA with dynamic
depots in [8] by replacing dynamic depots with mobile robot
chains. Previously, robot chains have been used to localize
other robots by acting as a set of stationary beacons [17]
or as navigation to relay images of an environment [18].
However, our robot chains are used to transfer resources by
mobile conveyor lines [9] or delivery drones [19].

III. FORAGING TASKS WITH ROBOT CHAINS

We consider a foraging task in which a team of robots co-
operates to collect resources in a large area called an arena.
Fig. 2 shows an example of our foraging task. We assume the
resources are deposited in several resource clusters whose
locations are initially unknown. Our robots have to move
around in the arena to discover the locations of the resource
clusters. After locating the resource clusters, the robots work
together to collect the resources and carry them back to the
central depot, which is located at the center of the arena. The
movement and the robots’ visibility are hindered by some
obstacles in the arena. Obstacles are polygon-shaped regions
that no robot and no link cannot pass through. The locations
and the shapes of obstacles are initially unknown, and the
robots can discover them by sensors.

Fig. 3: The sensory information collected by the lidar on a
robot. The circle denotes the detection range of the lidar.

Every mobile robot is equipped with a gripper, a lidar sen-
sor, a resource detection device, a wireless communication
device, a resource-holder with a finite storage capability, and
a link-forming component. Each robot can be in one of the
four states at any time: 1) the mobile state, 2) the resource-
collecting state, 3) the resource-dumping state, and 4) the
robot-chain state. In the mobile state, a robot can move freely
with its lidar and its resource detection device enabled. When
a robot arrives at a resource cluster, it can enter the resource-
collecting state in which the robot can use its gripper to
put the resources in the resource-holder. After collecting a
resource, the robot enters the mobile state again and moves
to the last robot in a robot chain or the central depot. Then
the robot will enter the resource-dumping state and put all
resources in either the resource-holder of the last robot of a
robot chain or the central depot. When a robot is informed to
form a robot chain with other robots, it enters the robot-chain
state in which the robot cannot move, its sensor is disabled,
and the link-forming component will start to establish links
with the adjacent robots. Wireless communication devices
are always enabled and robots can use the devices to share
information about the resource clusters and the obstacles
they encounter. Each robot can play one of two roles at any
time: 1) foraging robots and 2) the robot-chain robots. As a
foraging robot, a robot can switch between the mobile state,
the resource-collecting state, the resource-dumping state. As
a robot-chain robot, a robot can switch between the mobile
state and the robot-chain state.

As discussed in Section I, there are many mechanical
mechanisms for forming links between two robots. We
assume the behavior of these mechanisms can be mathe-
matically described by a link model 〈dmax,dmin,C,v〉, where
1) dmax and dmin are the maximum and minimum distances
between the robots, respectively; 2) C is the capability of the
link, which is the maximum number of resources moving on
the link simultaneously; and 3) v is the speed of the resources
moving on the link. Each robot-chain robot belongs to one
robot chain, and all robot-chain robots in a robot chain have
to enter the robot-chain states simultaneously to form a robot
chain. A foraging robot can put resources in the resource-
holder of the last robot anytime as long as the resource-holder
is not full. Likewise, the i’th robot in a robot chain can send
the resources in its resource-holder to the (i−1)’th robot in
the robot chain anytime, as long as 1) it does not exceed
the capability of the link and 2) the number of resources
on the link does not exceed the space in the resource-holder

of the (i− 1)’th robot. After a resource is put on a link,
the resource will eventually enter the resource-holder of the
(i−1)’th robot. The first robot always puts the resources it
receives into the central depot immediately.

Our robots use lidar to detect obstacles and other robots
as shown in Fig. 3. A robot can distinguish the edges of
other robots from the edges of the obstacles based on the
current location of the other robots broadcasted by the other
robots. If an edge’s location is inconsistent with the edge of
any other robot, the edge must belong to an obstacle.

IV. THE CONTROLLER FOR FORAGING ROBOTS

Initially, each robot is assigned a role and the robot-chain
robots will start forming robot chains that reach different
locations in the arena. In our experiments, there are four
initial robot chains, and the last robots of the initial robot
chains are close to the corners of the arena. The procedure
of forming the initial robot chain is the same as the procedure
of relocating robot chains that will be described in Sec. V. A
robot chain will relocate itself from time to time based on the
conditions in Sec. V. Between relocation, the foraging robots
near the last robot of a robot chain will collect resources
and put them in the resource-holder of the last robot. More
precisely, the controller of the foraging robots is the same as
the one in [8], except that our foraging robots have to avoid
obstacles. A foraging robot always remembers the location
of the last resource cluster it visited and goes there to collect
resources until the cluster becomes empty. After collecting
some resources, the foraging robot will put the resources
in the resource-holder of the closest last robot of a robot
chain. Note that foraging robots can also choose to dump
the resources to the central depot directly if it is closer than
the last robots of any robot chain. When the cluster becomes
empty, the foraging robot will explore the arena to find other
resource clusters using the exploration strategy in [8].

Since the locations of robots are shared among the robots,
foraging robots have no trouble locating the last robots of
robot chains. However, a foraging robot has to find a route
to the last robot by avoiding obstacles. An obstacle map is
a shared data structure that stores the information about the
obstacles detected by all robots. An obstacle map partitions
a 2D arena map into regions of three different kinds: 1)
unknown regions, 2) empty regions, and 3) obstacle regions.
These regions are shown as the black regions, the white
regions, and the yellow regions in Fig. 4b, respectively. The
entire obstacle map is initially one unknown region but is
later updated according to the sensing information collected
by the robots, as shown in Fig. 3. The sensing information
can be used to determine the edges and the corners of
obstacles and the empty regions that have no obstacle. The
robots can integrate all information into the obstacle map by
expanding the region of empty regions and mark the obstacle
regions enclosed by the detected edges.

When a foraging robot needs to move to a new location,
it will first compute the visibility graph in the obstacle map
(Fig. 4c) and then remove all edges in the visibility graphs

(a) A real environment (b) The obstacle map

(c) The visibility graph
(d) The visibility graph

in empty regions

Fig. 4: The visibility graphs in an obstacle map.

that are not in the empty regions (Fig. 4d). The foraging robot
will then move along the shortest path connecting the current
location to the destination in the visibility graph. However,
we also encourage the foraging robot to explore the unknown
regions by occasionally moving into unknown regions. We
employed the epsilon greedy exploration strategy to decide
when a foraging robot should explore unknown regions.
Whenever a foraging robot visits a node in the visibility
graph that is incident to an edge that reaches an unknown
region, there is a small probability that the robot will choose
this path instead of continuing on the shortest path in the
empty region. The foraging robot will update the visibility
graph upon getting more information about the unknown
region and then recompute the shortest path accordingly.
When a foraging robot reaches a dead end in the exploration,
it will return to the previous node in the last shortest path.
If there is no shortest path in the empty region to reach
the destination, the foraging robot will explore the unknown
region randomly until there is a path to the destination.

V. RELOCATION OF ROBOT CHAINS
Dynamic depots can greatly reduce the amount of time

the foraging robots take to transport the resources by reloca-
tion [8]. Likewise, a robot chain should relocate itself such
that its last robot can be closer to resource clusters. The
questions are when and how to relocate a robot chain.

Our system decides whether a robot chain should relocate
only after a duration tprotect since the last relocation, such
that the relocation would not occur too frequently. After
a duration tprotect , the robot chain will check whether the
utilization of the robot chain remains high. The utilization
of a robot chain is the rate at which foraging robots put
resources to the resource-holder of the last robot. If the rate
is higher than a threshold αprotect , there is no relocation
so that the foraging robots can keep using the robot chain.

Otherwise, our system will check whether there is a better
location for the robot chain. First, it computes a target
location. When relocation occurs, the relocation procedure,
as described later in this section, aims to put the last robot
as close to the target location as possible. The target location
(x,y) can be computed by the following equations:

x =
∑

N
i=1 wixi

∑
N
i=1 wi

and y =
∑

N
i=1 wiyi

∑
N
i=1 wi

. (1)

where (xi,yi) is the coordinate of the resource cluster i in
a set R of resource clusters, wi is the estimated number
of remaining resources in the resource cluster i, and N is
the total number of locations where robots have detected
resources in R. R is a set of non-empty resource clusters
near the last robot of the robot chain. R includes all non-
empty resource clusters for calculating the target point in the
last relocation. Besides, our system will add more resource
clusters to R (e.g, the next known resource cluster on the
right side of the robot chain that is not considered when
computing the last target point).

If our system decides not to relocate a robot chain, it will
wait for another tprotect and then decide again. Otherwise,
the robot chain will stop receiving resources from foraging
robots and wait until all existing resources on the chain
arrive at the central depot. Then all links on the robot chain
are disengaged, and all robot-chain robots will switch to
the mobile state. After that, the robots will try to form a
new robot chain such that the last robot is as close to the
target location as possible. Due to unknown obstacles in the
unknown regions in the arena, the ideal shape of the new
robot chain cannot be pre-computed, and the robots have to
search for the best positions while exploring the arena.

The key idea of the relocation procedure is to maintain the
best configuration of a robot chain during the exploration and
to make sure that there is enough time for robots to return
to this best configuration before the allotted exploration time
texplore is expired. A configuration of a robot chain is a
sequence of positions and orientations of the robots on the
robot chain. Initially, the best configuration is the one before
any robot moves. Based on the visibility graph derived from
the current obstacle map, we extend the visibility graph by
connecting the central depot and the target location to the
nodes in the graph. In the subgraph in the empty regions, find
the shortest path connecting the central depot to the target
location. Then we calculate the robots’ positions that can be
put on or near the shortest path to form a robot chain in the
empty region along the shortest path starting at the central
depot. These positions are the next best configuration, and
all robots will then move to these positions. After the robots
arrive at these locations successfully and there is time left
for exploration, our system will send the robots to explore
the closest unknown regions. The robots will reveal more
empty regions in the obstacle map, and the visibility graph
will be updated accordingly. If the shortest path between the
central depot and the target location changes, it implies that
a better configuration is found, and the robots will move

to the new locations in the new configuration. After that,
the exploration continues. The robots have to keep track of
the time treturn they need to return to the positions in the
current best configuration. When the remaining exploration
time is equal to treturn or the current best configuration can
be proved to be the shortest, the robots will immediately stop
exploration, return to the positions in the best configuration,
and form the robot chain.

After relocation, the robot chain can recruit more robots
to join the robot chain if the last robot is still far away from
the target location. Likewise, the robot chain can drop some
robots to reduce their length if it is longer than the shortest
path between the central depot and the target location.

VI. EXPERIMENTAL CONFIGURATIONS

To evaluate our robot chain algorithm, we conducted two
sets of experiments in the Autonomous Robots Go Swarming
(ARGoS) [20]. We checked whether the foraging perfor-
mance varies systematically with different configurations and
statistically analyzed the results. In both experiments, we
compared our proposed algorithm RCdynamic (i.e., dynamic
robot chains) with two MPFA with dynamic depots algo-
rithms, (MPFA3

dynamic and MPFA16
dynamic). In the two MPFA

algorithms, 4 dynamic depots are distributed and can move to
new locations dynamically as described in [8]. The difference
between the two MPFA algorithms is the capacities of
depots: 3 in the MPFA3

dynamic and 16 in the MPFA16
dynamic.

We implemented another robot chain algorithm RCstatic
that does not allow moving or relocating robot chains. In
the experiment, we set a link model as follows; dmax =
0.8m, dmin = 0.34m, C = 3, v = 0.32m/s. The parameters
of relocation are tprotect = 360s, αprotect = 48 resources/min
and texplore = 120s. In the first set of experiments, the number
of clusters is 20, and the shapes of clusters are 5×5, 5×10,
and 10×10 for 500, 1000, and 2000 resources, respectively.
We scaled up the number of resources, the number of robots,
and the arena size to evaluate the foraging performance of
the algorithms. A certain percentage of robots were used
to initialize the robot chains. The experimental setup is
summarized in Table I.

TABLE I: The Configuration in Experiment 1

Arena Size(m×m) 10×10 20×20 40×40
Number of resources 500 1000 2000

Number of robots 20, 30, 40 40, 50, 60 60, 80, 100
50, 60 70, 80 120, 140

Foraging time (minute) 30
% of robots for the 30%initial robot chains

In the second experiment, we measured the foraging
performance in the arenas 20× 20 meter with a different
number of obstacles: 4, 8, 16, and 32. An obstacle is a
simulated box of size 0.5m ×0.5m ×0.5m with a random
orientation. 1000 resources are in 5m×10m clusters. 40, 60,
and 80 robots are distributed in the center.

VII. EXPERIMENTAL RESULTS

The foraging performance is the number of resources
collected and delivered to the central collection zone. The
collision time is the time robots spent to avoid collision with
other robots and the boundary of the arena. Each data set
in the figures is an average of 30 runs, and each error bar
indicates 95% confidence intervals.

Fig. 5 demonstrates the foraging performance of all 4
algorithms in Experiment 1. The two robot chain algorithms
outperform the two MPFA algorithms. All performance in-
crease as the number of robots and the arena size increase,
except MPFA3

dynamic. Both robot chain algorithms increase
faster than the two MPFA algorithms. The results indicate
that the performance of RCdynamic is 237% higher than
MPFA3

dynamic and 107% higher than MPFA16
dynamic when the

number of robots is 140, and the arena size is 40m×40m.

0
250
500
750

1000

20 30 40 50 60

0
250
500
750

1000

40 50 60 70 80

0
250
500
750

1000

60 80 100 120 140

10
×
10
$

20
×
20
$

40
×
40
$

N
um

be
r o

f C
ol

le
ct

ed
 R

es
ou

rc
es

Number of Robots

'()*+,-./01
2 '()*+,-./01

34 5678.801 56+,-./01

Fig. 5: Foraging performance using a different number of
robots at different arenas in Experiment 1.

Fig. 6 compares the collision time of all 4 algorithms in
Experiment 1. The collision time in the MPFA with dynamic
depots with larger capacity 16 is 27% higher than the time in
RCdynamic. The depots with the larger capacity 16 have more
collision time than the depots with the smaller capacity 3.
The difference between the collision time in the two robot
chain algorithms is not obvious.

Fig. 7 demonstrates the foraging performance of all 4
algorithms with a different number of randomly distributed
obstacles in experiment 2. All performance decrease as the
number of obstacles increases. MPFA16

dynamic outperforms
the other three algorithms using 40 robots. It is 40%,
44%, 47%, and 46% higher than RCdynamic, respectively.
The performance of the other three algorithms does not
have a significant difference. When the number of robots
increases to 60, RCstatic and RCdynamic slightly outperform
MPFA16

dynamic. Comparing their performance with 40 robots,
their performance increases faster than the two MPFA al-
gorithms. When the number of robots increases to 80, we

'()*+,-./01
2 '()*+,-./01

34 5678.801 56+,-./01

10
×
10
$

20
×
20
$

40
×
40
$Co

lli
sio

n
Ti

m
e

(s
ec

on
ds

)

Number of Robots

0
4000
8000

12000

20 30 40 50 60

0
4000
8000

12000

40 50 60 70 80

0
4000
8000

12000

60 80 100 120 140

Fig. 6: The collision time of each swarm in Experiment 1.

can see a more clear improvement in RCstatic and RCdynamic.
Besides, RCdynamic outperforms RCstatic when the number of
obstacles are 8, 16, and 32.

0
200
400
600

4 8 16 32

0
200
400
600

4 8 16 32

0
200
400
600

4 8 16 32

N
um

be
r o

f C
ol

le
ct

ed
 R

es
ou

rc
es

Number of Obstacles

40
5
9:
9;
<

60
5
9:
9;
<

80
5
9:
9;
<

'()*+,-./01
2 '()*+,-./01

34 5678.801 56+,-./01

Fig. 7: Foraging performance using a different number of the
robots and obstacles in Experiment 2.

VIII. DISCUSSION AND FUTURE WORK

In this paper, we showed that by giving robots in a robot
swarm the ability to pass objects at a distance between them,
they can collectively solve the foraging tasks more efficiently.
The key is the formation of robot chains that can overcome
the two major limitations of existing dynamic depot foraging
systems: congestion near the central collection zone and the
long travel distance for delivering. To this end, we introduced
a novel foraging swarm robot system based on robot chains.
We presented the robot chain algorithm for controlling the
robots and described the relocation procedure of dynamic
robot chains. Our experiments show that dynamic robot
chains outperform dynamic depots in multiple-place foraging
tasks given the same number of robots (see Fig. 5).

The reason for the superior performance of our robot chain
algorithms is as follows. In MPFA3

dynamic and MPFA16
dynamic,

when the capacity of resources of the depot robots is as low

as 3, the depots have to visit the central depot frequently.
Therefore, the foraging robots have to spend more time
waiting for the depots to return. RCstatic and RCdynamic do
not have this problem since it can continuously receive the
resources from the foraging robots after the robot chains are
established; thus, the foraging robots have a high utility rate.
In RCdynamic, the robot chains only relocate a few times,
and hence they keep operating most of the time. RCdynamic
suffers from slightly more collisions when the robot chains
relocate. However, the relocation updates robot chains to
better locations for collecting more resources.

Most of the collisions in MPFA3
dynamic and MPFA16

dynamic
are due to the congestion near the depot robot and the central
depot in Fig. 6. Due to a large number of robots near the
depot robot or the central depot, the robots have to take
more time to unload the resources to the depot robot or
the central depot. Additionally, the different collision time
between MPFA3

dynamic and MPFA16
dynamic is the capacity of

the depot robot. The smaller capacity results in more trips of
delivering resources, and therefore results in more collisions.
When the foraging robots are waiting for the depot robot,
there is no collision between the robots that want to unload
resources to the depot robot. Therefore, the MPFA3

dynamic
shows more small collision times than MPFA16

dynamic. In
RCstatic and RCdynamic, the collision at the central depot
can be avoided almost completely; instead, the collisions
in RCstatic and RCdynamic occur mostly at the end of the
robot chains. Since there are four robot chains, the collisions
are evenly distributed to these robot chains, causing less
congestion. In RCdynamic, there are some collisions near the
central depot when the robot chains are relocated. Robots
collide with other robots when they move to new locations
to form a new robot chain. When a depot travels to the central
collection zone to deliver resources, foraging robots around
it are idle and wait for its returns. The depot with a small
capacity 3 travels more frequently than the one with a large
capacity 16. Therefore, there is less collision and the robots
have a longer waiting time.

When obstacles were distributed in searching arenas, the
foraging performance was disrupted and decreased rapidly
(see Fig. 7). The performance of RCstatic was very close to
RCdynamic. The performance of MPFA16

dynamic outperformed
other algorithms. It indicates that the relocation is not ef-
ficient enough in small swarm sizes and small arenas. The
performance of RCdynamic has the potential to be much higher
when the number of robots is larger.

This work shows that the use of dynamic robot chains can
greatly improve the performance of foraging systems when
compared with the existing approaches. The advantages
of this novel approach are: 1) it provides more efficient
transportation than central place foraging algorithms and the
multiple places foraging algorithm MPFA with limit depot
capacities; 2) it has less collision time among robots, and
3) it can detect and avoid obstacles. In the future, we will
design a more efficient strategy for avoiding obstacles in
more complex environments.

ACKNOWLEDGMENT

This work has been taken place in the ART Lab at
UNIST supported by NRF (2016R1D1A1B0101359816 and
2016M3C4A795263722) and UT San Antonio supported by
CS departmental start-up funds.

REFERENCES

[1] W. Liu, “Design and modelling of adaptive foraging in swarm robotic
systems,” Ph.D. dissertation, Faculty of Environment and Technology,
University of the West of England, Bristol, 2008.

[2] W. Liu and A. F. Winfield, “Modeling and optimization of adaptive
foraging in swarm robotic systems,” The International Journal of
Robotics Research, vol. 29, no. 14, pp. 1743–1760, 2010.

[3] E. Castello, T. Yamamoto, F. Dalla Libera, W. Liu, A. F. Winfield,
Y. Nakamura, and H. Ishiguro, “Adaptive foraging for simulated and
real robotic swarms: the dynamical response threshold approach,”
Swarm Intelligence, vol. 10, no. 1, pp. 1–31, 2016.

[4] W. Liu, A. F. Winfield, J. Sa, J. Chen, and L. Dou, “Towards energy
optimization: Emergent task allocation in a swarm of foraging robots,”
Adaptive behavior, vol. 15, no. 3, pp. 289–305, 2007.

[5] J. P. Hecker and M. E. Moses, “Beyond pheromones: evolving error-
tolerant, flexible, and scalable ant-inspired robot swarms,” Swarm
Intelligence, vol. 9, no. 1, pp. 43–70, 2015.

[6] Q. Lu, M. E. Moses, and J. P. Hecker, “A scalable and adaptable
multiple-place foraging algorithm for ant-inspired robot swarms.”
Robotics Science and Systems (RSS) workshop on On-line decision-
making in multi-robot coordination, 2016.

[7] Q. Lu, J. P. Hecker, and M. E. Moses, “The MPFA: A multiple-place
foraging algorithm for biologically-inspired robot swarms,” IEEE/RSJ
International Conf. on Intelligent Robots and Systems (IROS), 2016.

[8] Q. Lu, J. Hecker, and M. Moses, “Multiple-place swarm foraging with
dynamic depots,” Autonomous Robots, vol. 42(4), pp. 909–926, 2018.

[9] D. Lee and T.-C. Au, “Automatic configuration of mobile conveyor
lines,” in IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 3841–3846.

[10] T. P. Flanagan, K. Letendre, W. R. Burnside, G. M. Fricke, and M. E.
Moses, “Quantifying the effect of colony size and food distribution
on harvester ant foraging,” PloS one, vol. 7, no. 7, p. e39427, 2012.

[11] G. M. Fricke, J. P. Hecker, A. D. Griego, L. T. Tran, and M. E. Moses,
“A distributed deterministic spiral search algorithm for swarms,”
IEEE/RSJ International Conf. on Intelligent Robots and Systems
(IROS), 2016.

[12] Q. Lu, A. D. Griego, G. M. Fricke, and M. E. Moses, “Comparing
physical and simulated performance of a deterministic and a bio-
inspired stochastic foraging strategy for robot swarms,” in Intl. Conf.
on Robotics and Automation (ICRA), May 2019, pp. 9285–9291.

[13] T. P. Flanagan, N. M. Pinter-Wollman, M. E. Moses, and D. M.
Gordon, “Fast and flexible: Argentine ants recruit from nearby trails,”
PLOS ONE, vol. 8, no. 8, pp. 1–7, August 2013.

[14] C. A. Chapman, L. J. Chapman, and R. McLaughlin, “Multiple central
place foraging by spider monkeys: Travel consequences of using many
sleeping sites,” Oecologia, vol. 79, no. 4, pp. 506–511, 1989.

[15] G. Pini, A. Brutschy, A. Scheidler, M. Dorigo, and M. Birattari,
“Task partitioning in a robot swarm: Object retrieval as a sequence
of subtasks with direct object transfer,” Artificial life, vol. 20, no. 3,
pp. 291–317, 2014.

[16] E. Ferrante, A. E. Turgut, E. Duéñez-Guzmán, M. Dorigo, and
T. Wenseleers, “Evolution of self-organized task specialization in robot
swarms,” PLoS Comput Biol, vol. 11, no. 8, pp. 1–21, 2015.

[17] S. Nouyan, A. Campo, and M. Dorigo, “Path formation in a robot
swarm,” Swarm Intelligence, vol. 2, no. 1, pp. 1–23, 2008.

[18] P. M. Maxim, W. M. Spears, and D. F. Spears, “Robotic chain for-
mations,” International Federation of Automatic Control Proceedings
Volumes, vol. 42, no. 22, pp. 19–24, 2009.

[19] F. Wang, P. Liu, S. Zhao, B. M. Chen, S. K. Phang, S. Lai, T. H. Lee,
and C. Cai, “Guidance, navigation and control of an unmanned heli-
copter for automatic cargo transportation,” in IEEE Xplore Proceedings
of the 33rd chinese control conference, 2014, pp. 1013–1020.

[20] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Bram-
billa, N. Mathews, E. Ferrante, G. Di Caro, and F. Ducatelle, “ARGoS:
a modular, parallel, multi-engine simulator for multi-robot systems,”
Swarm intelligence, vol. 6, no. 4, pp. 271–295, 2012.

