Similarity Search on Time Series Data: Past, Present and Future #### Abdullah Mueen Assistant Professor of Computer Science University of New Mexico mueen@unm.edu Download slides while waiting: ## Acknowledgements The following people helped with advice slidea or images: Amanda Minnich, Sindhuja Sivakumar, Diego Silva, François Petitjean, Gustavo Batista, Michail Vlachos, George Kollios, Dimitrios Gunopulos, Eamonn Keogh (If I forgot anyone, apologies) - I also acknowledge NSF CCF # 1527127. Any error or opinion is solely my responsibility - My GOAL: Present a survey of literature on similarity search on time series data - There will be a Q/A segment after every hour #### What are Time Series? 1 of 2 A time series is a collection of observations made sequentially in time. More than most types of data, time series lend themselves to *visual* inspection and intuitions... For example, looking at the numbers in this green vector tells us nothing. But after *plotting* the data, we can recognize a heartbeat, and possibly even diagnose this person's disease. This tutorial will leverage the visual intuitiveness of time series. #### What are Time Series? 2 of 2 As an aside... (not the main point for today) Many types of data that are not *true* time series can be fruitfully transformed into time series, including DNA, speech, textures, core samples, ASCII text, historical handwriting, novels and even *shapes*. ## Similarity Measures - A similarity measure compares two time series and produces a number representing their similarity - A distance measure is an inverted similarity measure #### Lockstep Measures - Euclidean Distance - Correlation Coefficient - Cross-correlation #### Elastic Measures - Dynamic Time Warping - Edit Distance - Longest Common Subsequence ## Similarity Search - A query Q is given of length m - n independent candidate time series C₁, C₂, ..., C_n - Nearest Neighbor query - Find K nearest neighbor of Q under a distance measure d - Range Query - Find all time series C where $d(Q, C) \le \epsilon$ - Density Estimation - Count the number of time series C where $d(Q,C) \leq \epsilon$ ## Why Similarity Search? - Most data mining algorithms (e.g. clustering, classification, outlier detection, etc.) use similarity measures and similarity search as subroutines - Interpretable mining of heterogeneous data objects is possible through similarity search - Great way to embed scientific knowledge in mining algorithms by modifying and adapting similarity measures # Top-level Outline - Similarity Measures - Similarity Search - Lock-step search (e.g. Correlation Search) - Elastic search (e.g. DTW search) #### Euclidean Distance Metric Given two time series $$\mathbf{x} = \mathbf{x}_1 ... \mathbf{x}_n$$ and $$\mathbf{y} = \mathbf{y}_1 ... \mathbf{y}_n$$ their z-Normalized Euclidean distance is defined as: $$\widehat{x}_i = \frac{x_i - \mu_x}{\sigma_x}$$ $$\widehat{x_i} = \frac{x_i - \mu_x}{\sigma_x} \qquad \widehat{y_i} = \frac{y_i - \mu_y}{\sigma_y}$$ $$d(x,y) = \sqrt{\sum_{i=1}^{n} (\widehat{x}_i - \widehat{y}_i)^2}$$ #### Pearson's Correlation Coefficient - Given two time series x and y of length m. - Correlation Coefficient: $$corr(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{m} x_i y_i - m \mu_x \mu_y}{m \sigma_x \sigma_y}$$ • Where $$\mu_x = \frac{\sum_{i=1}^m x_i}{m}$$ and $\sigma_x^2 = \frac{\sum_{i=1}^m x_i^2}{m} - \mu_x^2$ Sufficient Statistics: $$\sum_{i=1}^{m} x_i y_i \quad \sum_{i=1}^{m} x_i \quad \sum_{i=1}^{m} y_i \quad \sum_{i=1}^{m} x_i^2 \quad \sum_{i=1}^{m} y_i^2$$ One linear scan # Relationship with Euclidean Distance $$d(\widehat{\mathbf{x}},\widehat{\mathbf{y}}) = \sqrt{2n(1-corr(\mathbf{x},\mathbf{y}))}$$ $$\hat{x}_i = \frac{x_i - \mu_x}{\sigma_x}$$ and $\hat{y}_i = \frac{y_i - \mu_y}{\sigma_y}$ $$d^2(\widehat{\boldsymbol{x}},\widehat{\boldsymbol{y}}) = \sum_{i=1}^n (\widehat{x}_i - \widehat{y}_i)^2$$ - Correlation coefficient does not obey triangular inequality - Maximizing correlation coefficient can be achieved by minimizing normalized Euclidean distance and vice versa # The Importance of z-Normalization and correlation 1 of 2 Essentially all datasets must have *every* subsequence z-normalized. There are a handful of occasions where it does not make sense to z-normalize, but in those cases, similarity search does not make sense either. In this example, we begin by extracting heartbeats from two unrelated people. Even without normalization, it happens that both sets have almost the same mean and standard deviation. Given that, do we need to bother to normalize them? (next slide) # The Importance of z-Normalization and correlation 2 of 2 Surprisingly z-normalizing can be a computational bottleneck, but later we will show you how to fix that. 150 300 Without normalization, the results are very poor, some blue heartbeats are closer to red heartbeats than there are to another blue beat. With normalization, the results are perfect. In this example, we extracted heartbeats from two different time series, and clustered them with and without normalization. ## What is Dynamic Time Warping? • DTW is an algorithm for measuring similarity between two time series which may vary (i.e. warp) in timing. - This invariance to warping is critical in many domains, for many tasks. - Without warping invariance, we are often condemned to very poor results. # How is DTW Calculated? I We create a matrix the size of |Q| by |C|, then fill it in with the distance between every possible pair of points in our two time series. # How is DTW Calculated? II Every possible warping between two time series, is a path through the matrix. We want the *best* one... This recursive function gives us the minimum cost path $$\gamma(i,j) = d(q_i,c_i) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$$ #### Let us visualize the cumulative matrix on a real world problem I This example shows two one-week periods from an electrical power demand time series. Note that although they both describe 4-day work weeks, the blue sequence had Monday as a holiday, and the red sequence had Wednesday as a holiday. #### DTW is a Distance Measure, not a Metric 1 of 2 # Yes for DTW D(A,B) = D(B,A) D(A,A) = 0 D(A,B) = 0 IIf A=B Requirements to be a metric Normally we prefer metrics over measures for two reasons: $D(A,B) \leq D(A,C) + D(B,C)$ • Non-Metrics can sometimes give pathological solutions when clustering or classifying data etc. No for DTW Almost all speed-up "tricks" for high dimensional data exploit the Triangular Inequality. 18 Triangular Inequality ### Understanding w, the Warping Constraint The value of w is the maximum amount the warping path is allow to deviate from the diagonal. It is normally expressed as the ratio w = r/n (or as a percentage) We need to understand w because: - The most useful speedup tricks all exploit w. - The value chosen for w can greatly affect accuracy. #### Generalizing to Multi-Dimensional Data 1 of 3 It is increasingly common to encounter Multi-Dimensional (MD) time series data. Here we measure the X-axis acceleration of both the left and right hand. Given these pair of 2D objects... There are two obvious ways to compute the MD DTW score. **Independent**: Just compute the DTW score for each dimension independently, and sum up each score. $$DTW_{I}(Q,C) = DTW(Q_{x},C_{x}) + DTW(Q_{y},C_{y}) = 2.4$$ **Dependent**: Create a single distance matrix that reflect the distance between each corresponding pair of time series, then find the *single* warping path and distance as per normal. $$DTW_D(Q,C) = DTW(\{Q_x,Q_y\},\{C_x,C_y\}) = 3.2$$ #### Generalizing to Multi-Dimensional Data 2 of 3 So, of DTW_I and DTW_D which is best? Lets think of it this way: The thing we want classify is an physical process, the utterance of the word "bicycle", the beat of a heart, an autograph, a tennis shot etc. We cannot see the actual event, just 2 or more time series it created. - •If the physical process affects the time series simultaneously, then DTW_D will probably be best. We call this the *tightly coupled* case. - •If the physical process affects the time series with varying lags, then DTW_I will probably be best. We call this the *loosely coupled* case. **Example**: Suppose we measure the directionless acceleration of the left and right wrists of a tennis player. The "physical process" is a *backhand stoke*. If a two-handed backstroke, the two time series are tightly coupled. If a one-handed backhand, the two hands will be very loosely coupled. Jo-Wilfried Tsonga #### Generalizing to Multi-Dimensional Data 3 of 3 We can demonstrate the claim in the last slide with experiments. Let us begin with a dataset that we are 100% sure is tightly coupled, then slowly add some random time lags into the data... We know that the **handwriting dataset** is *tightly coupled*. We find that DTW_D has an error-rate of about 0.42, much better than that DTW_I has an error-rate of about 0.55. However, as we uncouple the perfect synchronization by adding some random lag, DTW_D quickly gets worse, while that DTW_I is barely effected. #### Longest Common Subsequence Measures (Allowing for Gaps in Sequences) M. Vlachos, G. Kollios and D. Gunopulos, "Discovering similar multidimensional trajectories," *ICDE 2002*, pp. 673-684. #### Longest Common Subsequence (LCSS) LCSS is more resilient to noise than DTW. #### Disadvantages of DTW: - A. All points are matched - B. Outliers can distort distance - C. One-to-many mapping #### Advantages of LCSS: - A. Outlying values not matched - B. Distance/Similarity distorted less - C. Constraints in time & space #### Longest Common Subsequence Similar dynamic programming solution as DTW, but now we measure similarity not distance. $$LCSS[i,j] = \begin{cases} 0 & if \ i = 0 \\ 0 & if \ j = 0 \end{cases}$$ $$1 + LCSS[i-1,j-1] & if \ |a_{i,k} - b_{j,k}| < \epsilon$$ $$\max(LCSS[i-1,j], LCSS[i,j-1]) & \text{otherwise} \end{cases}$$ Can also be expressed as distance $$D_{LCSS}(A,B) = 1 - \frac{LCSS_{\delta,\epsilon}(A,B)}{\min(n,m) \text{ or } \max(n,m)}$$ # Various extensions of lock-step measures - Preprocessing - Alignment - Postprocessing Let us assume that a sin wave should match with another sin wave without considering phase, amplitude, frequency, noise, etc. - 1. Michail Vlachos, D. Gunopulos, and Gautam Das. 2004. Rotation invariant distance measures for trajectories. KDD '04. 707-712. - 2. Dragomir Yankov, Eamonn J. Keogh, Jose Medina, Bill Yuanchi Chiu, Victor B. Zordan: Detecting time series motifs under uniform scaling. KDD 2007: 844-853 - 3. Lexiang Ye, Eamonn J. Keogh: Time series shapelets: a new primitive for data mining. KDD 2009: 947-956 - 4. Gustavo E. A. P. A. Batista, Xiaoyue Wang, Eamonn J. Keogh: A Complexity-Invariant Distance Measure for Time Series. SDM 2011: 699-710 #### **Preprocessing** #### Alignment #### **Postprocessing** ## Other Similarity Measures - Move-Split-Merge (MSM) to achieve both dynamic alignment and metric properties - MUNICH, PROUD, DUST: Similarity measure for uncertain time series - 1. Alexandra Stefan, Vassilis Athitsos, Gautam Das: The Move-Split-Merge Metric for Time Series. IEEE Trans. Knowl. Data Eng. 25(6): 1425-1438 (2013) - 2. Smruti R. Sarangi and Karin Murthy. 2010. DUST: a generalized notion of similarity between uncertain time series. KDD '10, 383-392. - 3. M. Yeh, K. Wu, P. Yu, and M. Chen. PROUD: a probabilistic approach to processing similarity queries over uncertain data streams. In EDBT, pages 684–695. ACM, 2009. - 4. J. Aßfalg, H.-P. Kriegel, P. Kröger, and M. Renz. Probabilistic similarity search for uncertain time series. In SSDBM, pages 435–443, 2009. We will consider Euclidean distance and Dynamic Time Warping distance as representatives ## Top-level Outline - Similarity Measures - Similarity Search - Lock-step search (e.g. Correlation Search) - Elastic search (e.g. DTW search) #### Generic Search Computational cost: O(m n) #### **GEMINI Framework*** Solution: Quick-and-dirty filter: - extract k features - map into a point in k-d feature space - organize points with off-the-shelf spatial access method ('SAM') - retrieve the answer using a NN query - discard false alarms C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series databases. In Proceedings 1994 ACM SIGMOD Conference, Mineapolis, MN, USA, 1994. ^{*} R. Agrawal, C.Faloutsos, and A.Swami. Efficient similarity search in sequence databases. In FODO Conference, volume 730, 1993. #### Generic Search Computational cost: O(m log n) ## GEMINI: Key Requirement • GEMINI works when: $$D_{feature}(F(x), F(y)) \le D(x, y)$$ to ensure zero false negatives - $D_{feature}$ is a metric to have working Spatial Indexes - $ullet D_{feature}$ is significantly inexpensive compared to D to gain efficiency # Exact (Euclidean) distance D(Q,S) Lower bounding distance $D_{IB}(Q,S)$ D(Q,S) $D_{LB}(Q',S')$ D(Q,S) $D_{LB}(Q',S')$ $\equiv \sqrt{\sum_{i=1}^{n} (q_i - s_i)^2}$ $\equiv \sqrt{\sum_{i=1}^{M} (q_i' - s_i')^2}$ Lower bounding means that for all Q and S, we have... $$D_{IB}(Q',S') \leq D(Q,S)$$ # Lower Bound 1: DFT Coefficients $$X_f = \frac{1}{\sqrt{n}} \sum_{t=0}^{n-1} x_t e^{-j\frac{2\pi ft}{n}}$$ $j = \sqrt{-1}$ $$x_t = \frac{1}{\sqrt{n}} \sum_{f=0}^{n-1} X_f e^{+j\frac{2\pi ft}{n}}$$ Property 1: DFT is an orthonormal transform, $$\sum x_t^2 = \sum |X_f|^2 \rightarrow \sum (x_t - y_t)^2 = \sum |X_f - Y_f|^2$$ Property 2: DFT of a real sequence is symmetric in magnitude. Thus we need only half of the transform. # Lower Bound 1: DFT based Lower Bound $$\sum_{t=0}^{n} (x_t - y_t)^2 = 2 \sum_{t=0}^{n/2} |X_f - Y_f|^2 \ge 2 \sum_{t=0}^{n/2} |X_f - Y_f|^2$$ If we take the difference between any subset of *k* coefficients, we get a lower bound Real time series contains most of the energy in few frequencies, commonly in the first few. # Lower Bound 1: Example $$n = 128$$ #### Raw Data 0.4995 0.5264 0.5523 0.5761 0.5973 0.6153 0.6301 0.6420 0.6515 0.6596 0.6672 0.6751 0.6843 0.6954 0.7086 0.7240 0.7412 0.7595 0.7780 0.7956 0.8115 0.8247 0.8345 0.8407 0.8431 0.8423 0.8387 The graphic shows a time series with 128 points. The raw data used to produce the graphic is also reproduced as a column of numbers (just the first 30 or so points are shown). # Lower Bound 1: Example | Raw | Fourier | |--------|---------------------| | Data | Coefficient | | 0.4995 | 1.5698 | | 0.5264 | <u>1.0485</u> | | 0.5523 | 0.7160 | | 0.5761 | 0.8406 | | 0.5973 | 0.3709 | | 0.6153 | 0.4670 | | 0.6301 | $\overline{0.2667}$ | | 0.6420 | 0.1928 | | 0.6515 | $\overline{0.1635}$ | | 0.6596 | 0.1602 | | 0.6672 | $\overline{0.0992}$ | | 0.6751 | 0.1282 | | 0.6843 | $\overline{0.1438}$ | | 0.6954 | <u>0.1416</u> | | 0.7086 | $\overline{0.1400}$ | | 0.7240 | 0.1412 | | 0.7412 | 0.1530 | | 0.7595 | <u>0.0795</u> | | 0.7780 | 0.1013 | | 0.7956 | <u>0.1150</u> | | 0.8115 | 0.1801 | | 0.8247 | <u>0.1082</u> | | 0.8345 | 0.0812 | | 0.8407 | <u>0.0347</u> | | 0.8431 | 0.0052 | | 0.8423 | <u>0.0017</u> | | 0.8387 | 0.0002 | | | ••• | We can decompose the data into 64 pure sine waves using the Discrete Fourier Transform (just the first few sine waves are shown). The Fourier Coefficients are reproduced as a column of numbers (just the first 30 or so coefficients are shown). We have discarded of the data. | RawFourierFourierDataCoefficientsCoefficients 0.4995 1.5698 1.5698 0.5264 1.0485 1.0485 0.5523 0.7160 0.7160 $n = 128$ 0.5761 0.8406 0.8406 0.8406 0.5973 0.3709 0.3709 $k = 8$ 0.6153 0.4670 0.4670 0.6301 0.2667 0.2667 0.6420 0.1928 0.1928 0.6515 0.1635 0.1602 0.6672 0.0992 0.6751 0.1282 0.6673 0.1400 0.1416 Only k coefficients can provide a good approximation of the data and produce an inexpensive lower bound. 0.7240 0.1412 0.1530 good approximation of the data and produce an inexpensive lower bound. 0.7956 0.1150 lower bound. 0.8115 0.1801 0.8247 0.00347 0.8431 0.0052 0.0017 0.8423 0.0017 0.0002 | | | Truncated | | |---|--|--|------------------|---| | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Raw | Fourier | Fourier | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Data | Coefficients | Coefficients | | | 0.8431 0.0052 0.8423 0.0017 | 0.4995
0.5264
0.5523
0.5761
0.5973
0.6153
0.6301
0.6420
0.6515
0.6596
0.6672
0.6751
0.6843
0.6954
0.7086
0.7240
0.7412
0.7595
0.7780
0.7956
0.8115
0.8247
0.8345 | 1.5698
1.0485
0.7160
0.8406
0.3709
0.4670
0.2667
0.1928
0.1635
0.1602
0.0992
0.1282
0.1438
0.1416
0.1400
0.1412
0.1530
0.0795
0.1013
0.1150
0.1801
0.1082
0.0812 | 1.5698 | k=8 ents can provide a nation of the data | | | 0.8431
0.8423 | 0.0052
0.0017 | | | # Lower Bound 2: Symbolic Aggregate ApproXimation (SAX) ### Lower Bound 2: How to obtain SAX First convert the time series to PAA representation, then convert the PAA to symbols It take linear time baabccbc # Visual Comparison A raw time series of length 128 is transformed into the word "ffffffeeeddcbaabceedcbaaaaacddee." We can use more symbols to represent the time series since each symbol requires fewer bits than real-numbers (float, double) # Lower Bound 2: SAX provides a lower bound $$\hat{C}$$ = baabccbc \hat{Q} = babcacca $$MINDIST(\hat{Q}, \hat{C}) = \sqrt{\frac{n}{w}} \sqrt{\sum_{i=1}^{w} \left(dist(\hat{q}_i, \hat{c}_i)\right)^2}$$ dist() can be implemented using a table lookup. ## GEMINI: Other Assumptions - The database consists of fixed length time series and the query length matches the length of the database - Not true for most real-application (e.g. seismology, physiology) - The method is exact - Does not sell accuracy for speed - The time series in the database are independent - Not true for subsequence search ### Generic Prefix-based Search Computational cost: O(m log n) # Prefix distance is not a lower bound of the original distance - 1. Two time series x and y of length m - 2. Prefix distance is a trivial lower bound of un-normalized distance - 3. Normalized Euclidean distance $d(\hat{x}, \hat{y})$, can increase or decrease if we extend \hat{x} and \hat{y} by appending the next two numbers. ## Lower-bound upon extension 1 of 3 # Area between blue and red is the distance between the signals If infinity is appended to both the signals, they will have zero area/distance. ### Lower-bound upon extension 2 of 3 $$\bullet d_{LB}^2(\widehat{\boldsymbol{x}}_{+1}, \widehat{\boldsymbol{y}}_{+1}) = \frac{1}{\sigma_m^2} d_m^2(\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}}) < d_m^2(\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}})$$ Variances of $$\widehat{x}_{+1}$$ and \widehat{y}_{+1} , $\sigma_m^2 = \frac{m}{m+1} + \frac{m}{(m+1)^2} z^2$ $z = \max_{x \in \mathcal{X}} \widehat{\mathbf{max}}(x)$ and $z = \max_{x \in \mathcal{X}} \widehat{\mathbf{max}}(x)$ and $z = \max_{x \in \mathcal{X}} \widehat{\mathbf{max}}(x)$ # Lower-bound upon extension 3 of 3 Blue: Distances of random signals of length 255 Yellow: Distances of the signals when they are extended by one random sample Red: The upper and lower bounds before observing the extensions # ∈ - Approximate Correlation(1) - Result: given ϵ , compute k - Smooth Signal $\Rightarrow k$ is small for small ϵ Reduce scanning cost from O(m) to O(k) # Example: ϵ =0.1 Abdullah Mueen, Suman Nath, Jie Liu: Fast approximate correlation for massive time-series data. SIGMOD Conference 2010: 171-182 ## GEMINI: Other Assumptions - The database consists of fixed length time series and the query length matches the length of the database - Not true for most real-application (e.g. seismology, physiology) - The method is exact - Does not sell accuracy for speed - The time series in the database are independent - Not true for subsequence search # Subsequence Similarity Search - Subsequences have large overlaps that GEMINI does not exploit - Normalization makes it difficult to exploit the overlaps - Two techniques to exploit overlaps - just-in-time normalization with constant overhead per comparison - MASS: Mueen's Algorithm for Similarity Search using convolution #### Just-in-time Normalization - In one pass, calculate cumulative sums of over x and x^2 and store $C = \sum x$ $C^2 = \sum x^2$ - Subtract two cumulative sums to obtain the sum over a window $S_i = C_{i+w} C_i$ $S_i^2 = C_{i+w}^2 C_i^2$ - Use the sums to calculate the means and standard deviations of all windows in linear time $$\mu_i = \frac{S_i}{w}$$ $$\sigma_i = \sqrt{\frac{S_i^2}{w} - \left(\frac{S_i}{w}\right)^2}$$ Dynamically normalize observations when calculating distance and possibly abandon early $$cost = \left(\frac{x_{ij} - \mu_{xi}}{\sigma_{xi}} - \frac{q_i - \mu_{qi}}{\sigma_{qi}}\right)^2$$ # Early Abandoning Given two time series $$\mathbf{x} = \mathbf{x}_1 ... \mathbf{x}_n$$ and $$\mathbf{y} = \mathbf{y}_1 ... \mathbf{y}_n$$ their z-Normalized Euclidean distance is defined as: $$\widehat{x_i} = \frac{x_i - \mu_x}{\sigma_x}$$ $$\widehat{x_i} = \frac{x_i - \mu_x}{\sigma_x} \qquad \widehat{y_i} = \frac{y_i - \mu_y}{\sigma_y}$$ $$d(x,y) = \sqrt{\sum_{i=1}^{n} (\widehat{x}_i - \widehat{y}_i)^2}$$ Early abandoning reduces number of operations when minimizing # Mueen's Algorithm for Similarity Search (MASS) (1 of 4) - Convolution based method - $O(n \log n)$ cost to obtain all the sliding dot products - On-the-fly normalization - Use the dot products to calculate normalized distances in O(n) cost Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, Eamonn Keogh (2016). Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View that Includes Motifs, Discords and Shapelets. IEEE ICDM 2016. # Mueen's Algorithm for Similarity Search (MASS) (2 of 4) - Double the time series by appending zeros - Reverse the normalized query and append zeros to match length - Use FFT based convolution technique - ifft(fft(x).fft(y)) # Mueen's Algorithm for Similarity Search (MASS) (3 of 4) • Since query is normalized, we reform the distance function by applying $\sum y = 0$, $\sum y^2 = n$ • $$d^{2}(x,y) = \sum \left(\frac{(x-\mu_{x})}{\sigma_{x}} - y\right)^{2}$$ $$= \frac{\sum x^{2} - 2\sum x\mu_{x} + n\mu_{x}^{2}}{\sigma_{x}^{2}} - 2\frac{\sum xy}{\sigma_{x}} + n$$ The distance can be calculated by using the sliding dot products and cumulative sums # Mueen's Algorithm for Similarity Search (MASS) (4 of 4) - Produces a "distance profile" of the query to the subsequences of the time series. Every distance is reported, nothing is abandoned - Can be used to answer K-NN queries, range queries, and density estimation all at the same time - Data and query independent execution. - Can be further optimized when multiple queries are issued # Top-level Outline - Similarity Measures - Similarity Search - Lock-step search (e.g. Correlation Search) - Elastic search (e.g. DTW search) ### Similarity Search under DTW - The general conception: DTW is slow and we have a never-ending need for speed - Better performance in knowledge extraction - Better scalability to process BigData - Better interactivity in human driven data analysis ### What can be made fast? - One-to-One comparison - Exact Implementation and Constraints - Efficient Approximation - Exploiting Sparsity - One-to-Many comparisons - Nearest Neighbor Search - In subsequences of a long time series - Density Estimation - In clustering - Averaging Under Warping - In classification - Many-to-Many comparisons - All-pair Distance Calculations # Speeding up DTW: one-to-one #### One-to-One comparison - Exact Implementation - Efficient Constraints - Exploiting Hardware - Efficient Approximation - Exploiting Sparsity ## Simplest Exact Implementation Input: x and y are time series of length n and m Output: DTW distance d between x and y ``` Output: DTW distance a between x and y D(1:n+1,1:m+1) = \inf; O(n^2) time D(1,1) = 0; for i = 2: n+1 %for each row O(n^2) space for j = 2: m+1 %for each column cost = (x(i-1)-y(j-1))^2; D(i,j) = cost + min([D(i-1,j), D(i,j-1), D(i-1,j-1)]); d = sqrt(D(n+1,m+1)); ``` # Simplest Implementation (Constrained) 10 15 20 ``` O(nw) time D(1:n+1,1:m+1) = inf; D(1,1) = 0; O(n^2) space w = max(w, abs(n-m)); for i = 2 : n+1 for j = max(2, i-w) : min(m+1, i+w) cost = (x(i-1)-y(j-1))^2; D(i,j) = cost + min([D(i-1,j), D(i,j-1), D(i-1,j-1)]); d = sqrt(D(n+1,m+1));6767 ``` 25 30 ### Memoization ``` D(2,1:m+1) = inf; O(n^2) time D(1,1) = 0; O(n) space for i = 2: n+1 for j = 2: m+1 cost = (x(i-1)-y(j-1))^2; D(c,j) = cost + min([D(p,j), D(c,j-1), D(p,j-1)]); swap(c,p); O(n) space definition O(n) space sp ``` #### **Previous Row** | ∞ | 1 | 2 | 2 | 1 | 2 | 3 | 4 | 5 | 3 | 2 | 1 | |---|---|---|-----|----------|------------|------------|------------|------------|------------|----------|---| | 8 | 1 | 3 | 3 _ | → | → - | → — | → - | → - | + — | → | | ### Hardware Acceleration - Single Instruction Multiple Data (SIMD) architecture - Cells on a diagonal are computed in parallel - Values of a diagonal depend on the previous two diagonals ## PAA based approximation Piecewise Aggregate Approximation # Approximation by Lengthencoding To exploit sparsity, encode lengths of the runs of zeros # Exploiting Sparsity (1) ## Exploiting Sparsity (2) ## Exploiting Sparsity (2) **Correct Alignment** Sub-Linear change → Exact Distance Missing Alignment No change Lower bound Extra Alignment → Upper bound ## Exploiting Sparsity (3) # Sparsity Factor of s means $\frac{1}{s}$ % of the time series is filled with non-zeros. #### What can be made fast? - One-to-One comparison - Exact Implementation and Constraints - Efficient Approximation - Exploiting Sparsity - One-to-Many comparisons - Nearest Neighbor Search - In subsequences of a long time series - Density Estimation - In clustering - Averaging Under Warping - In classification - Many-to-Many comparisons - All-pair Distance Calculations #### Nearest Subsequence Search - A Q query is given - A long time series of length n - O(n) distance calculations are performed to Find THE nearest subsequence of the given query under DTW. #### Brute Force Subsequence Search #### Computational cost: O(nm²) ``` Algorithm Sequential_Scan(Q) 1. best_so_far = infinity; 2. for all sequences in database 3. 5. true_dist = DTW(C_i,Q); 6. if true_dist < best_so_far</pre> 7. best_so_far = true_dist; index_of_best_match = i; endif 10. endfor 11. ``` ## Lower Bounding Nearest Neighbor Search We can speed up similarity search under DTW by using a lower bounding function ``` Algorithm Lower Bounding Sequential Scan(Q) best_so_far = infinity; 1. 2. for all sequences in database LB_dist = lower_bound_distance(C_i,Q); 3. if LB_dist < best_so_far</pre> 5. true_dist = DTW(C_i, Q); if true_dist < best_so_far</pre> 7. best_so_far = true_dist; index_of_best_match = i; endif 10. endif endfor 11. ``` Try to use a cheap lower bounding calculation as often as possible. Only do the expensive, full calculations when it is absolutely necessary #### Lower Bound of Kim LB_Kim - O(1) time if considered only first and last points - O(n) time for all four distances Kim, S, Park, S, & Chu, W. An index-based approach for similarity search supporting time warping in large sequence databases. ICDE 01, pp 607-614 The squared difference between the two sequence's first (A), last (D), minimum (B) and maximum points (C) is returned as the lower bound #### Lower Bound of Yi LB_Yi O(n) time Yi, B, Jagadish, H & Faloutsos, C. *Efficient retrieval of similar time sequences under time warping*. ICDE 98, pp 23-27. The sum of the squared length of white lines represent the minimum contribution of the observations above and below the yellow lines. ### Lower Bound of Keogh $$U_{i} = \max(q_{i-w} : q_{i+w})$$ $$L_{i} = \min(q_{i-w} : q_{i+w})$$ #### O(n) time ## Envelope-Based Lower Bound $$LB_Keogh(Q,C) = \sum_{i=1}^{n} \begin{cases} (q_i - U_i)^2 & \text{if } q_i > U_i \\ (q_i - L_i)^2 & \text{if } q_i < L_i \\ 0 & \text{otherwise} \end{cases}$$ # Reversing the Query/Data Role in LB_Keogh - Make LB_Keogh tighter - Much cheaper than DTW - U/L envelops on the candidates can be calculated online or pre-calculated max(LB_KeoghEQ, LB_KeoghEC) Envelop on Q Envelop on C The tightness of the lower bound for each technique is proportional to the length of lines used in the illustrations #### Cascading Lower Bounds - At least 18 lower bounds of DTW was proposed. - Use lower bounds only on the Skyline. - Use the bounds on the skyline in cascade from least expensive to most expensive - When unable to prune, use early abandoning techniques #### 99.9% of the time DTW is not calculated ### Early Abandoning Techniques Abandon accumulating errors as soon as the current total is larger than the best_so_far Four techniques to abandon early - Early Abandoning of LB_Keogh - Early Abandoning of DTW - 3. Earlier Early Abandoning of DTW using LB_Keogh - 4. Reordering Early Abandoning ## Early Abandoning of LB_Keogh Abandon the computation, when the accumulated error is larger than best_so_far U, L are upper and lower envelopes of Q ## Early Abandoning of DTW # Earlier Early Abandoning of DTW using LB_Keogh Abandon the computation, when the dtw_dist + lb_keogh is larger than best_so_far U, L are upper and lower envelopes of Q #### Reordering Early Abandoning - We don't have to compute LB from left to right. - Order points by expected contribution. - Order by the absolute height of the query point. ## Summary of the techniques #### **Group-1 Techniques** - Early Abandoning of LB_Keogh - Early Abandoning of DTW - Earlier Early Abandoning of DTW using LB_Keogh #### **Group-2 Techniques** - Just-in-time Z-normalizations - Reordering Early Abandoning - Reversing LB_Koegh - Cascading Lower Bounds #### **UCR** Suite Code and data is available at: www.cs.ucr.edu/~eamonn/UCRsuite.html #### Experimental Result: Random Walk Random Walk: Varying size of the data, |Q| = 128 | | Million | Billion | Trillion | | | |---------------|-----------|----------------|-----------------|--|--| | | (Seconds) | (Minutes) | (Hours) | | | | DTW-Naive | 75.21 | <u>1,252.2</u> | <u>20,869</u> 🛩 | | | | Group-1 | 2.447 | 38.14 | <u>472.80</u> 🗸 | | | | Group-1 and 2 | 0.159 | 1.83 | 34.09 | | | Extrapolated - Experiments performed on a commodity machine - Disk is accessed sequentially as the algorithm is invariant to data order - The computation is performed while the next disk block is read #### Experimental Result: Random Walk Random Walk: Varying size of the query, n = 20 million #### Experimental Result: Random Walk Random Walk: Varying size of the band Sakoe-Chiba Band Width (percentage of query length) #### Experimental Result: ECG - Data: One year of Electrocardiograms 8.5 billion data points. - Query: Idealized Premature Ventricular Contraction (PVC) of length 421 (w=21=5%). | | Group-1 | Group 1 & 2 | |-----|------------|--------------| | ECG | 49.2 hours | 18.0 minutes | #### Experimental Result: DNA - Query: Human Chromosome 2 of length 72,500 bps - Data: Chimp Genome 2.9 billion bps - Time: UCR Suite 14.6 hours #### What can be made fast? - One-to-One comparison - Exact Implementation and Constraints - Efficient Approximation - Exploiting Sparsity - One-to-Many comparisons - Nearest Neighbor Search - In subsequences of a long time series - Density Estimation - In clustering - Averaging Under Warping - In classification - Many-to-Many comparisons - All-pair Distance Calculations ### Density based clustering - Density Peaks (DP)* Algorithm - Find the densities of every point to pick cluster centers - Connect every point to the nearest higher density point ^{*}Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of density peaks. Science, 344(6191), 149291496. ## Range Search/Density Estimation Density is estimated by the number of points within a radius/threshold t ``` Algorithm Bounding Range Search(Q,t) for all sequences C_i in database 2. LB_dist = lower_bound_distance (C_i, Q) 3. if LB dist < t UB_dist = upper_bound_distance (C_i, Q) 4.5.6. if UB_dist < t then output C_i else 7. true_dist = DTW(C_i, Q) if true dist < t 9. output C_i 10. endif 11. endif 12. endif endfor ``` #### **Density Connectedness** Distance between a pair of points is an upper bound of the NN distance from both of the points ``` Algorithm Bounding_Scan(D,Q) best_so_far =min(upper_bound_NN_distance(D,Q) for all sequences in D 3. LB_dist = lower_bound_distance(C, Q); if LB_dist < best_so_far</pre> true_dist = DTW(C_i, Q); 6. if true_dist < best_so_far</pre> best_so_far = true_dist; Try to use an index_of_best_match = i; upper bound to the endif NN distance as endif 10. 11. endfor the best_so_far ``` ## Upper bounding - Euclidean distance is a trivial upper bound - DTW distance in a band w is an upper bound for DTW distance in band w+1 ## Speedup by upper bounds StarLightCurves dataset #### What can be made fast? - One-to-One comparison - Exact Implementation and Constraints - Efficient Approximation - Exploiting Sparsity - One-to-Many comparisons - Nearest Neighbor Search - In a database of independent time series - In subsequences of a long time series - Density Estimation - In clustering - Averaging Under Warping - In classification - Many-to-Many comparisons - All-pair Distance Calculations # Data Reduction for 1NN Classification - The training set is reduced to a smaller set keeping a representative set of labeled instances - Smaller training set entails performance gain - Smaller training set may gain accuracy if noisy instances are filtered effectively - Reduction methods - Random Selection - Rank the instances and take top-K - Cluster instances based on proximity and take representative from each cluster Many clustering algorithms require finding a centroid of two or more instances #### The issue is then: > How to average time series consistently with DTW? François Petitjean, Germain Forestier, Geoffrey I. Webb, Ann E. Nicholson, Yanping Chen, Eamonn J. Keogh: Dynamic Time Warping 106 Averaging of Time Series Allows Faster and More Accurate Classification. ICDM 2014: 470-479 ## Mathematically, the mean \bar{o} of a set of objects O embedded in a space induced by a distance d is: $$\arg\min_{\bar{o}} \sum_{o \in O} d^2(\bar{o}, o)$$ The mean of a set minimizes the sum of the squared distances If d is the Euclidean distance The *arithmetic mean* solves the problem exactly $$\bar{o} = \frac{1}{N} \sum_{o \in O} o$$ To solve the optimization problem for DTW distance, we need to perform simultaneous alignment of many time series. #### **But**, finding the optimal multiple alignment: - 1. Is **NP-complete** [a] - 2. Requires $O(L^N)$ operations - L is the length of the sequences (≈ 100) - N is the number of sequences (\approx 1,000) - ⇒ Efficient solutions will be heuristic - Pairwise Averaging - DTW Barycenter Averaging (DBA) ## Pairwise averaging for DTW - Average each alignment between the two time series - Commonly increases the length - Chaining can produce average over a set - The operation is not associative, the average produced depends on the order ## DTW Barycenter Averaging (DBA) | | Algorithm DBA(D,av) | | | | |---|----------------------------------------------|--|--|--| | 1 | Iterate until convergence | | | | | 2 | for each sequence s_i in D | | | | | 3 | $A_i = GetAlignment(DTW(s_i, av))$ | | | | | 4 | for each observation j in av | | | | | 5 | $av[j] = mean([A_1[j] A_2[j] A_3[j] A_n[j])$ | | | | - Does not increase length - Does not depend on the order of the points ## Experimental Evaluation ## on Insect Data #### 4 rank-based competitors - 1. Drop 1 - Drop 2 2. - 3. Drop 3 - Simple Rank 4. #### What can be made fast? - One-to-One comparison - Exact Implementation and Constraints - Efficient Approximation - Exploiting Sparsity - One-to-Many comparisons - Nearest Neighbor Search - In a database of independent time series - In subsequences of a long time series - Density Estimation - In clustering - Averaging Under Warping - In classification - Many-to-Many comparisons - All-pair Distance Calculations ## Speeding up DTW: many-to-many - Several variants - Self-join within a threshold top-K Self-join - Use similarity search techniques as subroutine - Application: Motif discovery [a], Discord discovery - A/B Join within a threshold top-K A/B Join - Use similarity search techniques as subroutine - Application: Motion Stitching [b] - All-pair distance matrix - Use techniques to speedup one-to-one comparisons - Application: Hierarchical Clustering # PrunedDTW: speeding up all-pair distance matrix calculation - Two types of pruning when calculating DTW matrix - Exact method Lower triangle pruning | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |---|----------|----------|----------|----------|----------|----------|----------| | 0 | 0 | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | | 1 | ∞ | ≤UB | ≤UB | ≤UB | >UB | >UB | >UB | | 2 | 8 | | ≤UB | ≤UB | >UB | | | | 3 | ∞ | | | ≤UB | | | | | | | Unn | er tr | iangl | e pr | unin | σ | ## Experiments ### Future of Similarity Search (1 of 2) - Adapt to data domains - Incorporate scientific knowledge in similarity measures - Phase-locking - Linear attenuation - Improvise the search techniques to work with data domains - Apply constraints in lower bounding and early abandoning techniques: band-limited signals, minimum lag between signals, etc. - Scalability via distributed computation - Preserve algorithmic improvements upon distribution. Do not settle with larger pool of workers, when smaller pool is enough ### Future of Similarity Search (2 of 2) - Streaming Analytics - Keep pace with the data rate: worst case is the average case - Reduce memory footprint and achieve interactivity - Predictive Analytics - Similarity based predictions - Minimize lag before prediction #### Additional References - H. Sakoe and S. Chiba, "Dynamic programming algorithm optimization for spoken word recognition," IEEE Trans. Acoust. Speech, Lang. Process., vol. 26, no. 1, pp. 43–50, 1978. - Mustafa S. Çetin, Abdullah Mueen, Vince D. Calhoun: Shapelet Ensemble for Multi-dimensional Time Series. SDM 2015: 307-315 - X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh, "Experimental comparison of representation methods and distance measures for time series data," Data Min. Knowl. Discov., vol. 26, no. 2, pp. 275–309, 2013. - D. Sart, A. Mueen, W. Najjar, V. Niennattrakul, and E. Keogh, "Accelerating Dynamic Time Warping Subsequece Search with GPUs and FPGAs. ICDM 2010," in Proceedings IEEE International Conference on Data Mining, ICDM, 2010, pp. 1001–1006. - Abdullah Mueen, Hossein Hamooni, Trilce Estrada: Time Series Join on Subsequence Correlation. ICDM 2014: 450-459 - Ira Assent, Marc Wichterich, Ralph Krieger, Hardy Kremer, and Thomas Seidl. 2009. Anticipatory DTW for efficient similarity search in time series databases. Proc. VLDB Endow. 2, 1 (August 2009), 826-837. #### Conclusion - Time series similarity search is no longer a slow operation to build data mining algorithms on - Lockstep and Elastic measures both have applications in various domains. Their usages are limited only by our imagination.