
Implementing Neural Networks on GPU Hardware

Nate Gauntt
University of New Mexico
Dept. of Computer Science

Email : negaunt@cs.unm.edu

September 20, 2010

Abstract - Modern graphics processing units
(GPUs) are cheap, ubiquitous, and increasing in
performance at a rate two to three times that of
traditional CPU growth. As GPUs evolve in func-
tion and become more programmable each genera-
tion, they are increasingly put to use in various high
throughput parallel calculations, such as solving fluid
flow equations or simulating plate tectonics. In this
paper, we discuss the recent trend in implementing
Neural Network architectures on the GPU, allowing
in some cases real time input processing, and in other
cases dramatic speedup of traditional algorithms.

Keywords: Neural Networks, GPU, parallel processing,
biological neuron, Cg, CUDA, BrookGPU

Introduction

In the early 1940’s and throughout the 50’s, partially as
a result of American and British codebreaking activities, the
theory of computation became an area of active research in
the scientific community. A 1943 paper [McCullogh/Pitts 43]
establishes a formal system that mathematically describes
the behavior of biological neurons and networks of neurons.
Using this system, they show that, with sufficient neurons
and proper connections, any computable function can be
represented by such a network of neurons. This work re-
mains largely theoretical until serious work starts in the 60’s
attempting to model intelligence with computers. Early AI
researchers in [Minsky/Papert 69] explain the serious math-
ematical limitations of a single artificial neuron, including
it’s inability to learn the trivial XOR boolean function. This
symbolist critique cast doubt on the efficacy of using neural
networks (NNs) for more than a decade, until an efficient
method of error feedback learning called back-propagation
was discovered [Davis 01].

Connectionist methodology flourished in the 80’s and
early 90’s after this method was discovered, and modern
graphics hardware provides a similar opportunity, allowing
neural networks to be applied easily and cheaply to certain
real-time problems and other throughput-sensitive domains.

It is only within the last several years that GPUs could store
32-bit numerical results efficiently to textures (GeForce 8,
2006), could be programmed by high level languages such as
Cg (2002), or have had the tool support to be used together
in robust high-performance architectures like CUDA (2006)
[4, 1, Halfhill 08]. Section 1 discusses economic advantages
of GPU clusters, section 2 discusses GPU neural network
implementations, and section 3 concludes. In a companion
paper, ‘Visualizing Neural Networks’, we survey visualizing
the often non-linear dynamics of various network architec-
tures.

1 GPU Economic Advantages

Recently, much research has been devoted to middleware
that coordinates the operation of many GPUs to perform
large parallel calculations. This software has been used in
industry to make high performance ’cluster of clusters’, using
commodity game consoles as cost-effective supercomputers.
Little success was achieved by networks of the first-generation
XBox [3], though the University of Illinois - Urbana Cham-
paign developed a productive 64 node Playstation 2 cluster
for $15,000. Using data from [Levine 09], this translates into
$39/GFLOP using Playstation GPUs, as opposed to the es-
timated price of $312/GFLOP using Pentium4-3200 CPUs.
Thus, in 2005, there was already an order of magnitude price
difference per GFLOP in using GPUs vs CPUs for some
cluster applications. Meuth summarizes the FLOPS per dol-
lar ratio of modern CPUs vs various console generations of
GPUs over time in [Meuth 07].

2 Neural Network Implementations

Neural Network implementations on the GPU have
evolved with the changing state of the underlying hard-
ware. One of the earlier implementations implements Ko-
honen feature mapping on an SGI workstation [Bohn 98].
Up to a 5 fold speed increase over CPU was possible using
SGI’s accelerated implementation of key OpenGL functions
like glColorMatrix, glminmax, and various texture blending
functions. Given the minor programmability of hardware at
the time, Bohn relies heavily on such functions, tying the

1

implementation to vendor support of a specific API running
on custom hardware. Modern OpenGL hardware largely sac-
rifices accelerated 2D functions for better 3D performance,
thus justifying research into more general GPU techniques.

In the early 2000’s, much effort was spent investigating
increasingly programmable GPUs and their application to
scientific computing [Larsen 01, Kruger 03]. Fast linear al-
gebra for graphics on the GPU required fast matrix multiply
implementations, leading to several neural network GPU im-
plementations utilizing matrix multiply routines. One such
implementation uses a blend of DirectX and hand-tuned
GPU assembly code [Rolfes 04]. Unlike Bohn, Rolfes re-
lies less on accelerated DirectX calls, relying instead on fast
implementation of certain GPU instructions and hand-tuned
assembly code. The implementation is still dependent on spe-
cific hardware, but at a lower level than the graphics API,
thus arguably less likely to change as basic GPU instructions
probably will always need to be accelerated. The main con-
tribution of this implementation technique is to accelerate
multi-layer perceptron (MLP) neural networks on commodity
graphics hardware. For another matrix-based computation
of MLP, see [Kyong-Su 04], used for real-time text detection
in a video stream. Kyoung-Su achieves a 20-fold performance
increase over an equivalent CPU implementation.

As the language of high level shader programming be-
came standard and GPU compiler optimization improved,
implementers began moving to higher level implementations
of neural networks. Both self organizing map (SOM) and
MLP neural networks were implemented in the shader lan-
guage Cg in [Zhongwen 05]. Despite the high level language,
some knowledge of GPU instructions is needed to construct
efficient algorithms. For example, to find the minimum value
(or best match) in the SOM, Zhongwen uses a recursive al-
gorithm dividing the activation space into four quadrants
at each step, until only scalar 2x2 matrices are left. This
may seem puzzling without the knowledge that most GPUs
have an efficient min(v1,v2) function that computes the
minimum of two 4-vectors, which can be used to find the
minimum values of two 2x2 matrices quickly. Zhongwen
achieves a 2 to 4 fold performance advantage in SOM over
the CPU, and 200 fold performance advantage in MLP over
a CPU implementation. Such performance claims must be
carefully evaluated; in this case no CPU code is given and it
is not said whether the CPU implementation is optimized.
That said, Zhongwen’s MLP was able to compute an object
tracking function in 46 ms, which they note is theoretically
fast enough to be useful for real-time response. Zhongwen
also notes several pitfalls of high level language implementa-
tions. In one case the same Cg code yielded correct results on
an ATI card and subtly incorrect results on an NVidia card,
and code changes were needed to work around a probable
hardware defect. Also, the performance of GPU code is very
sensitive to the number of rendering passes and amount of
data transfer to the CPU, which they minimized where pos-
sible. Finally, they note that 32-bit floating point textures

were critical to the accuracy of the MLP, a feature that is
not fully supported on many graphics cards, and may also
suffer from patent restrictions [5].

While Cg provides a language low level enough to
be portable across graphics APIs (such as DirectX and
OpenGL), but high enough to avoid hardware-dependent
and cumbersome GPU assembly code, it is not the only lan-
guage used for writing flexible shader programs. BrookGPU
is a stream programming framework designed for use specif-
ically on the GPU [2]. BrookGPU is higher level than Cg,
abstracting the details of shader and vertex programs run-
ning on the GPU, instead focusing on input streams being
operated on by special functions called kernels. The com-
piler enforces limitations inside kernel functions to ensure
only efficient operations are executed on the GPU. The main
benefit, as explained in [Davis 01], is cross-platform portabil-
ity, as a single BrookGPU program can be compiled and run
on both DirectX and OpenGL layers. In contrast, Cg only
defines the low-level shader program, and the programmer
must write ’glue’ code with either DirectX or OpenGL func-
tion calls. Similarly, BrookGPU allows the programmer to
focus on algorithm design, rather than on handling graphics
API calls or deciphering shader language syntax. Davis was
able to quickly implement Hopfield, MLP, and Fuzzy ART
neural networks, and compare the BrookGPU to CPU imple-
mentations. For MLP and Hopfield networks, ATLAS BLAS
optimized linear algebra suite was used in the CPU imple-
mentation, and complete code for both BrookGPU and CPU
implementations is given. Davis was able to realize a modest
2 fold performance increase over CPU for MLP and Hopfield
networks; however, the Fuzzy ART GPU implementation
was dramatically slower than the CPU. The reason given for
this is that BrookGPU’s stream model doesn’t support cer-
tain useful texture memory updates, and presumably other
low level optimizations, that Cg allows. Similar to Zhong-
wen, Davis finds significant performance differences between
NVidia and ATI performance for the same code, suggesting
that high level implementations are quite sensitive to hard-
ware differences, or perhaps differences in the two respective
optimizing compilers for shader languages.

Spiking neural networks are often more interesting to
neurobiologists than the MLP neural network, as they pre-
serve more information about the dynamics of neurons and
more closely resemble biological neurons. With additional
fidelity comes cost; MLP neuron activations are computed
each timestep, whereas spiking networks can take hun-
dreds of timesteps to compute a single neuron activation
[Bernhard 06]. To this end, several researchers have devel-
oped GPU algorithms for simulating these networks more
efficiently. Bernhard uses integrate-and-fire spiking networks
to solve an image segmentation problem in machine vision.
Neurons are connected locally for excitation response to re-
gions of similar color, and are connected globally for inhi-
bition response regardless of color. Reading locally from a
small number of excitatory neurons in parallel is efficient for

2

fast GPU texture memory, but reading all other neurons for
global inhibition is not. Bernhard solves this by adding an
additional pass where a texture pixel is colored only if its cor-
responding neuron has fired. Then, using an occlusion query,
he counts the number of pixels written, and this computes
the global inhibition for the neuron. Since GPUs accelerate
occlusion queries, this results in a 5 to 7 times speed increase
versus CPU timings. An unrelated benefit of simulating neu-
ral networks on the GPU is ease of implementation visualiza-
tion. Since Bernhard simulates neurons with textures, it is
straightforward to display these for debugging and publica-
tion purposes, as shown in many instances in [Bernhard 06].

Integrate-and-fire is a computationally simple model of
spiking neurons where neurons are modeled as a charg-
ing capacitor that discharges when a threshold is reached
[Abbott 99]. A more recent technique takes the canonical bio-
chemical model presented in [Hodgkin/Huxley 51] and sim-
plifies the partial differential equations to be more compu-
tationally tractable. The resulting Izhikevich model neurons
are able to more accurately model the natural variation of
different neuron types seen in in-vitro experiments and brain
scans [Izhikevich 03].

Nageswaran et. al. model large numbers of interconnected
Izhikevich neurons on a single GPU, on the order of 105 neu-
rons with 107 synaptic connections [Nageswaran 09]. In
order to do this, they use CUDA, similar to BrookGPU in
that it abstracts the GPU as a multiprocessor, capable of run-
ning lightweight threads simultaneously and accessing shared
memory via textures. Threads in CUDA can be scheduled
in groups by the on-GPU hardware scheduler, such that if
a thread in one group stalls reading GPU texture memory,
another non-stalled group can run. Classical critiques of
parallel distributed systems, such as synchronization costs,
apply to CUDA as well. Despite this, Nageswaran was able
to simulate large numbers of spiking neurons and synapses
with a 25 fold speedup over a CPU implementation, with
an average firing rate of 9Hz, within an order of magnitude
of real-time brain wave frequencies. It is interesting to note
that in both Bernhard’s and Nageswaren’s spiking network
implementations, both the calculation and data structures
for learning are present entirely on the GPU. This suggests
having simple, more localized learning updates like weight to
nearby firing frequency correlation (as opposed to complex
global strategies like back-propagation) are more amenable
to implementation on GPUs, which inherently must have
simpler instruction and data paths than CPUs.

Fuzzy ART is a middle ground between the minimal an-
alytic model of MLP networks and the biologically correct
spiking networks, and its implementation on the GPU de-
rives in part from various clustering algorithms on the GPU,
such as SOM in [Zhongwen 05, Bohn 98]. Martinez-Zarzuela
et. al. implement Fuzzy ART on the GPU in [Zarzuela 07].
Their technique uses two ART networks, one for training and
one for testing, and exploits different kinds of parallelism for
each task. The training ART parallelizes calculating the in-
put activations and performs parallel sorting for the ’win-

ning’ category match. The parallel sort closely resembles the
MLP reduction Zhongwen uses for SOM, and the updating
of weights is accomplished by rendering into a sub-region of a
texture via scissoring. Similarly, the testing ART parallelizes
category calculation for many input vectors concurrently. For
example, one calculates the match value of the first category
to all n input vectors simultaneously, storing these values to n
subregions of a texture. The same is done for the second cate-
gory, stored into another texture. The max response between
both textures is calculated and stored into the first texture,
and this method is repeated for all remaining categories. Un-
fortunately, updating the weights during training tended to
be the performance bottleneck, with the GPU training ART
running 10 to 100 fold slower than a CPU implementation,
whereas the GPU testing ART had no such bottleneck and
ran 25 to 46 times faster than the CPU. The authors note
that un-optimized memory transfer from CPU to GPU is a
potential source of improvement for the testing ART.

There are several GPU implementations of clustering al-
gorithms that are not neurally based, see [Hall 04, Harris 05].
A summary of timing results for GPU neural network imple-
mentations is shown in table 1.

Neural Arch. Implementation Speedup over CPU
SOM1 OpenGL, Cg 0.8-5.3, 2-4
MLP2 Cg, Cg, BrookGPU 20, 200†, 2

Hopfield BrookGPU 2
Fuzzy ART BrookGPU, Cg 2.2e−6‡, 25-46§

IF3 Spiking NN Cg 5-10
IZ4 Spiking NN CUDA 25

Table 1: Timing results for neural network implementations

3 Conclusion

One key factor of designing GPU algorithms in general is
choosing which level of the software stack to implement upon.
Early implementations used graphics API calls directly, rely-
ing on implicit assumptions about which ones were acceler-
ated by hardware. Later implementations rely on the some-
what stronger assumption that matrix multiply must always
be fast on GPUs, but constrain an algorithm to be cast as
matrix vector products. Still later implementations use GPU
assembly code directly, freeing the problem from formulation
as matrix multiplication and greatly expanding the number of
accelerated operations available to the algorithm developer.
Higher level shader language (Cg, GLSL) based implemen-
tations were developed to enable hardware portability, avoid
assembly language, and push tricky parts of the optimiza-
tion to GPU compiler writers. Even higher level platforms
such as BrookGPU and CUDA were built on top of shader
languages; the first puts limits on shader programs to ensure
efficient compilation and avoid specific graphics APIs, and
the second provides efficient on-GPU thread scheduling.

All of these levels have resulted in successful GPU neural
network implementations, with different trade-offs associated
with the different software layers. For example, BrookGPU
allowed Davis to quickly create and test MLP, Hopfield, and

3

Fuzzy ART implementations, where most studies present a
single optimized implementation. However, BrookGPU has
issues optimizing memory transfer, resulting in a Fuzzy ART
implementation that was dramatically slower than the opti-
mized CPU one.

Many researchers state the necessity of minimizing or
optimizing CPU to GPU data transfer, typically during the
learning phase of the neural algorithm. Additionally, most
implementers make clever use of newly added hardware func-
tionality designed to enhance graphics performance. Bern-
hard uses occlusion queries, for example, in order to efficiently
implement global inhibition. Being aware of a wide variety of
GPU ‘tricks’, as well as having a solid understanding of GPU
hardware architecture, is therefore key to creating state of
the art neural simulators.

4 Future Work

As CPU and GPU designers attempt to push the perfor-
mance curve by adding parallelism instead of clock speed,
it becomes more important to develop robust, fault toler-
ant computational paradigms that can make use of this new
hardware. Neural networks have properties amenable to fill-
ing this niche, as they are inherently fault tolerant and often
easily parallelized. Much work remains, however, in creating
efficient, portable implementations of neural architectures,
especially for unsupervised learning algorithms like SOM and
ART based networks. Even well-studied networks like the
MLP are very performance sensitive to network geometry;
more general codes are needed that would allow researchers
to reap the benefits of GPU parallelism without having to
rewrite complicated GPU code for networks with novel struc-
ture.

1 Self-Organizing Map 2 Multi-Layer Perceptron 3 Integrate and fire neuron 4 Izhikevich neuron
† CPU implementation unavailable ‡ implementation lacks memory optimization § testing only, training is 14-87 times slower than CPU

References

[Abbott 99] Abbott, L “Lapicque’s Introduction of the Integrate-and-Fire Model Neuron (1907)”
Elsevier Brain Research Bulletin vol. 50, No. 5/6, pp. 303-304, 1999

[Bernhard 06] Bernhard, F; Keriven, R “Spiking Neurons on GPUs”
International Conference on Computational Science, 2006

[Bohn 98] Bohn, C.A. “Kohonen Feature Mapping Through Graphics Hardware”
Proceedings of Third International Conference on Computational Intelligence and Neuroscience 1998

[Campbell 05] Campbell, A.; Berglund, E.; Streit, A.
“Graphics Hardware Implementation of the Parameter-less Self-organizing Map”
IDEAL pp.343-350 2005

[Davis 01] Davis, C “Graphics Processing Unit Computation of Neural Networks”
Master’s Thesis, UNM Press 2001

[Halfhill 08] Halfhill, Tom “Parallel Processing with CUDA”
Microprocessor Report [Reprint] January 2008
www.nvidia.com/docs/IO/47906/220401 Reprint.pdf, accessed 9/10

[Hall 04] Hall, J; Hart, J “GPU Acceleration of Iterative Clustering”
Manuscript Accompanying Poster at GP2̂: The ACM Workshop on General Purpose Computing on Graphics Processors
and SIGGRAPH 2004 Poster, 2004

[Harris 05] Harris, C; Haines, K “Iterative Solutions Using Programmable Graphics Processing Units”
The 14th IEEE Intl. Conf. on Fuzzy Systems (FUZZ) 2005 May 22-25 pp. 12-18, 2005

[Hodgkin/Huxley 51] Hodgkin, A. L.; Huxley, A. F.
“Measurement of Current-Voltage Relations in the Membrane of the Giant Axon of Loligo”
Journal of Physiology, London 116:424-448, 1951

[Izhikevich 03] Izhikevich, E “Simple Model of Spiking Neurons”
IEEE Trans. on Neural Networks vol. 14, no. 6, Nov. 2003

[Kruger 03] Kruger, J; Westermann, R “Linear Algebra Operators for GPU Implementation of Numerical Algorithms”
SIGGRAPH 2003 Conference Proceedings

4

[Kyong-Su 04] Kyoung-Su Oh; Keechul Jung “GPU implementation of Neural Networks”
Pattern Recognition Vol. 37, Issue 6, June 2004

[Larsen 01] Larsen, E.S.; McAllister, D “Fast Matrix Multiplies Using Graphics Hardware”
Super Computing 2001 Conference Denver, CO 2001

[Levine 09] Levine,B; Schroeder,J; et. al. “PlayStation and IBM Cell Architecture”
http://www.mcc.uiuc.edu/meetings/2005eab/presentations/PlaystationIBMCell.ppt, accessed 12/09

[Meuth 07] Meuth, Ryan; Wunsch, Donald “A Survey of Neural Computation on Graphics Processing Hardware”
IEEE 22nd International Symposium on Intelligent Control pp. 524-527, 2007

[McCullogh/Pitts 43] McCullogh,W; Pitts,W “A Logical Calculus of the Ideas Immanent in Nervous Activity”
Bulletin of Mathematical Biophysics 1943

[Minsky/Papert 69] Minsky, M; Papert, S “Perceptrons: an Introduction to Computational Geometry”
MIT Press, 2nd edition 1969

[Nageswaran 09] Nageswaren, J; Dutt, N; Krichmar, J
“Efficient Simulation of Large-Scale Spiking Neural Networks Using CUDA Graphics Processors”
accepted in International Joint Conference on Neural Networks, 2009

[Pietras 05] Pietras, K; Rudnicki, M “GPU-based Multi-Layer Perceptron as Efficient Method for Approximation Complex
Light Models in Per-Vertex Lighting”
Studia Informatica Vol. 2(6) pp 53-63, 2005

[Rolfes 04] Rolfes, T “Artificial Neural Networks on Programmable Graphics Hardware”
Game Programming Gems 4 2004 pp. 373-378

[Rolfes 03] Rolfes, T “GPU Implementation of Checker Board Evaluator for GPG4”
http://www.circensis.com/gg4.html, zip archive, 2003, accessed 9/10

[Steinkraus 05] Steinkraus, D; Simard, P. Y.; Buck, I. “Using GPUs for Machine Learning Algorithms”
ICDAR ’05 Proc. of 8th Intl. Conf. on Document Analysis and Recognition , Washington DC, USA pp. 1115-1119 2005

[Zhongwen 05] Zhongwen, Luo; Hongzhi, Liu; Xincai, Wu
“Artificial Neural Network Computation on Graphics Process Units”
IEEE Intl. Joint Conference on Neural Networks 2005 Vol. 1 pp. 622-626

[Zarzuela 07] Martinez-Zarzuela, M; Pernas, F “Fuzzy ART Neural Network Parallel Computing on the GPU”
IWANN 2007, LNCS 4507 pp. 463-470

[1] “Cg Homepage”
http://developer.nvidia.com/page/cg main.html, accessed 12/09

[2] “BrookGPU”, Stanford University Graphics Lab
http://graphics.stanford.edu/projects/brookgpu, accessed 12/09

[3] arch3angel@gmail.com “12 Node Xbox Linux Cluster”
http://www.xl-cluster.org/index.php, accessed 12/09

[4] “OpenGL NVidia depth buffer float Documentation”
http://www.opengl.org/registry/specs/NV/depth buffer float.txt, accessed 12/09

[5] “OpenGL ARB texture float Documentation”
http://www.opengl.org/registry/specs/ARB/texture float.txt, accessed 12/09

5

http://www.mcc.uiuc.edu/meetings/2005eab/presentations/PlaystationIBMCell.ppt
http://www.circensis.com/gg4.html
http://developer.nvidia.com/page/cg_main.html
http://graphics.stanford.edu/projects/brookgpu
http://www.xl-cluster.org/index.php
http://www.opengl.org/registry/specs/NV/depth_buffer_float.txt
http://www.opengl.org/registry/specs/ARB/texture_float.txt

	GPU Economic Advantages
	Neural Network Implementations
	Conclusion
	Future Work

