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Abstract

Autonomous robots have been an object
of human imagination for some time, since
at least the industrial revolution. Only re-
cently, with the advent of analog and digi-
tal computers, have we been able to design
and implement systems of sufficient com-
plexity to be considered autonomous. The
earliest autonomous robot systems were
built in the early 60’s, were notoriously
sensitive to environmental noise, and were
built to accomplish tasks so specific and
simple as to question their usefulness in
the wider world. As computers have be-
come exponentially more powerful, robots
have attempted to harness this power to be-
come more useful, and to adapt and learn
from complex and changing environments.
This survey concerns the history of mobile
robots in the last 50 years, starting by de-
scribing the problem each robot was tasked
to solve and methods used in robot design.
The performance of these robots is quali-
tatively compared over time, ending with
a discussion of current trends and future
work in robotics.

Early Robots

BlockWorld

Inspired by pioneering work in computer image
analysis done by Roberts at MIT in 1963, the re-

search group there lead by Patrick Winston, in
1972, built a robot that could view a scene of
blocks in a photo and reconstruct a similar scene
out of blocks with its manipulator arm. The pro-
gram was known as copy-demo, and helped jus-
tify the classical AI approach in which a complete
3D model of the environment is used to control a
robot.

Shakey

From 1966 to 1972, the Artificial Intelligence Cen-
ter at SRI (Stanford Research Institute) designed
and programmed a mobile robot curiously nick-
named “Shakey” [Nilson 84]. Two versions were
created, the first in 1969 (figure 1) was equipped
with a TV camera, touch sensors, and radio equip-
ment to both relay images to a larger support
computer and relay commands back to the robot.
The second was completed in 1971 and among
other improvements, had access to a larger host
computer, with 192K 36 bit words (0.8 MB) of
working memory, and ran control programs total-
ing in size of about 1.35 MB. In 1970, Life mag-
azine referred to Shakey as “the first electronic
person”, and Shakey gained much notoriety in the
public imagination, in part from a short 24 minute
film demonstrating Shakey’s abilities [SRI 06].

One of the stated goals of the project was to
‘develop concepts and techniques in artificial in-
telligence enabling an automaton to function in-
dependently in realistic environments’. Hardware
complexity was intentionally rejected in favor of
implementing that complexity in the computer
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programs controlling Shakey. It was implicitly as-
sumed that improvements in computer speed and
miniaturization would improve performance of the
algorithms and enhance the robot’s independence
over time. Also, it was assumed that, though
Shakey’s environment would start out much sim-
plified, that the system would be able to be itera-
tively extended with more complex environments
until Shakey could eventually deal with truly re-
alistic environments.

Most criticisms of Shakey deal with the vastly
oversimplified environment the robot was made
to operate in. All of the objects in the environ-
ment were specially constructed rectangular par-
allelepipeds and wedges, and were specially col-
ored with flat (non-specular) paint. Originally the
objects were painted black for high contrast, but
this had to be changed to red, as the rangefinder
needed reflected light to operate. The overhead
lighting was placed to eliminate all shadows, spe-
cial baseboards were added to the walls to enable
robot orienting, and the floor was specially de-
signed to have no identifiable texture or markings
and reflect only matte light [Nilson 84].

Brooks notes that after 30 years of research
into computer vision and edge detection, no re-
search group finding lines and surfaces in natural
image processing has come close to the accuracy
of Shakey’s line finding in the test lab environ-
ment [Brooks 91]. At the time of writing, no re-
search team operating independent robots in real
office environments could match the number of
features or performance of Shakey, despite several
decades of research. It is surmised that the only
way Shakey’s rule-based inference programs could
efficiently operate and interact with the world was
from the vastly reduced world representation that
the rules modeled and operated upon.

Stanford Cart

The Stanford Cart was an attempt to take the
successes of Shakey out of the lab [Moravec 83].
The cart was un-tethered, but like Shakey, had

on-board video cameras and a radio link that
transmitted and received commands from a more
powerful computer nearby. The cart used several
stereo vision algorithms to deduce the nature and
position of objects around it, and reconstructed
representations of these objects in its internal 3D
model of the world. Using this representation,
the cart would plan a path through the obstacle
course and move a short way through the course,
then stop to adjust or recalculate the path as nec-
essary.

Unlike Shakey, the cart did learn, in a limited
sense, from its environment. Where Shakey’s in-
put environment (lighting, color, wall geometry)
was altered to suit the algorithms and sensors, the
cart would perform sensor calibrations when first
brought into the new environment, such as finding
the camera focal length and distortion. Shakey
used an inverse projection matrix technique to
range find objects, which is only possible if the ob-
ject geometry is known in advance and the object
edges are easily and noiselessly computed in ex-
periments. The cart had no such advantages, and
used convolution operators over similar (nearby)
images of the scene to more robustly find objects.
Using stereo cameras along with the convolution
object finding allowed to calculate the range of
objects from the cart.

One effect of this visual object finding method
was that the cart cannot move ‘too far’, or the
convolution fails as the images are too different.
Thus, while the object finding and path plan-
ning were capable of planning multi meter path
lengths, the actual distance traveled along a path
was limited to 0.75 meters, as a compromise be-
tween not breaking object detection and having
a reasonable speed through the obstacle course
[Moravec 83]. Due to image computation and
path planning time, the real averaged speed of the
cart was 3 to 5 meters per hour. Also, Moravec
notes that the vision algorithms were brittle, eas-
ily recognizing some objects such as chairs, but
failing in general to recognize less detailed objects
such as matte cardboard cutouts. The reasons
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for this are complex and subtle, and serve as a
cautionary tale for computer vision research. The
clean white faces of the cardboard, as opposed to
the more graduated texture of ‘natural’ objects,
reflected so much light as to overwhelm the dig-
itizer circuits inside the video cameras, and the
corresponding picture input to the algorithm was
severely muted by the gain correction automati-
cally applied by the cameras. Further, this con-
dition occurred mostly in bright sunlight and not
in other situations, making the problem initially
harder to pinpoint.

CMU Rover

The Standford Cart, while more adaptable and
robust than Shakey, suffered from significant de-
sign problems, the worst of which was the com-
putational time taken to analyze video frames.
The time taken to analyze frames was so long,
obstacle courses had to be shortened and simpli-
fied to get test data in a reasonable amount of
time, and correspondingly, there was less time
for robot improvements based on this feedback
[Moravec 83]. The CMU Rover was the next
evolution of the cart, and among other improve-
ments, was fitted with sonar sensors, infrared sen-
sors, and on-board processors in an attempt to
push the problem of obstacle avoidance to a lower
level, fast response system. Unfortunately, as of
this writing, no more was published on the (yet
unfinished) CMU Rover.

Robots of the 80’s

Mobots

In 1987, Brooks and his research team built a se-
ries of robots designed to challenge the classical AI
theory of robotics, where robots build a detailed
internal world model in order to plan and accom-
plish tasks [Brooks 87]. Brooks’ robot design
methodology directly opposed mainstream aca-
demic robotic design. The robots were tested and
run outside of a controlled lab environment, where

they would have access to, and have to handle,
realistic stimulus. He popularized the subsump-
tion architecture, where multiple behaviors were
designed independently and run in parallel on the
robot, and behaviors would compete for control of
the robot’s actuators. Furthermore, all behaviors
were derived from simple finite state machines and
were required to operate in real-time, with no cen-
tralized world representation or centralized plan-
ning and control. Despite this, his team’s robots
(fig. 4) were able to mimic intelligent behavior
and interact with a changing environment in a
way that other systems of the time could not.

Ghengis

Another robot project by Brooks was started and
completed in the summer of 1989, with the help of
just two students, Grinnel More and Colin Angle
[Brooks 89]. The goal of this robot was to show
that complex behaviors, such as insect walking,
can be implemented by the same layered architec-
ture as before, with simple, distributed control el-
ements and no central representation or planning.
Also, the intent was to show that such a system
can be evolved, where simple FSM layers can be
built to provide basic behaviors, and more com-
plex behaviors can be added on by adding FSM
layers without removing, replacing, or even chang-
ing the earlier layers. Instead, as before, the high
level layers will compete for control by strategi-
cally suppressing low level layers.

In the new robot design, the FSM’s have
been slightly enhanced by the addition of
programmable timer events and programmable
events triggered by certain combinations of FSM
register (memory) states. The robot is much
smaller and more self contained, measuring 35cm
long with 6 rigid legs and a combined leg span
of 25cm (fig. 5). The most interesting part of
the robot is its unique walking algorithm. All the
legs operate independently, and are initially in the
‘balance’ routine that move to keep the robot sta-
tionary. Periodically, one of the legs (in sequence)
is sent a brief ‘raise’ signal. The other legs reflex-
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ively respond by pitching forward, and the raised
leg reflexively responds to being in a raised posi-
tion by executing the ‘lower’ routine, which lowers
the leg. All the legs then are back to the ‘balance’
routine until the next ‘raise’ timer event is sent
to the next leg. Amazingly, the robot is able to
mimic the well known ‘alternating tripod’ motion
seen in insects, albeit with far less pitch and roll
control. By instrumenting force feedback in the
legs, the authors were able to make improvements
to pitch when crossing a test path with a step ob-
stacle, and infra-red sensors were added to create
a high level ‘prowl’ behavior which would follow
humans around the lab.

Toto

One of the criticisms of Brooks’ work, as well as
of reactive robot design in general, is the lack
of goal directed behaviors. This is in part due
to reactive robots not having internal world rep-
resentations, which more easily allow for human
defined goals on these representations. In 1990,
Maja Mataric of the MIT AI Lab built a reactive
robot called Toto (fig 6) designed to address these
flaws [Mataric 90].

Centralized, detailed world representations
suffer from some significant flaws, including sen-
sor noise and corresponding drift in the accuracy
of the internal world model. The solution in Toto
was to build a distributed, noise resistant internal
world model. Instead of mapping areas in detail
and trying to correct for sensor drift, Toto identi-
fied landmarks, such as corners and obstacles, as
consensus calculations from the sonar, compass,
and wheel sensors. Integrated distance and com-
pass measurements are used to relatively position
landmarks, and new landmarks are created as the
robot explores the environment. All landmarks
are compared in parallel with the sensor mea-
surements to position the robot in the landmark
graph, and spreading activation is used to make
topologically close nodes to the current landmark
more likely candidates for recognition, improving

robot orientation accuracy.

Toto can navigate to a specific landmark by
following a repeating call sent from the ‘goal’ land-
mark. The call attenuates as it traverses the land-
mark graph, so the strongest signal will come from
the closest neighboring landmark to the current
landmark. The robot then proceeds in the direc-
tion of the neighboring landmark closest to the
goal landmark, subject to the layered behaviors
that avoid obstacles and wander out of blind cor-
ners. In this way, Toto achieved real time path
planning to a previously learned location by us-
ing an internal world representation, albeit a fuzzy
and decentralized one.

Work on Toto led to research on improve-
ments to the spreading activation technique for
robot control. In [Kortenkamp 93], The au-
thors propose a number of simple improvements
for encoding additional semantic information in
the landmark graph, such as one way paths, pop-
ular paths, landmark length measurement, and
additional landmark types like gateways and cor-
ners. Such semantic information may be impor-
tant in animal navigation, and allows for perfor-
mance improvements and scalability in the general
technique. In [Kuipers 91], the authors suggest
extending Kortenkamp style semantic graphs by
creating instead a hierarchy of graphs that store
different semantic information at different graph
resolution, and this hypothesis is tested on the NX
robot simulator.

Robots of the 90’s

Dervish

Dervish is a mobile robot developed at Stanford,
and is noted for winning the office delivery event
of the 13th National Conference on Artificial Intel-
ligence [Nourbakhsh 95]. Dervish is unique in
that the traditional ring configuration of sonars is
replaced by mostly forward sonar configuration,
and the angle of sensors is varied to detect obsta-
cles not present in a single z plane relative to the
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robot’s geometry. There are 2 sonar sensors on the
sides of the robot (perpendicular to the forward
sensor array), and the robot is equipped with 2
macintosh powerbook laptop computers that con-
trol planning and movement commands.

Dervish’s functionality is determined by the
(very constrained) contest problem of navigating
in an office building from a start room to a goal
room using a map designed to show connectivity
of regions without distance information. Because
of this, Dervish has task-specific feature recogni-
tion for open doors, closed doors, hallways and
the like. It uses information about doors encoded
in the map and read from sensors to orient in the
environment, and the position generated is a set
of states to represent uncertainty in positioning.
Planning and movement are interleaved, as sensor
information affects the most likely position state,
and paths are replanned if this state changes.

Xavier

Xavier is a mobile robot developed by CMU with
the goal of being able to function and deliver pack-
ages in an operating office environment. User re-
quests for the robot’s attention are generated via
the web, and the robot attempts to service these
requests with optimal efficiency [Simmons 97].
The sensors on Xavier include bump panels, wheel
(distance) encoders, a sonar ring for obstacle rang-
ing, a movable 30 degree FOV laser rangefinder,
and a single color camera (fig 7). Unlike the Stan-
ford cart, color vision is used only for fine po-
sitioning and verifying landmarks, whereas the
laser rangefinder, sonar, and odometers control
the primary navigation and object detection. The
choice to minimize the importance of machine vi-
sion makes sense for Xavier, as it is limited to the
on-board processing power of three 486 CPUs, and
machine vision algorithms are both computation-
ally intensive and can reduce the ability of the
robot to respond in real-time.

The navigation is done in Xavier using
partially observable Markov decision process

(POMDP) models. Any robot using an inter-
nal representation of topological maps needs to
be able to estimate its orientation relative to the
map (ie. the compass North), and then its po-
sition on the map. Xavier uses integration over
time to determine average heading, and integra-
tion over sensors to reduce noise and determine
a kind of average surrounding geometry. Also,
averaging sensors allows information from groups
of sensors to be treated as independent samples
from the ‘distribution’ of surrounding geometry
data, which feeds into the probabilistic POMDP
model that estimates robot position and controls
orienting movements.

Task planning involves maintaining a simple
world model describing the package delivery pro-
cess of the robot. It has states such as ‘has-item’,
‘acquire-item’, ‘in-room-123’, ‘goto-deliver-room-
123’, and so fourth. The task planning algorithm
deals with maintaining many such process trees,
where similar trees have parent / sibling rela-
tionships and correspond to nearby tasks. The
planner optimizes which trees to traverse next on
throughput constraints and on information, such
as ‘in-room-123’, taken from the POMDP navi-
gation module. Since task planning is done in
parallel with obstacle avoidance and position esti-
mation, plans can change quickly in response to a
changing environment or in response to detecting
sensor errors.

Xavier combines an expert decision system in
task planning, a POMDP machine learning sys-
tem in location mapping, a heuristic A∗ search in
path planning, and a purely reactive system in ob-
stacle avoidance and default wandering. The low
level behaviors dealing with robot safety (avoid
obstacle) take precedence over high level behav-
iors (deliver package). The behaviors operate in
parallel and independently; for example, while
waiting for a path to be planned, the robot re-
verts to the low level behavior of wandering and
avoiding obstacles. In this way Xavier is a hybrid
of behavior centric and model centric approaches.
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Rhino

The RHINO system is capable of exploring and
navigating previously unknown indoor office en-
vironments at a speed of approximately 3 ft/sec
[Thrun 98]. It uses both onboard and off-
board computers, and utilizes decentralized, asyn-
chronous communication between software pro-
cesses and between computing devices to accom-
plish tasks.

RHINO constructs representations of the en-
vironment as it moves, in the form of two dimen-
sional maps. The maps are formed as a combi-
nation of grid-based and topological techniques.
Grid-bases maps are constructed on a regular grid
and are better at orienting the robot and sensors,
but are large and computationally expensive to
compute with. Conversely, topological maps are
sparsely sampled only at necessary points and can
be used in real-time computations, but are diffi-
cult to initially create. RHINO uses these maps
as an internal world model during path planning
to avoid obstacles, and updates the maps with in-
formation from its sensors.

Sensors on the robot (fig 8) collect range in-
formation with a ring of ultrasound sonar sen-
sors surrounding the robot as well as with a top
mounted stereo camera. The ultrasound sensors
directly give ranges of obstacles, but have low
resolution and fail to detect objects that absorb
sound. Correspondingly, the visual sensors have
high resolution and can detect most objects with
visible edges, but have more limited range find-
ing capabilities. The authors note that obstacle
maps constructed using only feedback from actua-
tor sensors and ‘dead reckoning’ from a known po-
sition are near useless, so visual and audio sensors
play a critical role in generating accurate maps.

Modern Robots

Stanley

The 2005 Darpa Grand Challenge was to design
and implement an autonomous vehicle capable of

navigating and driving unaided, at high speeds,
through an unrehearsed course in rough desert
terrain. Stanley was the car robot built by en-
gineers at Stanford, Volkswagen, and Intel that
won the competition. Since the course descrip-
tion was given to the teams before the race as a
list of longitude and latitude waypoints, no path
planning was involved in the challenge. Other
than integrating sensors, actuators, and comput-
ers into a Volkswagen Taureg, the robot is funda-
mentally similar to other embodied autonomous
robots. Most of the sensors on Stanley were at-
tached to the roof rack (fig 9), including GPS for
finding waypoints, five laser range finders for ob-
stacle detection to 25m, a color camera for road
following (where possible), two 24GHz radar sen-
sors for obstacle detection to 200m, and a GPS
compass. In the trunk was an array of 6 Pentium
M computers, with a total power draw of 500W
provided by the car alternator.

Stanley’s architecture is closely related to the
three-layer architecture, where a reactive system
operates in closed loop to perform critical (obsta-
cle avoidance, safety) functions, and in parallel,
a higher level system computes objectives while
the arbitration system shares control of the hard-
ware between the other two systems [Gat 98].
Information flows one way in the system, from
the sensors to software modules that keep the
data, then to other modules that ‘subscribe’ to
this data store. Guarantees are kept that no soft-
ware modules sees the same sensor data more than
once. Special modules track the state of only
other software modules, rebooting or power cy-
cling the components as necessary when a fail-
ure state is detected. In total, the race software
consisted of 30 such software modules executed in
parallel.

The heart of Stanley’s navigation uses an un-
scented Kalman filter (UKF), based on technology
used by NASA in the Apollo program to create
estimates of physical state based on sensor net-
works and the relevant physics models describ-
ing the dynamic motion of an object [Wiki 10].
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The UKF is able to take noisy sensor data from
the robot, combine it with known vehicle physics,
and estimate the new vehicle position much bet-
ter than related techniques, such as dead reck-
oning. The calculated vehicle coordinates, orien-
tation, and velocity are fed to other modules as
error-corrected inputs. Correctness of this posi-
tioning data is critical for navigation during fre-
quent GPS outages over rough terrain.

Errors in positioning strongly affect the per-
formance of the robot. Since Stanley uses long
range lasers to construct a height map of the area
in front of it for obstacle avoidance, the authors
noted that very small errors (< 0.5deg) in the ve-
hicle’s assumed orientation with respect to sur-
rounding terrain were magnified by the distance
of the laser rangefinders, such that obstacle classi-
fication became useless. Modeling the drift error
in orientation with respect to time helped define
the confidence of obstacle detection, and pruned
out spurious obstacles using a statistical test. Cal-
culating the parameters of this test is not simple,
however, and reinforcement learning with multi-
variate gradient ascent on the parameters, based
off human driving trials, is used to learn good pa-
rameter values.

Given that the laser rangefinders have an ef-
fective range of only 25m, a color camera and vi-
sion algorithms are used to find extended height
maps (and so drivable surfaces). This is neces-
sary to navigate at speeds high enough to success-
fully complete the challenge specification. Road
classification using color vision is generally diffi-
cult, and this is enhanced by the varied types of
roads in the course. Stanley uses an clever method
to make this problem both more tractable and
adaptive to changing road types and conditions.
The robust drivable terrain detection in the lim-
ited range laser scanners is superimposed onto the
lower portion of the color camera’s image space.
Then, the image algorithm has a partial example
of what drivable and non-drivable terrain looks
like. Using this dynamically generated reinforce-
ment learning from the laser finders, the image

algorithm is able to find drivable regions in the
rest of the image. Special attention is paid to
how often and by how much the visual classifier
is updated on subsequent image frames to opti-
mally adapt to changing lighting conditions and
changing road types.

Robot Soccer

There is a trend in the last ten years to explore
teams of autonomous robots, instead of just one
operating independently. One popular venue for
such robot teams is robot soccer competitions. In
[Lenser 01], the soccer match is played by robots
provided by Sony to the research team, similar to
the commercial AIBO robot dog but with pro-
grammable capability (fig 10 ). Each team con-
sists of three uniformed robot dogs. The playing
field is marked around the border by 6 markers
and 2 goal areas, each specially colored to help
robot localization.

The hardware on Sony AIBO clones is limited,
necessitating efficient algorithms using simplify-
ing and task-dependent assumptions. Lenser and
his team have published a freely available library
that performs color correction, color segmenta-
tion, and object detection from the segmentation
and task-specific queues. Object detection is lim-
ited by having a single color camera as the only
remote sensor, and all the problems of occlusion
and range estimation apply here, such that in-
formation about objects tends to be sparse and
noisy. Good recognition currently needs a super-
vised calibration to correct for differing lighting
conditions. After recognition, objects are trans-
lated into robot-relative coordinates, accounting
for camera tilt, pan, roll, and robot body posi-
tion.

Because of computational constraints, the lo-
calization of a robot on the field does not depend
on a long history of past location updated with
actuator readings. Instead, they use a novel tech-
nique called Sensor Resetting Localization, de-
scribed in [Lenser 00]. The basic technique in-
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volves sampling the visual field and calculating
the probability of being in an area given the dis-
tribution of the sample points. This probability
changes over time, and can be invalidated by, for
example, a human referee placing a robot in a dif-
ferent location. When invalidation of the location
probability occurs, it is recognized by real sensor
samples not matching expected location, and the
location probability is reset to the uniform distri-
bution over the field. Also, sensors can cause non-
uniform generation of sample points, for example,
to cluster around a potential landmark should a
previous uniform sample happen to coincide with
one.

Most of the behaviors for the soccer robots are
reactive to the inputs, with the exception of pre-
diction of the soccer ball given occluding robots.
This is modeled as a virtual sensor predicting ball
location, whose behavior ‘chase ball’ is reactive
with respect to this ‘memory’ sensor. Behaviors
are organized both hierarchically and sequentially
to compose more complex behaviors from simple
behaviors. Behaviors sets are chosen based on
sensor input and the current goal being satisfied,
and compete for control of actuators in a pseudo
winner-take-all strategy that minimizes actuator
conflict.

In order to translate behaviors into movement,
high level behavior requests are sent through
a movement layer that models physical proper-
ties such as the joints, center of mass, and ap-
proximated overall stability. This layer com-
poses low level movements, such as individ-
ual leg movements, into compatible movement
sequences that minimize instantaneous velocity
changes and smooth overall movement. In gen-
eral, the robot performed well, and scored third
place in RoboCup 2000 international competition,
losing only one game.

Animal Inspired Robots

AmphiBot II

In human walking, humans can dynamically adapt
the normal walking gait to changing terrain. This
is accomplished through pulsing collections of
neurons called central pattern generators (CPG)
in the spine [Grillner 03]. Many non-wheeled
robots, including the snake-like AmphiBot II (fig
11), use CPG’s to control and adjust movement,
in this case to control the speed and direction of
the snake robot [Crespi 06]. This robot is unique
in that it can locomote on both land and in water,
using the CPG to tune the phase and amplitude
of the traveling wave. Also, small processors and
high energy density Lithium-Ion batteries make
this system self contained. Other than the wave-
form generated by the CPG oscillators, however,
this system has no other behaviors, making it min-
imally autonomous from the point of view of pre-
vious robots discussed.

BigDog

BigDog is a quadruped walking robot, somewhat
resembling a dog (fig 12). The BigDog robot and
its predecessors from the MIT LegLab are all con-
trolled by regulating three activities: supporting
the body with a vertical bounding motion, con-
trolling the tilt of the body by pushing off with
different legs, and putting the feet in the right
place for the next step [Raibert 08]. Though
BigDog shows good stability walking forward over
very rough terrain, it has no other autonomous
behaviors and requires a human operator to steer
and pathfind via a computer radio link.

In [Iida 04], a different approach to
quadruped movement is presented where, instead
of compensating for an unstable load using so-
phisticated active dynamics, the walker’s passive
dynamics is engineered to be stable. Generating a
bounding gait in these machines requires no feed-
back, unlike BigDog, which has both gyroscopic
and force feedback on the legs and cart. Fur-
thermore, since the design is passively stable, the
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control system can be reduced to a sine wave gen-
erator (much like a CPG), where simply changing
the phase parameter is shown to control the speed
of the gait, despite the many degrees of freedom
involved in the robot. Iida’s quadruped has not
been tested on varied terrain, however, and pos-
sess no high-level behaviors other than forward
movement. Discussion and simulation of passively
stable biped walking is found in [Vaughan 04].

Analysis

Early robots such as the BlockWorld manipula-
tor arm and Shakey made a lot of assumptions
about the operating environment. When a pre-
conceived algorithm had trouble with noise, the
experimenters would change the environment, ef-
fectively changing the problem statement, to suit
the algorithm. For example, to perform geometry
analysis using the inverse projection matrix tech-
nique, one needs clear, accurate line finding on rel-
atively simple objects. Therefore, the Shakey ex-
perimenters limited the color, shape, and number
of objects that the robot had to detect, and also
constrained the lighting and texture of other parts
of the scene, to get the algorithm to perform ac-
ceptably. With the CMU cart, attempting to take
the same general method out of this constrained
environment led to a steep degradation of perfor-
mance, to the point of not even being able to test
the robot in a reasonable amount of time on the
much more complicated, ‘real-world’ test environ-
ment. Much of this criticism can also be applied to
early AI work in general, as hard problems tended
to be reduced to very simple subdomains until the
point at which they became tractable to the com-
puting power and methods of the time. Game
playing algorithms received much attention, for
example, and early successes were shown for ma-
chines playing various classes of games. However,
the AI work invested in games did not necessarily
transfer at all to other problem domains.

The counter-revolution to classical AI tech-
niques in robotics came from Rodney Brooks and

his work on Mobots at the MIT AI lab. While the
Stanford cart was taking tens of minutes to com-
pute the next move in it’s environment, Brooks’s
machines were zooming around the AI lab, inter-
acting with their environment in real-time. While
avoiding moving objects were written out of the
Stanford problem statement, the Mobots avoided
unforeseen objects and environments with ease
while performing their tasks. Complex control
activities such as coordinating the leg movement
of insect-like robots could be accomplished with
Brooks’s subsumption architecture, where simple
state machines suppress one another for control
of robot hardware. All of this was done with-
out recreating any explicit 3D model of the world,
with no symbol model and no abstract algebra for
logic or inference, and with very little central co-
ordination in general.

Despite these successes, Brooks’s methodol-
ogy, termed reactive control, had detractors with
legitimate concerns. It was difficult to tell re-
active robots to achieve specific goals, as they
possessed no representation of goal states or how
to achieve them. Also, reactive robots gen-
erally don’t learn from their environment, and
aren’t able to perform functions not explicitly pro-
grammed in them. Finally, each robot was a
piece of art in essence, with carefully tuned finite
state machines and often with custom hardware,
so there were few general algorithms or techniques
that could be applied to other problems or robots.

Purely reactive control was not a popular de-
sign methodology outside of the MIT lab, and was
not practiced in all but the simplest robot de-
signs past the late 1980’s. However, many lessons
of the reactive robots became standard practice,
such as designing and testing a robot in the real
world, limiting computation to run on the hard-
ware inside the embodied robot, and having hi-
erarchies of behaviors that operate in parallel.
Dervish and Xavier are examples of this philos-
ophy. Both robots have low level collision avoid-
ance that operates largely independently of the
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higher-level goal seeking and orienting behaviors.
This way, the robot keeps itself safe in real time
and can make progress on movement while the
goal seeking and path planning slowly compute
their results. Both robots were hybrids, as they
had reactive systems for critical functions and also
simple world models that predicated their actions.
One consequence of having world models was that
the robots had to deal with sensor error and drift
in the internal world model from reality. Dervish
did this using probability to construct the world
model and having world state be a set of states
associated with various uncertainty. Xavier did
this in a more structured, and ultimately more
popular way by viewing position and orientation
as a probability distribution that is updated and
corrected with sensor measurements.

Despite good performance on office tasks and
navigation, this class of robots has serious short-
comings. Feature recognition is carefully tuned
to the problem statement, as both Xavier and
Dervish have custom routines to detect doors,
hallways, and walls, and can not navigate well
outside of (or possibly even in different) office en-
vironments. Thus they suffer the same problem of
over fitting to a specific environment that Shakey
and the Stanford cart had two decades previously.
With the inclusion of even such simple world state
lies the temptation to make limiting assumptions
that simplify the problem at the cost of flexibility.

Toto, another reactive robot built by MIT, is
more judicious in this regard. Instead of memo-
rizing a map and counting doors (or probability
of doors) to navigate, the maps that Toto makes
are distributed in nature and learned from the en-
vironment. Landmarks are identified as unusual
or unique sensor ensemble readings and are gen-
erated as the robot’s reactive behavior blindly ex-
plores the environment. Positioning data from
a compass and wheel sensors connect landmarks
into a rough topological map, and a distributed,
parallel algorithm is used to navigate piecewise to
a defined goal landmark.

Rhino builds on the successes and failures of
these office robots, keeping a reactive system for
safety and the notion of parallel, distributed mod-
ules responsible for different behaviors. Like Toto
and unlike previous office bots, Rhino builds maps
as it explores. Rhino has neural networks inter-
posed at the sonar sensors in order to calibrate for
different wall types or test environments without
changing behavior code. Like Xavier Rhino uses
vision to help detect features not seen or ambigu-
ous to sonar, using vision to enhance the sonar
sense as opposed to relying on vision for main nav-
igation.

Seven years later, the creator of Rhino would
take many of the lessons learned there and put
them into Stanley, the autonomous car that wins
the 2005 Darpa Grand Challenge race across the
Mojave desert. Stanley, like Rhino, is a modi-
fied three-layer architecture with a reactive safety
system interacting with higher level path plan-
ning and control. Stanley, like Rhino, uses vision
as an adjunct to improve the laser range finding
sense. The internal world model of Stanley is more
complex, and requires sophisticated mathemati-
cal techniques to keep drift with reality within
bounds, but is largely successful in this. Stanley
is an amazing feat of engineering, and manages
to perform a complex task with a high degree of
adaptability that just two years ago, in the 2003
challenge, it seemed no robotics team was very
close to.

Conclusion

Robots have made sweeping advances in mobility
and capability over the last 50 years. We now have
a car that drives itself safely over rough desert
roads, something unimaginable to the BlockWorld
creators in the late 60’s, or maybe only unimag-
inable that such a thing would happen in so short
a time. In one sense, robotics has exceeded all
expectations. Another way of looking at the suc-
cess of robotics, however, is that we have grossly
underestimated what it means to be intelligent.
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People were amazed when the robot was able to
recreate block stacks from a picture. People were
amazed when robots could mimic insect walk-
ing. People were amazed when robots could de-
liver packages in an office building. People were
amazed when a robot could drive a car. In all of
the above examples of interesting robot behavior,
not one of the robots learned a skill. The skill
has been designed into the robot by a team of
engineers studying the problem, and the flexibil-
ity of even advanced robots like the 2005 Stanley
have fairly primitive and limited ability to adapt
to novel circumstances. In the case of Stanley,
despite the perceived performance in the driving
task, Stanley is unable to drive without a human
supplied map of waypoints, and probably would
fail utterly if asked, even with a map, to drive
on off-road terrain. Robotic success has been de-
fined, then, in exceeding human expectations of
what tasks robots in general can do, rather than
what kinds of intelligent behavior an individual
robot displays.

The intellectual descendants of reactive robots
have perhaps perceived this for a long time, and
suggest that progress in intelligence is achieved
by more accurately modeling animal movement.
Their thesis is that the hard part of intelligence is
sophisticated control, that evolution has worked
millions of years on the control problem and that

intelligence is a recent side effect, or perhaps con-
sequence, of good control. I would argue that
they are wrong too, by construction. Robots like
Amphibot and BigDog mimic very closely snake
and dog movement, respectively. Other animalis-
tic robots not mentioned here are able to fly by
flapping tiny wings, and swim by swishing fish-like
tails, often in sophisticated and energy efficient
ways. These machines are also not intelligent in
the sense that we commonly associate with insects
and fish.

Some have accepted embodiment as a neces-
sary grounding for AI algorithms that failed to
transfer their intelligence outside of very limited
domains. Some have accepted design of robots
using real world environmental inputs to aid in
robust sensing and reflex behavior. I think few
have accepted that making robots perform a cer-
tain complicated task will not lead to a robot
that is generally intelligent, despite a long history
of this approach not working in classical AI re-
search. Perhaps, in robot soccer, there is a seed of
a correct methodology here, that we have to make
robots embodied in the real world, solving difficult
physical control problems, and most importantly,
competing with other robots in a way that mimics
the evolutionary process that has evolved intelli-
gent behavior up until now.
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Figure 1: Shakey, a prototype mobile robot circa 1969

Figure 2: Stanford Cart, circa 1983

Figure 3: CMU Rover, circa 1983
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Figure 4: MIT ‘mobots’ circa 1987

Figure 5: MIT robot ‘ghengis’, circa 1989

Figure 6: MIT robot ‘Toto’, circa 1993
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Figure 7: XAVIER, an office delivery robot circa 1997

Figure 8: RHINO, a fast mobile robot circa 1998

Figure 9: Stanley, a semi-autonomous car, winner of 2005 Darpa challenge
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Figure 10: CMPack, Sony robot quadrupeds playing soccer, circa 2001

Figure 11: Amphibious snake robot on land (top) and water (bottom), circa 2006

Figure 12: Large semi-autonomous quadruped robot ‘BigDog’, circa 2008
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