
Sparse shift-invariant NMF

Vamsi K. Potluru
MIND Research Network,
Dept. of Comp Science,
Univ of New Mexico
ismav@cs.unm.edu

Sergey M. Plis
Dept. of Comp Science,
Univ of New Mexico
pliz@cs.unm.edu

Vince D. Calhoun
MIND Research Network,

Dept. of Elec and Comp Engg,
Univ of New Mexico
vcalhoun@unm.edu

Abstract

Non-negative Matrix Factorization (NMF) has

increasingly been used for efficiently decomposing

multivariate data into a signal dictionary and cor-

responding activations. In this paper, we propose

an algorithm called sparse shift-invariant NMF

(ssiNMF) for learning possibly overcomplete shift-

invariant features. This is done by incorporating

a circulant property on the features and sparsity

constraints on the activations. The circulant prop-

erty allows us to capture shifts in the features and

enables efficient computation by the Fast Fourier

Transform. The ssiNMF algorithm turns out to be

matrix-free for we need to store only a small number

of features. We demonstrate this on a dataset gener-

ated from an overcomplete set of bars.

1 Introduction

Non-negative Matrix Factorization (NMF) is a

tool to split the given data matrix into a product of

two non-negative matrix factors. This process can

be used to identify useful features in the dataset.

The constraint of non-negativity results in a parts-

based representation and is usually different from

other factorization techniques which result in more

holistic representations (e.g. Principal Component

Analysis (PCA) and Vector Quantization (VQ)). An-

other tool used commonly to find features is Inde-

pendent Component Analysis (ICA) [3]. ICA as-

sumes that the features thus found are statistically

independent [1].

NMF intrinsically enforces certain amount of

sparsity in its representations. However, in the case

of overcomplete representations, we would like to

explicitly enforce a sparsity constraint. NMF with

a sparsity constraint on the activations was intro-

duced in [5]. Convolutive NMF had previously been

studied in [8] with an application to audio data. It

was extended with a sparsity constraint in [7].

In this paper, we combine convolutive dictionary

with sparse activations. Unlike the previous ap-

proaches, we constrain the features to be circulant

to model arbitrary shifts in the data. This property

is useful for training datasets that have misaligned

instances, such as datasets of images. We demon-

strate the utility of our approach using the dataset

of [5] by learning a parsimonious dictionary to rep-

resent it.

2 NMF

Given a non-negative m × n matrix X, we want

to represent it with a product of two non-negative

matrices W,H of sizes m× r and r× n respectively:

X ≈WH. (1)

The non-negativity constraint corresponds to the in-

tuitive notion of features adding up to give the re-

sulting data.

Lee and Seung [6] describe two simple mul-

tiplicative updates which work well in practice.

These correspond to two different cost functions

representing the quality of approximation. Here,

we use the Frobenius norm for the cost function.

The cost function and the corresponding updates

are:

E = ‖X−WH‖F (2)

W = W ⊙
XH⊤

WHH⊤
(3)

H = H⊙
W⊤X

W⊤WH
, (4)



where ‖.‖F denotes the Frobenius norm and ‖.‖1
the L1 norm. The operator ⊙ represents element-

wise multiplication. Division is also element-wise.

It should be noted that the cost function to be mini-

mized is convex in either W or H but not in both. As

the algorithm iterates using the updates (3) and (4),

W and H converge to a local minimum of the cost

function. The value of r determines quality of ap-

proximation and it is usually based on prior knowl-

edge of the data being modelled.

3 Sparse NMF

NMF with a sparsity constraint was introduced

in [5]. It was shown that explicitly controlling spar-

sity gives better decompositions. Using L1 norm for

sparsity, sparse NMF is formulated as follows:

min
W,H

1

2
‖X−WH‖F + λ‖H‖1 (5)

The update equations for this objective are given

by:

W = W − η[−XH⊤ + WHH⊤] (6)

H = H⊙
W⊤X

W⊤WH + λ1
(7)

The parameter η is the learning rate and has to

be explicitly set. As has already been noted in [5],

the objective function is not scale free. This can

be seen by setting W ← αA and H ← 1

α
H, with

α > 1. To overcome this problem, columns of W

are normalized to have L2 norm of 1. Since additive

updates can be slow and require setting the learn-

ing rate they are undesirable. To improve the re-

sult, new multiplicative update rules were derived

by Eggert and Körner [4]. The update for matrix W

is given by

W = W ⊙
XH⊤ + W diag(1(WHH⊤ ⊙W))

WHH⊤ + W diag(1(XH⊤ ⊙W))
(8)

4 Matrix-free computations

If we allow circulant features, the feature matrix

W for r features increases dimension from m× r to

m × (m ∗ r). it turns into a concatenation of r cir-

culant matrices. However, this dimensionality in-

crease does not harm the computation since in the

case of circulant matrices, matrix-vector product

can be efficiently computed by using Fast Fourier

Transform (FFT). In addition, a circulant matrix of

size m ×m requires storage space of O(m). In this

section we give definitions which are necessary to

construct the ssiNMF algorithm.

4.1 Circulant matrices

Let us introduce two operators that will be

needed further:

• Circulant-shift operator Si(v) : given a vector

v and a shift size i, returns the right circularly-

shifted vector shifted by i positions.

• Flip operator FLIP(v) : returns a permuted

vector with the i-th element replaced by the

n− i + 1-th element of the given vector.

The circulant matrix with the first column equal

to the vector c is given by

C =
[

S0(c) S1(c) · · · Sn−1(c)
]

(9)

= cm(c)

We note that even though it has O(n2) elements,

it can be generated from c, which has O(n) ele-

ments.

If f = S1(FLIP(c)) then

C⊤ =
[

S0(f) S1(f) · · · Sn−1(f)
]

(10)

= cm(f)

4.2 Circulant matrix-vector product

Here, we outline an efficient routine to calculate

the product of a circulant matrix C whose first col-

umn is c with an appropriately sized vector r. Let

us denote by FFT and iFFT the routines of Fast

Fourier Transform and inverse Fast Fourier Trans-

form respectively. We then have :

Cr = iFFT(diag(FFT(c)) FFT(r)) (11)

= iFFT(FFT(c)⊙ FFT(r))

= mvc(c, r)

4.3 Composite circulant products

Let us define the matrix A to be composite cir-

culant if its elements are square circulant matrices.

Matrix A is completely characterized by matrix B

given the following relations:

B =
[

b1 b2 . . . br

]

(12)

A =
[

cm(b1) cm(b2) . . . cm(br)
]

(13)

The matrix-vector products given an appropri-

ately sized vector y with matrix A are given by:

2



Ay =
[

cm(b1) cm(b2) . . . cm(br)
]











y1

y2

...

yr











=
∑

i

mvc(bi,yi)

= fmvc(B,y) (14)

A⊤y =











cm(b1)
⊤

cm(g2)
⊤

...

cm(br)
⊤











y

=











mvc(S1(FLIP(b1))),y)
mvc(S1(FLIP(b2))),y)

...

mvc(S1(FLIP(br))),y)











= tfmvc(B,y) (15)

5 Sparse shift-invariant NMF

In the ssiNMF framework, we model the dictio-

nary W to be a set of circularly shifted features.

This is captured by matrix G representing the fea-

tures and matrix W - the set of all possible linear

shifts. The relationship between the matrices is :

G =
[

g1 g2 . . . gr

]

(16)

W =
[

cm(g1) cm(g2) . . . cm(gr)
]

(17)

We need to store only the matrix G to gener-

ate the full matrix W. This makes the algorithm

matrix-free and computationally efficient for using

FFT’s to compute matrix-vector products.

Given the data matrix X, we apply Algorithm 1

denoted by ssiNMF to obtain the features and their

corresponding activations. We note that the vec-

tors with superscripts and subscripts denote the

row and column vectors of the corresponding ma-

trices respectively.

6 Experiments

To test our algorithm we generate the bars

dataset from [5]. As shown in Figure 1(a), its gen-

erating features are single and double bars aligned

vertically and horizontally on a 3× 3 grid. Since all

double bars can be expressed in terms of the single

Algorithm 1 ssiNMF

1: randomly initialize G and H

2: normalize columns of G to unit L2 norm

3: repeat

4: update G

5: for each column gi in G do

6: t← 0

7: for each element j in gi do

8: t← t + fmvc(G,Hhi∗m+j)−Xhi∗m+j

9: end for

10: gi = gi − ηt

11: end for

12: update H

13: for each column hi in H do

14: hi = hi ⊙
tfmvc(G,xi)

(tfmvc(G, fmvc(G,hi)) + λ)
15: end for

16: until convergence

bars, this feature basis is overcomplete. These fea-

tures form a generating feature matrix Wgen. Ini-

tializing Hgen to a sparse random matrix, we con-

struct the dataset as X = WgenHgen. 12 random

samples from the dataset are shown in Figure 1(b).

As previously demonstrated by Hoyer [5], the ad-

dition of sparsity assists in handling overcomplete-

ness of the feature space. This is shown in the fea-

ture set learned by non-negative sparse coding in

Figure 1(c). However, in the case of allowed trans-

lations the original overcomplete set can be repre-

sented by only 4 features: vertical single bar, hori-

zontal single bar and corresponding double bars.

We applied ssiNMF by setting the number of fea-

tures to 4 and λ = 0.7. Each feature in G was

initialized by iid samples from the uniform distri-

bution and normalized by its L2 norm. Activations

H were also randomly initialized from the uniform

distribution.

Features identified by ssiNMF algorithm are

shown in Figure 1(d). These features still repre-

sent an overcomplete basis since the double bar fea-

tures can be represented in terms of the single bars.

Shift-invariance leads to a smaller set of features

while still enabling a sparse representation.

7 Discussion and future work

Circulant constraints make the computation of

matrix-vector products fast and reduce storage

space in case of dictionaries with shift-invariant

features. The gradient descent rule for updating

the dictionary matrix W is additive, however, it

3



(a) features (b) data (c) NNSC (10) (d) ssiNMF (4)

Figure 1. Experimental results on bars dataset. (a) The features used to generate training data. (b)
A random sample from the dataset. (c) 10 features as learned by non-negative sparse coding of [5].
(d) 4 features that can represent the data in circulant case as learned by ssiNMF.

would be interesting to derive a suitable multiplica-

tive rule.

The presented algorithm (ssiNMF) is also appli-

cable for datasets which are misaligned. For exam-

ple, ssiNMF could be applied to a dataset of fMRI

images where the head is not stabilized. Shift-

invariance in this case would compensate for the

motion typically observed in fMRI experiments or

for coregistration differences between subjects.

Our approach can also be extended to Non-

negative Tensor Factorization (NTF) [2] which is a

rich framework for modeling additional factors.

8 Acknowledgements

The first author would like to acknowledge the

support from NIBIB grants 1 R01 EB 000840 and 1

R01 EB 005846. The second author was supported

by NIMH grant 1 R01MH076282-01. The latter two

grants were funded as part of the NSF/NIH Collab-

orative Research in Computational Neuroscience

Program. The authors would like to thank Barak

Pearlmutter for the initial inspiration.

References

[1] A. J. Bell and T. J. Sejnowski. An information-

maximization approach to blind separation and blind

deconvolution. Neu. Comp., 7(6):1129–59, 1995.
[2] A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and

S. Amari. Non-negative tensor factorization using al-

pha and beta divergences. Acoustics, Speech and Sig-

nal Processing, 2007. ICASSP 2007. IEEE Interna-

tional Conference on, 3:III–1393–III–1396, Apr. 2007.

[3] P. Comon. Independent component analysis: A new

concept. Signal Processing, 36:287–314, 1994.
[4] J. Eggert and E. Körner. Sparse coding and NMF. In

IEEE International Joint Conference on Neural Net-

works, 2004. Proceedings, volume 4, pages 2529–33.

IEEE, July 2004.
[5] P. O. Hoyer. Non-negative sparse coding. In IEEE

Workshop on Neural Networks for Signal Processing,

2002.
[6] D. D. Lee and H. S. Seung. Learning the parts of ob-

jects with nonnegative matric factorization. Nature,

401:788–91, 1999.
[7] P. D. O’Grady and B. A. Pearlmutter. Convolu-

tive non-negative matrix factorisation with sparse-

ness constraint. In International Workshop on Ma-

chine Learning for Signal Processing, pages 427–432,

Maynooth, Ireland, Sept. 6–8 2006. IEEE Press.
[8] P. Smaragdis. Non-negative matrix factor deconvolu-

tion; extraction of multiple sound sources from mono-

phonic inputs. In Fifth International Conference on

Independent Component Analysis, LNCS 3195, pages

494–9, Granada, Spain, Sept. 22–24 2004. Springer-

Verlag.

4


