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What are Time Series?    1 of 2
A time series is a collection of observations made 
sequentially in time. 

More than most types of data, time series lend themselves to visual
inspection and intuitions…
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For example, looking at 
the numbers in this 
green vector tells us 
nothing.
But after plotting the 
data, we can recognize a 
heartbeat, and possibly 
even diagnose this 
person's disease.
This tutorial will leverage 
the visual intuitiveness 
of time series.
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Mantled Howler Monkey
Alouatta palliata

What are Time Series?    2 of 2
As an aside… (not the main point for today)

Many types of data that are not true time series can be 
fruitfully transformed into time series, including DNA, speech, 
textures, core samples, ASCII text, historical handwriting, 
novels and even shapes.
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Similarity Measures

• A similarity measure compares two time series and 
produces a number representing their similarity
• A distance measure is an inverted similarity measure

• Lockstep Measures
• Euclidean Distance
• Correlation Coefficient
• Cross-correlation

• Elastic Measures
• Dynamic Time Warping
• Edit Distance
• Longest Common Subsequence

5



Similarity Search
• A query Q is given of length m

• n independent candidate time series C1, C2, …, Cn

• Nearest Neighbor query
• Find K nearest neighbor of Q under a distance measure d

• Range Query
• Find all time series C where 𝑑 𝑄, 𝐶 ≤ 𝜖

• Density Estimation
• Count the number of time series C where 𝑑 𝑄, 𝐶 ≤ 𝜖
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Why Similarity Search?

• Most data mining algorithms (e.g. clustering, 
classification, outlier detection, etc.) use similarity 
measures and similarity search as subroutines

• Interpretable mining of heterogeneous data objects 
is possible through similarity search

• Great way to embed scientific knowledge in mining 
algorithms by modifying and adapting similarity 
measures

7
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Top-level Outline

•Similarity Measures

•Similarity Search
• Lock-step search (e.g. Correlation Search)
• Elastic search (e.g. DTW search)



Euclidean Distance Metric

y

x

d(x,y)

Given two time series

x = x1…xn

and 

y = y1…yn

their z-Normalized Euclidean distance is 

defined as:
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d(x,y)
ෝ𝑥𝑖 =

𝑥𝑖 − 𝜇𝑥
𝜎𝑥

ෝ𝑦𝑖 =
𝑦𝑖 − 𝜇𝑦

𝜎𝑦

𝑑 𝑥, 𝑦 = ෍

𝑖=1

𝑛

( ෝ𝑥𝑖 − ෝ𝑦𝑖)
2



Pearson’s Correlation Coefficient

• Given two time series 𝒙 and 𝒚 of length 𝑚. 

• Correlation Coefficient:

𝑐𝑜𝑟𝑟 𝒙, 𝒚 =
σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖 −𝑚𝜇𝑥𝜇𝑦

𝑚𝜎𝑥𝜎𝑦

• Where 𝜇𝑥 =
σ𝑖=1
𝑚 𝑥𝑖
𝑚

and 𝜎𝑥2 =
σ𝑖=1
𝑚 𝑥𝑖

2

𝑚
− 𝜇𝑥

2

• Sufficient Statistics:

σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖 σ𝑖=1

𝑚 𝑥𝑖 σ𝑖=1
𝑚 𝑦𝑖 σ𝑖=1

𝑚 𝑥𝑖
2 σ𝑖=1

𝑚 𝑦𝑖
2

One linear scan



Relationship with Euclidean 
Distance
𝑑 ෝ𝒙, ෝ𝒚 = 2𝑛(1 − 𝑐𝑜𝑟𝑟(𝒙, 𝒚))

ො𝑥𝑖 =
𝑥𝑖−𝜇𝑥

𝜎𝑥
and ො𝑦𝑖 =

𝑦𝑖−𝜇𝑦

𝜎𝑦

𝑑2 ෝ𝒙, ෝ𝒚 =෍

𝑖=1

𝑛

ො𝑥𝑖 − ො𝑦𝑖
2

• Correlation coefficient does not obey triangular inequality
• Maximizing correlation coefficient can be achieved by 

minimizing normalized Euclidean distance and vice versa

Abdullah Mueen, Suman Nath, Jie Liu: Fast approximate correlation for massive time-series data. SIGMOD Conference 2010: 171-182
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The Importance of z-Normalization and 
correlation 1 of 2

Essentially all datasets must have every
subsequence z-normalized. 

There are a handful of occasions where 
it does not make sense to z-normalize, 
but in those cases, similarity search 
does not make sense either.

In this example, we begin by extracting 
heartbeats  from two unrelated people.

Even without normalization, it happens 
that  both sets have almost the same 
mean and standard deviation. Given 
that, do we need to bother to normalize 
them?  (next slide)

Extracted 
beats 
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Extracted 
beats 

Without normalization, the results are 
very poor, some blue heartbeats are 
closer to red heartbeats than there are 
to another blue beat . 

With normalization, the results are 
perfect.

Un-normalized Normalized

In this example, we extracted heartbeats from 
two different time series, and clustered them  
with and without normalization.

The Importance of z-Normalization and 
correlation 2 of 2

Surprisingly z-normalizing can be a 
computational bottleneck, but later we will 
show you how to fix that.



14

What is Dynamic Time Warping?  

• DTW is an algorithm for measuring similarity between 
two time series which may vary (i.e. warp) in timing.

DTWEuclidean 
Distance

• This invariance to 
warping is critical 
in many domains, 
for many tasks. 

• Without warping 
invariance, we are 
often condemned 
to very poor 
results. 
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C

QC

Q

How is DTW 
Calculated? I

We create a matrix the size of 
|Q| by |C|, then fill it in with 
the distance between every 
possible pair of points in our 
two time series.
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C

Q

How is DTW 
Calculated? II

C

Q

Warping path w



  

KwCQDTW
K

k k1
min),(

Every possible warping between two 
time series, is a path through the matrix. 
We want the best one…

This recursive function gives us the 
minimum cost path

(i,j)  = d(qi,cj) + min{ (i-1,j-1), (i-1,j ), (i,j-1) }
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Let us visualize the cumulative matrix on a real world problem I

This example shows two 
one-week periods from 
an electrical power 
demand time series.

Note that although they 
both describe 4-day work 
weeks, the blue sequence 
had Monday as a holiday, 
and the red sequence had 
Wednesday as a holiday.
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DTW is a Distance Measure, not a Metric 1 of 2

Requirements to be a metric 
D(A,B) = D(B,A) Symmetry 

D(A,A) = 0 Constancy of Self-Similarity

D(A,B) = 0 IIf A=B Positivity (Separation)

D(A,B)  D(A,C) + D(B,C) Triangular Inequality

Yes for DTW

No for DTW

Normally we prefer metrics over measures for two reasons:

• Non-Metrics can sometimes give pathological solutions when 
clustering or classifying data etc.
• Almost all speed-up “tricks” for high dimensional data exploit the 
Triangular Inequality. 
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C

Q

Sakoe-Chiba Band

Understanding w, the Warping Constraint

We need to understand w
because:

• The most useful speedup 
tricks all exploit w.

• The value chosen for w
can greatly affect accuracy. 

n

The value of w is the maximum 
amount the warping path is allow 
to deviate from the diagonal.

It is normally expressed as the ratio 

w = r/n (or as a percentage)

r



20

Generalizing to Multi-Dimensional Data 1 of 3

It is increasingly common to 
encounter Multi-Dimensional (MD) 
time series data. Here we measure 
the X-axis acceleration of both the 
left and right hand.  

There are two obvious ways to compute the MD DTW score.

Independent: Just compute the DTW score for each 
dimension independently, and sum up each score.

Dependent:  Create a single distance matrix that 
reflect the distance between each corresponding pair 
of time series, then find the single warping path and 
distance as per normal.

Q

C

x

y

x

y

DTWI(Q,C) = DTW(Qx,Cx) + DTW(Qy,Cy) = 2.4

DTWD(Q,C) = DTW({Qx,Qy},{Cx,Cy}) = 3.2

Given these pair of 2D 
objects…
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Generalizing to Multi-Dimensional Data 2 of 3

So, of DTWI and DTWD which is best?

Lets think of it this way:

The thing we want classify is an physical process, the utterance of the 
word “bicycle”, the beat of a heart, an autograph, a tennis shot etc. 

We cannot see the actual event, just 2 or more time series it created.
•If the physical process affects the time series simultaneously, then DTWD will 
probably be best. We call this the tightly coupled case.

•If the physical process affects the time series with varying lags, then DTWI will 
probably be best. We call this the loosely coupled case.

Example: Suppose we measure the directionless 
acceleration of the left and right wrists of a tennis 
player.

The “physical process” is a backhand stoke. If a two-
handed backstroke, the two time series are tightly 
coupled. If a one-handed backhand, the two hands 
will be very loosely coupled .

Jo-Wilfried Tsonga



Generalizing to Multi-Dimensional Data 3 of 3

We can demonstrate the claim in the last slide with experiments.

Let us begin with a dataset that we are 100% sure is tightly coupled, 
then slowly add some random time lags into the data… 
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Er
ro

r 
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More Random Lag  

We know that the handwriting dataset is 
tightly coupled. We find that DTWD has an 
error-rate of about 0.42, much better than 
that DTWI has an error-rate of about 0.55.

However, as we uncouple the perfect 
synchronization by adding some random lag, 
DTWD quickly gets worse, while that DTWI is 
barely effected.

handwriting dataset 



Longest Common Subsequence Measures 

(Allowing for Gaps in Sequences)

Gap skipped

M. Vlachos, G. Kollios and D. Gunopulos, "Discovering similar multidimensional trajectories," ICDE 2002, pp. 673-684.



Longest Common Subsequence (LCSS)

ignore majority 

of noise

match

match

Advantages of LCSS:

A. Outlying values not matched

B. Distance/Similarity distorted less

C. Constraints in time & space

Disadvantages of DTW:

A. All points are matched

B. Outliers can distort distance

C. One-to-many mapping

LCSS is more resilient to noise than DTW.



Longest Common Subsequence
Similar dynamic programming solution as DTW, but 

now we measure similarity not distance.

Can also be expressed as distance

𝐿𝐶𝑆𝑆 𝑖, 𝑗 =

0
0

1 + 𝐿𝐶𝑆𝑆[𝑖 − 1, 𝑗 − 1]

max(𝐿𝐶𝑆𝑆 𝑖 − 1, 𝑗 , 𝐿𝐶𝑆𝑆 𝑖, 𝑗 − 1 )

𝑖𝑓 𝑖 = 0
𝑖𝑓 𝑗 = 0

𝑖𝑓 𝑎𝑖,𝑘 − 𝑏𝑗,𝑘 < 𝜖

otherwise

𝐷𝐿𝐶𝑆𝑆 𝐴, 𝐵 = 1 −
𝐿𝐶𝑆𝑆𝛿,𝜖(𝐴, 𝐵)

min 𝑛,𝑚 𝑜𝑟 max(𝑛,𝑚)
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Preprocessing

Uniform Scaling

O(n)

Z-Normalization

O(n)

Rotation Invariance

O(n)

Euclidean Distance

O(n)

Cross-correlation

O(n log n)

Sliding Distance

O(n log n)

Complexity Invariance

O(n)





Length Normalization

O(n)





Alignment Postprocessing

Various extensions of 
lock-step measures

• Preprocessing 
• Alignment
• Postprocessing

Let us assume that a sin wave 
should match with another sin 
wave without considering phase, 
amplitude, frequency, noise, etc.

1. Michail Vlachos, D. Gunopulos, and Gautam Das. 2004. 
Rotation invariant distance measures for trajectories. KDD 
'04. 707-712. 

2. Dragomir Yankov, Eamonn J. Keogh, Jose Medina, Bill Yuan-
chi Chiu, Victor B. Zordan: Detecting time series motifs under 
uniform scaling. KDD 2007: 844-853

3. Lexiang Ye, Eamonn J. Keogh: Time series shapelets: a new 
primitive for data mining. KDD 2009: 947-956

4. Gustavo E. A. P. A. Batista, Xiaoyue Wang, Eamonn J. Keogh: A 
Complexity-Invariant Distance Measure for Time Series. SDM 
2011: 699-710



Other Similarity Measures

• Move-Split-Merge (MSM) to achieve both dynamic 
alignment and metric properties

• MUNICH, PROUD, DUST: Similarity measure for 
uncertain time series

27

We will consider Euclidean 
distance and Dynamic Time 
Warping distance as 
representatives

1. Alexandra Stefan, Vassilis Athitsos, Gautam Das: The Move-Split-

Merge Metric for Time Series. IEEE Trans. Knowl. Data Eng. 25(6): 

1425-1438 (2013)

2. Smruti R. Sarangi and Karin Murthy. 2010. DUST: a generalized notion 
of similarity between uncertain time series. KDD '10 , 383-392.

3. M. Yeh, K. Wu, P. Yu, and M. Chen. PROUD: a probabilistic approach to 
processing similarity queries over uncertain data streams. In EDBT, 
pages 684–695. ACM, 2009.

4. J. Aßfalg, H.-P. Kriegel, P. Kr¨oger, and M. Renz. Probabilistic similarity 
search for uncertain time series. In SSDBM, pages 435–443, 2009.
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Top-level Outline

•Similarity Measures

•Similarity Search
• Lock-step search (e.g. Correlation Search)
• Elastic search (e.g. DTW search)
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Computational cost: O(m n)

m



GEMINI Framework*

Solution: Quick-and-dirty filter: 

• extract k features

• map into a point in k-d feature space

• organize points with off-the-shelf spatial access 
method (‘SAM’)

• retrieve the answer using a NN query

• discard false alarms

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series databases. In 
Proceedings 1994 ACM SIGMOD Conference, Mineapolis, MN, USA, 1994.

* R. Agrawal, C.Faloutsos, and A.Swami. Efficient similarity search in sequence databases. In FODO 
Conference, volume 730, 1993. 
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simplified
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Index on 

simplified 

data

original

DB
Answer
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DB

Final 

Answer 

set

Computational cost: O(m log n)



GEMINI: Key Requirement

• GEMINI works when:
Dfeature(F(x), F(y)) ≤ D(x, y)

to ensure zero false negatives

• Dfeature is a metric to have working Spatial Indexes

• Dfeature is significantly inexpensive compared to D 
to gain efficiency



DLB(Q',S')

DLB(Q',S')

S

Q

D(Q,S)

  


n

i
ii sq

1

2

D(Q,S)

Exact (Euclidean) distance D(Q,S) Lower bounding distance DLB(Q,S)

Q'

S'

Lower bounding means that for all Q and S, we have…

DLB(Q’,S’)  D(Q,S)

What is lower bounding?

 


M

i ii sq
1
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Lower Bound 1:
DFT Coefficients 

Discrete Fourier Transform (DFT) 𝑋𝑓 =
1

𝑛
෍

𝑡=0

𝑛−1

𝑥𝑡𝑒
−𝑗

2𝜋𝑓𝑡
𝑛

𝑥𝑡 =
1

𝑛
෍

𝑓=0

𝑛−1

𝑋𝑓𝑒
+𝑗

2𝜋𝑓𝑡
𝑛Inverse DFT

𝑗 = −1

Property 1: DFT is an orthonormal transform,

σ𝑥𝑡
2 = σ 𝑋𝑓

2
 σ 𝑥𝑡 − 𝑦𝑡

2 = σ 𝑋𝑓 − 𝑌𝑓
2

Property 2: DFT of a real sequence is symmetric in 
magnitude.  Thus we need only half of the transform.
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Lower Bound 1:
DFT based Lower Bound

Real time series contains most of the energy in few 
frequencies, commonly in the first few.

෍

𝑛

𝑥𝑡 − 𝑦𝑡
2 = 2෍

𝑛/2

𝑋𝑓 − 𝑌𝑓
2
≥ 2෍

𝑘

𝑋𝑓 − 𝑌𝑓
2

If  we take the difference between any subset 
of k coefficients, we get a lower bound



0 20 40 60 80 100 120 140

C

0.4995

0.5264

0.5523

0.5761

0.5973

0.6153

0.6301

0.6420

0.6515

0.6596

0.6672

0.6751

0.6843

0.6954

0.7086

0.7240

0.7412

0.7595

0.7780

0.7956

0.8115

0.8247

0.8345

0.8407

0.8431

0.8423

0.8387

…

Raw

Data

The graphic shows a time series 

with 128 points.

The raw data used to produce the 
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first 30 or so points are 

shown).
n = 128

Lower Bound 1:
Example
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data into 64 pure sine 

waves using the Discrete 

Fourier Transform (just the 

first few sine waves are 

shown).

The Fourier Coefficients 

are reproduced as a 

column of numbers (just 

the first 30 or so 

coefficients are shown).

Lower Bound 1:
Example
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k = 8

Only k coefficients can provide a 
good approximation of the data 
and produce an inexpensive 
lower bound.



baabccbc

Lower Bound 2:
Symbolic Aggregate ApproXimation (SAX)
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First convert the time 
series to PAA 
representation, then 
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It take linear time
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Lower Bound 2:
How to obtain SAX



Visual Comparison

A raw time series of length 128 is transformed into the 

word “ffffffeeeddcbaabceedcbaaaaacddee.”
– We can use more symbols to represent the time series since each symbol 

requires fewer bits than real-numbers (float, double)

DFT

PLA

Haar

APCA

a

b
c
d
e

f



= baabccbcĈ
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Lower Bound 2:
SAX provides a lower bound



Time Series 
Representations

Data Adaptive Non Data Adaptive
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GEMINI: Other Assumptions

• The database consists of fixed length time series and 
the query length matches the length of the database
• Not true for most real-application (e.g. seismology, 

physiology)

• The method is exact
• Does not sell accuracy for speed

• The time series in the database are independent
• Not true for subsequence search
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Generic Prefix-based Search

query

Prefix of 

simplified

query

Index on 

prefixes of 

simplified data

original

DB
Answer

Superset

Verify 

against 

original 

DB

Final 

Answer 

set

Computational cost: O(m log n)



Prefix distance is not a lower bound 
of the original distance

1. Two time series 𝒙 and 𝒚 of length 𝑚

2. Prefix distance is a trivial lower bound of un-normalized distance

3. Normalized Euclidean distance 𝑑 ෝ𝒙, ෝ𝒚 , can increase or decrease if we extend ෝ𝒙
and ෝ𝒚 by appending the next two numbers.
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9
10

Without Normalization

Values Changed

1 2 3 4 5
-4
-3
-2
-1
0
1
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3
4

With Normalization



Lower-bound upon extension 1 of 3
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Append 10 and re-normalize Append 20 and re-normalizeNormalized

Area between blue and red is 
the distance between the signals

If infinity is appended to both the signals, they will 
have zero area/distance.



Lower-bound upon extension 2 of 3

• 𝑑𝐿𝐵
2 ෝ𝒙+1, ෝ𝒚+1 =

1

𝜎𝑚
2 𝑑𝑚

2 ෝ𝒙, ෝ𝒚 < 𝑑𝑚
2 (ෝ𝒙, ෝ𝒚)

Variances of ෝ𝒙+1and ෝ𝒚+1, 𝜎𝑚
2 =

𝑚

𝑚+1
+

𝑚

𝑚+1 2 𝑧
2

𝑧 = maximum normalized value in the database
A safe approximation of 𝑧 = max(𝑎𝑏𝑠 ෝ𝒙 , 𝑎𝑏𝑠 ෝ𝒚 )

Abdullah Mueen: Enumeration of Time Series Motifs of All Lengths. ICDM 2013: 547-556



Lower-bound upon extension 3 of 3
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ϵ - Approximate Correlation(1)

• Result: given ϵ, compute k

• Smooth Signal  k is small for small ϵ

0 200 400 600 800 1000-2

-1

0
1
2

……

0 200 400 600 800 1000-4
-2

0
2
4

……

DFT

DFT

Length m

Length m

Reduce scanning cost from O(m) to O(k)

Exact correlation ci,j

Compute lower bound
in frequency domain

Approx corr. ci,j ± ϵ

Length k



Example: ϵ=0.1

0 200 400 600 800 1024

-2

0

2 Signal x̂

0 200 400 600 800 1024

-2

0

2 Signal ŷ

Prefix length 
for time domain1014 1017

k = max(kx,ky) = 18 For most 
signals 
k << m

0 100 250

0.1

0.3

0.5

DFT

0 100 250

0.1

0.3

0.5

DFT Ŷ

kx= 14 ky= 18

Prefix Length

𝑐𝑜𝑟𝑟 𝑥, 𝑦 − 0.1 < 1 − σ𝑖
𝑘 |𝑋𝑖 − 𝑌𝑖|

2 < 𝑐𝑜𝑟𝑟 𝑥, 𝑦 + 0.1

Abdullah Mueen, Suman Nath, Jie Liu: Fast approximate correlation for massive time-series data. SIGMOD Conference 2010: 171-182



GEMINI: Other Assumptions

• The database consists of fixed length time series and 
the query length matches the length of the database
• Not true for most real-application (e.g. seismology, 

physiology)

• The method is exact
• Does not sell accuracy for speed

• The time series in the database are independent
• Not true for subsequence search
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Subsequence Similarity Search

• Subsequences have large overlaps that GEMINI does 
not exploit

• Normalization makes it difficult to exploit the overlaps

• Two techniques to exploit overlaps
• just-in-time normalization with constant overhead per 

comparison
• MASS: Mueen’s Algorithm for Similarity Search using 

convolution

54
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Just-in-time Normalization

• In one pass, calculate cumulative sums of over x and 
x2 and store

• Subtract two cumulative sums to obtain the sum over 
a window

• Use the sums to calculate the means and standard 
deviations of all windows in linear time 

• Dynamically normalize observations when calculating 
distance and possibly abandon early
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𝐶 = σ𝑥 𝐶2 = σ𝑥2

𝑆𝑖
2 = 𝐶𝑖+𝑤

2 − 𝐶𝑖
2𝑆𝑖 = 𝐶𝑖+𝑤 − 𝐶𝑖

𝜇𝑖 =
𝑆𝑖
𝑤

𝜎𝑖 =
𝑆𝑖
2

𝑤
−

𝑆𝑖
𝑤

2

𝑐𝑜𝑠𝑡 =
𝑥𝑖𝑗 − 𝜇𝑥𝑖

𝜎𝑥𝑖
−
𝑞𝑖 − 𝜇𝑞𝑖
𝜎𝑞𝑖

2

Thanawin Rakthanmanon, et al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270



Early Abandoning

y

x

d(x,y)

Given two time series

x = x1…xn

and 

y = y1…yn

their z-Normalized Euclidean distance is 

defined as:

Early abandoning reduces 
number of operations 
when minimizing
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2
sum of squared error exceeded best2

d(x,y)
ෝ𝑥𝑖 =

𝑥𝑖 − 𝜇𝑥
𝜎𝑥

ෝ𝑦𝑖 =
𝑦𝑖 − 𝜇𝑦

𝜎𝑦

𝑑 𝑥, 𝑦 = ෍

𝑖=1

𝑛

( ෝ𝑥𝑖 − ෝ𝑦𝑖)
2



Mueen’s Algorithm for Similarity 
Search (MASS) (1 of 4)

• Convolution based method
• 𝑂(𝑛 log 𝑛) cost to obtain all the sliding dot products

• On-the-fly normalization
• Use the dot products to calculate normalized distances 

in 𝑂(𝑛) cost

57

Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah 

Mueen, Eamonn Keogh (2016). Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View that Includes Motifs, 

Discords and Shapelets. IEEE ICDM 2016.

http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html



Mueen’s Algorithm for Similarity 
Search (MASS) (2 of 4)

• Double the time series by appending zeros

• Reverse the normalized query and append zeros to match length

• Use FFT based convolution technique
• 𝑖𝑓𝑓𝑡( 𝑓𝑓𝑡(𝑥). 𝑓𝑓𝑡(𝑦) )
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Output

InputX1 0 Y2

Streaming Time Series Pattern

0 0 0 0 0 0 0 0 0X2 X3 X4 Y1

0 0 0 0 0 0 0 0 0 0Y2X1 Y2X2+Y1X1 Y1X4Y2X2+Y1X1 Y2X4+Y1X3



Mueen’s Algorithm for Similarity 
Search (MASS) (3 of 4)

• Since query is normalized, we reform the distance 
function by applying σ𝑦 = 0,σ𝑦2 = 𝑛

• 𝑑2 𝑥, 𝑦 = σ
𝑥−𝜇𝑥

𝜎𝑥
− 𝑦

2

=
σ𝑥2 − 2σ𝑥𝜇𝑥 + 𝑛𝜇𝑥

2

𝜎𝑥
2 − 2

σ𝑥𝑦

𝜎𝑥
+ 𝑛

• The distance can be calculated by using the sliding dot 
products and cumulative sums
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Mueen’s Algorithm for Similarity 
Search (MASS) (4 of 4)

• Produces a “distance profile” of the query to the 
subsequences of the time series. Every distance is 
reported, nothing is abandoned

• Can be used to answer K-NN queries, range 
queries, and density estimation all at the same time

• Data and query independent execution.

• Can be further optimized when multiple queries are 
issued
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Top-level Outline

•Similarity Measures

•Similarity Search
• Lock-step search (e.g. Correlation Search)
• Elastic search (e.g. DTW search)



Similarity Search under DTW

• The general conception: DTW is slow and we have a 
never-ending need  for speed

• Better performance in knowledge extraction

• Better scalability to process BigData

• Better interactivity in human driven data analysis

63



What can be made fast?

• One-to-One comparison
• Exact Implementation and Constraints
• Efficient Approximation
• Exploiting Sparsity

• One-to-Many comparisons
• Nearest Neighbor Search

• In subsequences of a long time series
• Density Estimation

• In clustering 
• Averaging Under Warping

• In classification

• Many-to-Many comparisons
• All-pair Distance Calculations
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Speeding up DTW: one-to-one

• One-to-One comparison
• Exact Implementation 

• Efficient Constraints

• Exploiting Hardware

• Efficient Approximation

• Exploiting Sparsity
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Simplest Exact Implementation

66

0 5 10 15 20 25

D(1:n+1,1:m+1) = inf;

D(1,1) = 0;

for i = 2 : n+1 %for each row

for j = 2 : m+1 %for each column

cost = (x(i-1)-y(j-1))^2;

D(i,j) = cost + min( [ D(i-1,j), D(i,j-1), D(i-1,j-1) ]); 

d = sqrt(D(n+1,m+1));

𝑂(𝑛2) time
𝑂(𝑛2) space

Input: x and y are time series of length n and m
Output: DTW distance d between x and y



Simplest Implementation 
(Constrained)

67

D(1:n+1,1:m+1) = inf;

D(1,1) = 0;

w = max(w, abs(n-m));

for i = 2 : n+1

for j = max(2,i-w) : min(m+1,i+w)

cost = (x(i-1)-y(j-1))^2;

D(i,j) = cost + min( [ D(i-1,j), D(i,j-1), D(i-1,j-1) ]); 

d = sqrt(D(n+1,m+1));6767

0 5 10 15 20 25 30

𝑂(𝑛𝑤) time
𝑂(𝑛2) space

𝑤



Memoization
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∞

∞

1 2 2 1 2 3 4 5 3 2 1

1 3 3

D(2,1:m+1) = inf;

D(1,1) = 0;

p = 1; c = 2;

for i = 2 : n+1

for j = 2 : m+1

cost = (x(i-1)-y(j-1))^2;

D(c,j) = cost + min( [ D(p,j), D(c,j-1), D(p,j-1) ]);

swap(c,p);

d = sqrt(D(n+1,m+1));

Previous Row

Current Row

𝑂(𝑛2) time
𝑂(𝑛) space



Hardware Acceleration

• Single Instruction Multiple Data 
(SIMD) architecture

• Cells on a diagonal are 
computed in parallel

• Values of a diagonal depend on 
the previous two diagonals
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𝑂(𝑛) time
𝑂(𝑛) space



PAA based approximation
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1 2 3 4 5 6 7

𝑂
𝑛

𝑤

2
time

𝑂
𝑛

𝑤

2
space

Piecewise Aggregate Approximation
𝑤

Selina Chu, Eamonn J. Keogh, David M. Hart, Michael J. Pazzani: Iterative Deepening Dynamic Time Warping for Time Series. SDM 2002: 195-212



Approximation by Length-
encoding
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1    (4)    1   (4)     1

1    (3)    1   (3)    1     1    (3)    1

To exploit sparsity,
encode lengths of the 

runs of zeros

A Mueen, N Chavoshi, N Abu-El-Rub, H Hamooni, A Minnich, Fast Warping Distance for Sparse Time Series, ICDM 2016. 
http://www.cs.unm.edu/~mueen/Projects/AWarp/awarp.pdf
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Exploiting Sparsity (1)
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Exploiting Sparsity (2)
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Exploiting Sparsity (2)

74

0

2

4 0

2

4

0 1 4

1

1 0

1 2 3 4 5 6

Correct Alignment

No change 
 Lower bound

0 4

1

1 0

0

2

4 0

2

4

1 2 3 4 5 6

Missing Alignment

0 1 1 4

1

1 0

0

2

4 0

2

4

1 2 3 4 5 6

Linear change
 Upper bound

0 1 1 4

1

1 0

0

2

4 0

2

4

1 2 3 4 5 6

Extra Alignment

0     1     2    11    11
1     4     5      6     7
5    10   13     6    10
6     5     5    21     7
6     6     6    14     7

1
   2

   3
   0

   1

1     0     0     4     1

x

y

0     2    11    11
1     4     6      7
5    10    5      9
6     5    21     6
6     6    14     6

1
   2

   3
  (1

) 1

1     (2)    4     1

x

y y

0     2    11    11
1     6     6      7
5    15    7    10
6     5    21     8
6     6    14     8

1     (2)    4     1

x

y

0     2    11    11
1     6     6      7
5    15    7    10
6     5    21     8
6     6    14     8

1
   2

   3
  (1

) 1

1     (2)    4     1

x

Sub-Linear change 
 Exact Distance



Exploiting Sparsity (3)
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Normal Distribution
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What can be made fast?

• One-to-One comparison
• Exact Implementation and Constraints
• Efficient Approximation
• Exploiting Sparsity

• One-to-Many comparisons
• Nearest Neighbor Search

• In subsequences of a long time series
• Density Estimation

• In clustering 
• Averaging Under Warping

• In classification

• Many-to-Many comparisons
• All-pair Distance Calculations
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Nearest Subsequence Search  

• A Q query is given

• A long time series of length n

• O(n) distance calculations are performed to

78

Find THE nearest subsequence of 
the given query under DTW.
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Brute Force Subsequence Search

79

1. best_so_far = infinity;
2. for all sequences in database
3.
4.
5.
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match = i;
9. endif
10.
11.  endfor

Algorithm

1. best_so_far = infinity;
2. for all sequences in database
3.
4.
5.
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match = i;
9. endif
10.
11.  endfor

Algorithm Sequential_Scan(Q) 

true_dist = DTW(Ci ,Q);

Computational cost: O(nm2)



Lower Bounding Nearest Neighbor 
Search

80

We can speed up similarity search under 
DTW by using a lower bounding function

1. best_so_far = infinity;
2. for all sequences in database
3.
4. if LB_dist < best_so_far
5.
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match = i;
9. endif
10. endif
11.  endfor

Algorithm Lower_Bounding_Sequential_Scan(Q) 

1. best_so_far = infinity;
2. for all sequences in database
3.
4. if LB_dist < best_so_far
5.
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match = i;
9. endif
10. endif
11.  endfor

Algorithm Lower_Bounding_Sequential_Scan(Q) 

Only do the 
expensive, full 
calculations when 
it is absolutely 
necessary

Try to use a cheap 
lower bounding 
calculation as 
often as possible.LB_dist = lower_bound_distance(Ci ,Q);

true_dist = DTW(Ci ,Q);



A

B

C

D

The squared difference between the two 
sequence’s first (A), last (D), minimum (B) 
and maximum points (C) is returned as 
the lower bound 

Kim, S, Park, S, & Chu, W.  An 
index-based approach for 
similarity search supporting time 
warping in large sequence 
databases. ICDE 01, pp 607-614

LB_Kim

Lower Bound of Kim
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𝑂(1) time if considered only first and last points

𝑂(𝑛) time for all four distances



Lower Bound of Yi

82

The sum of the squared length of white 
lines represent the minimum contribution 
of the observations above and below the 
yellow lines. 

Yi, B, Jagadish, H & Faloutsos, C. 
Efficient retrieval of similar time 
sequences under time warping. 
ICDE 98, pp 23-27. 

max(Q)

min(Q)
LB_Yi

𝑂(𝑛) time
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Sakoe-Chiba Band

Ui = max(qi-w : qi+w)
Li = min(qi-w : qi+w)

Lower Bound of Keogh
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C
U

LQ

Reversing the Query/Data Role in 
LB_Keogh

• Make LB_Keogh tighter
• Much cheaper than DTW
• U/L envelops on the 

candidates can be calculated 
online or pre-calculated

84

Envelop on Q

C
U

LQ

Envelop on C

max(LB_KeoghEQ, LB_KeoghEC)



LB_Keogh
Sakoe-Chiba

LB_Keogh
Itakura

LB_Yi

LB_Kim

The tightness of the lower bound for each technique is 
proportional to the length of lines used in the illustrations 

85



Cascading Lower Bounds
• At least 18 lower bounds of DTW was proposed. 

• Use lower bounds only on the Skyline.

• Use the bounds on the skyline in cascade from least 
expensive to most expensive

• When unable to prune, use early abandoning techniques
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Early Abandoning Techniques

Abandon accumulating errors as soon as the current 
total is larger than the best_so_far

Four techniques to abandon early

1. Early Abandoning of LB_Keogh

2. Early Abandoning of DTW

3. Earlier Early Abandoning of DTW using LB_Keogh

4. Reordering Early Abandoning
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Early Abandoning of LB_Keogh
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U, L are upper and lower envelopes of Q

C
U

LQ

Abandon the computation, when the 
accumulated error is larger than best_so_far



Early Abandoning of DTW
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Earlier Early Abandoning of DTW
using LB_Keogh
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Reordering Early Abandoning
• We don’t have to compute LB from left to right.

• Order points by expected contribution.
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- Order by the absolute height of the query point.

1 2 3 4 5 6 7 8 9
7 3 1 2 6

8 4 5 9

Idea



Summary of the techniques

Group-2 Techniques
• Just-in-time Z-normalizations

• Reordering Early Abandoning

• Reversing LB_Koegh

• Cascading Lower Bounds

92

Group-1 Techniques
– Early Abandoning of LB_Keogh

– Early Abandoning of DTW

– Earlier Early Abandoning of 
DTW using LB_Keogh

UCR Suite
Code and data is available at:

www.cs.ucr.edu/~eamonn/UCRsuite.html

Thanawin Rakthanmanon, Bilson J. L. Campana, Abdullah Mueen, Gustavo E. A. P. A. Batista, M. Brandon Westover, Qiang Zhu, Jesin Zakaria, 
Eamonn J. Keogh: Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270



Experimental Result: Random Walk
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Million

(Seconds)

Billion 

(Minutes)

Trillion 

(Hours)

DTW-Naive 75.21 1,252.2 20,869

Group-1 2.447 38.14 472.80

Group-1 and 2 0.159 1.83 34.09

• Random Walk: Varying size of the data, |Q| = 128

Extrapolated

• Experiments performed on a commodity machine
• Disk is accessed sequentially as the algorithm is 

invariant to data order
• The computation is performed while the next disk 

block is read



Experimental Result: Random Walk

• Random Walk: Varying size of the query, n = 20 million
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Naïve DTW

100

1000

10000

seconds

Group-1 Techniques

For query lengths of 4,096 
(rightmost part of this graph) 

The times are:

Naïve DTW  24,286

Group-1 5,078

Group-1 and 2 567

Query Length

Group 1 and 2

4 5 6 7 8 9 10 11 12
Power of two



Experimental Result: Random Walk

• Random Walk: Varying size of the band
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Experimental Result: ECG

• Data: One year of Electrocardiograms 8.5 billion data points.

• Query: Idealized Premature Ventricular Contraction (PVC) of 
length 421 (w=21=5%).
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Group-1 Group 1 & 2

ECG 49.2 hours 18.0 minutes

PVC (aka. skipped beat)



Chromosome 2: BP 5709500:5782000

Human

Chimp

Gorilla

Orangutan

Gibbon

Rhesus 

macaque

Catarrhines

Hominidae

Homininae

Hominini

Hominoidea

Experimental Result: DNA
• Query: Human Chromosome 2 of length 72,500 bps

• Data: Chimp Genome 2.9 billion bps

• Time: UCR Suite 14.6 hours
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What can be made fast?

• One-to-One comparison
• Exact Implementation and Constraints
• Efficient Approximation
• Exploiting Sparsity

• One-to-Many comparisons
• Nearest Neighbor Search

• In subsequences of a long time series
• Density Estimation

• In clustering 
• Averaging Under Warping

• In classification

• Many-to-Many comparisons
• All-pair Distance Calculations
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Density based clustering

• Density Peaks (DP)* Algorithm
• Find the densities of every point to pick cluster centers

• Connect every point to the nearest higher density point

99*Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of density peaks. Science, 344(6191), 1492-1496.



Range Search/Density Estimation

• Density is estimated by the number of points within 
a radius/threshold t

100

all sequences Ci in database1.
2.

for

3.
LB_dist = lower_bound_distance (Ci, Q)

4.

if LB_dist < 

5.

true_dist = DTW(Ci, Q)
6.

if
7.
8.
9.

endif
10.

endif
11.  

endfor

Algorithm Bounding_Range_Search(Q,t) 

1.
2.

for

3.
4.

if LB_dist < t

5.
6.

true_dist < t
7.
8.
9.

endif10.
11.  

Algorithm

if UB_dist < t then output Ci
else 

output Ci

12.

UB_dist = upper_bound_distance (Ci, Q)

13.

Try to use an 
upper bound to 
identify a point 
within the range

Nurjahan Begum, Liudmila Ulanova, Jun Wang, Eamonn J. Keogh: Accelerating Dynamic Time Warping Clustering with a Novel 
Admissible Pruning Strategy. KDD 2015: 49-58



Density Connectedness

• Distance between a pair of points is an upper 
bound of the NN distance from both of the points
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1. best_so_far =min(upper_bound_NN_distance(D,Q)
2. for
3. LB_dist = lower_bound_distance(
4. if LB_dist < best_so_far
5. true_dist = DTW(
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match = i;
9. endif
10. endif
11.  endfor

Algorithm

1. best_so_far
2. for all sequences in D
3.
4. if LB_dist < best_so_far
5. C i, Q);C i, Q);
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match = i;
9. endif
10. endif
11.  endfor

Algorithm Bounding_Scan(D,Q) 

C i, Q);C i, Q);

Try to use an 
upper bound to the 
NN distance as 
the best_so_far

Nurjahan Begum, Liudmila Ulanova, Jun Wang, Eamonn J. Keogh: Accelerating Dynamic Time Warping Clustering with a Novel 
Admissible Pruning Strategy. KDD 2015: 49-58

D

Q



Upper bounding
• Euclidean distance is a trivial upper bound

• DTW distance in a band w is an upper bound for 
DTW distance in band w+1
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Speedup by upper bounds
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Nurjahan Begum, Liudmila Ulanova, Jun Wang, Eamonn J. Keogh: Accelerating Dynamic Time Warping Clustering with a Novel 
Admissible Pruning Strategy. KDD 2015: 49-58



What can be made fast?

• One-to-One comparison
• Exact Implementation and Constraints
• Efficient Approximation
• Exploiting Sparsity

• One-to-Many comparisons
• Nearest Neighbor Search

• In a database of independent time series
• In subsequences of a long time series

• Density Estimation
• In clustering 

• Averaging Under Warping
• In classification

• Many-to-Many comparisons
• All-pair Distance Calculations
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Data Reduction for 1NN 
Classification
• The training set is reduced to a smaller set keeping 

a representative set of labeled instances

• Smaller training set entails performance gain

• Smaller training set may gain accuracy if noisy 
instances are filtered effectively

• Reduction methods
• Random Selection

• Rank the instances and take top-K

• Cluster instances based on proximity and take 
representative from each cluster
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Many clustering algorithms require finding a centroid of 
two or more instances

Compute 
average

The issue is then: 

How to average time series consistently with DTW?

300

François Petitjean, Germain Forestier, Geoffrey I. Webb, Ann E. Nicholson, Yanping Chen, Eamonn J. Keogh: Dynamic Time Warping 
Averaging of Time Series Allows Faster and More Accurate Classification. ICDM 2014: 470-479

Trace dataset
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Mathematically, the mean ҧ𝑜 of a set of objects 𝑂
embedded in a space induced by a distance 𝑑 is:
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argmin
ത𝑜
෍

𝑜∈𝑂

𝑑2 ҧ𝑜, 𝑜

The mean of a set minimizes the sum of the squared distances 

If 𝑑 is the Euclidean distance

The arithmetic mean 
solves the problem exactly

ҧ𝑜 =
1

𝑁
෍

𝑜∈𝑂

𝑜

Arithmetic 
mean



To solve the optimization problem for DTW distance, 
we need to perform simultaneous alignment of many 
time series.
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But, finding the optimal multiple alignment:
1. Is NP-complete [a] 

2. Requires 𝑶 𝑳𝑵 operations
• 𝐿 is the length of the sequences (≈ 100)
• 𝑁 is the number of sequences (≈ 1,000)

⇒ Efficient solutions will be heuristic
• Pairwise Averaging
• DTW Barycenter Averaging (DBA)

[a] F. Petitjean, A. Ketterlin and P. Gançarski, “A global averaging method for dynamic time warping, with applications to clustering,” Pattern 
Recognition, vol. 44, no. 3, pp. 678–693, 2011.



Pairwise averaging for DTW

109V. Niennattrakul and C. A. Ratanamahatana, “On Clustering Multimedia Time Series Data Using K-Means and Dynamic Time 
Warping,” IEEE International Conference on Multimedia and Ubiquitous Engineering, pp.733-738, 2007.

0 5 10 15 20 25

• Average each alignment between the 
two time series

• Commonly increases the length
• Chaining can produce average over a set
• The operation is not associative, the 

average produced depends on the order

X2

X1

X3

X4

Average

Average

X1,2

X3,4

Average X1-4

Average



DTW Barycenter Averaging (DBA)

Algorithm DBA(D,av)

1 Iterate until convergence

2 for each sequence si in D

3 Ai = GetAlignment(DTW(si , av))

4 for each observation j in av

5 av[j] = mean([A1[j] A2[j] A3[j] …. An[j])
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s1

s2
av

s1

s2

• Does not increase length
• Does not depend on the 

order of the points
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The minimum error-rate is 

0.092, with 19 pairs of objects

The full dataset error-rate is 

0.14, with 100 pairs of objects

Items per class in reduced training set

Experimental Evaluation 
on Insect Data

111Code Available : http://www.francois-petitjean.com/Research/ICDM2014-DTW

2 average-based techniques
1. K-means
2. AHC
… both using DBA

4 rank-based competitors 
1. Drop 1
2. Drop 2
3. Drop 3
4. Simple Rank



What can be made fast?

• One-to-One comparison
• Exact Implementation and Constraints
• Efficient Approximation
• Exploiting Sparsity

• One-to-Many comparisons
• Nearest Neighbor Search

• In a database of independent time series
• In subsequences of a long time series

• Density Estimation
• In clustering 

• Averaging Under Warping
• In classification

• Many-to-Many comparisons
• All-pair Distance Calculations
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Speeding up DTW: many-to-many

• Several variants
• Self-join within a threshold - top-K Self-join

• Use similarity search techniques as subroutine

• Application: Motif discovery [a], Discord discovery

• A/B Join within a threshold - top-K A/B Join
• Use similarity search techniques as subroutine

• Application: Motion Stitching [b] 

• All-pair distance matrix
• Use techniques to speedup one-to-one comparisons

• Application: Hierarchical Clustering

113[b] Y. Chen, G. Chen, K. Chen and B. C. Ooi, "Efficient Processing of Warping Time Series Join of Motion Capture Data," ICDE, 2009, pp. 1048-
1059.

[a] N Chavoshi, H Hamooni, A Mueen, “DeBot: Real-Time Bot Detection via Activity Correlation” UNM Technical Report



PrunedDTW: speeding up all-pair 
distance matrix calculation
• Two types of pruning 

when calculating DTW 
matrix

• Exact method
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Lower triangle pruning

Upper triangle pruningUB = Euclidean distance         UB = DTW distance



Experiments
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Future of Similarity Search (1 of 2)

• Adapt to data domains
• Incorporate scientific knowledge in similarity measures

• Phase-locking

• Linear attenuation

• Improvise the search techniques to work with data domains
• Apply constraints in lower bounding and early abandoning 

techniques: band-limited signals, minimum lag between signals, etc.

• Scalability via distributed computation
• Preserve algorithmic improvements upon distribution. Do 

not settle with larger pool of workers, when smaller pool is 
enough
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Future of Similarity Search (2 of 2)

• Streaming Analytics
• Keep pace with the data rate: worst case is the average 

case

• Reduce memory footprint and achieve interactivity

• Predictive Analytics
• Similarity based predictions

• Minimize lag before prediction
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Conclusion

• Time series similarity search is no longer a slow 
operation to build data mining algorithms on

• Lockstep and Elastic measures both have 
applications in various domains. Their usages are 
limited only by our imagination.
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