
Permutations as angular data: efficient inference in factorial spaces

Sergey M. Plis∗†, Terran Lane† and Vince D. Calhoun∗†‡

∗ The Mind Research Network, Albuquerque, New Mexico, USA
† Computer Science Department, University of New Mexico, Albuquerque, New Mexico, USA

‡ Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, New Mexico, USA

Abstract—Distributions over permutations arise in appli-
cations ranging from multi-object tracking to ranking of
instances. The difficulty of dealing with these distributions
is caused by the size of their domain, which is factorial in
the number of considered entities (n!). It makes the direct
definition of a multinomial distribution over permutation space
impractical for all but a very small n. In this work we propose
an embedding of all n! permutations for a given n in a

surface of a hypersphere defined in R(n−1). As a result of the
embedding, we acquire ability to define continuous distribu-
tions over a hypersphere with all the benefits of directional
statistics. We provide polynomial time projections between
the continuous hypersphere representation and the n!-element
permutation space. The framework provides a way to use
continuous directional probability densities and the methods
developed thereof for establishing densities over permutations.
As a demonstration of the benefits of the framework we
derive an inference procedure for a state-space model over
permutations. We demonstrate the approach with simulations
on a large number of objects hardly manageable by the state
of the art inference methods, and an application to a real flight
traffic control dataset.

I. INTRODUCTION

In this paper, we consider the problem of approximate

representation and statistical inference for permutations.

Practically, permutations are important objects to data

mining because they arise in many data analysis problems

with structured output spaces. For example, permutations

have been used to develop statistical models of domains as

diverse as object tracking [1], election result modeling [2],

and Bayesian network structure search [3].

The data mining challenge arises from the combinatorial

structure of permutation spaces. To exactly represent a

general probability distribution over all permutations of n
objects requires n! − 1 parameters, which is infeasible for

all but trivially small domains. Thus, most work in the field

of permutation inference boils down to finding efficient and

effective approximations.

We believe that much of the challenge of permutation

modeling arises from the mathematical disparity between

discrete, combinatorial spaces (such as permutation spaces)

and continuous spaces (such as Euclidean real space). The

former are, a priori, fairly unstructured and expensive to

manipulate – little more can be done than explicitly enu-

merate the elements of the space. The latter, however,

come endowed with properties like continuity, convexity,

derivatives, and so on, on which are built most of the

infrastructure of optimization and representation.

We attempt to exploit some of the strengths of continuous

spaces for reasoning about permutations. Our key contribu-

tion is a polynomial time mapping between the space of

permutations and the hypersphere in Euclidean real space,

via the convex polytope known as the permutohedron [4].

Once we can map a sample of permutations to the surface

of the hypersphere, we can apply techniques from the rich

field of directional statistics [5] to represent and manipulate

probability distributions there. This provides Bayesian pos-

terior distributions over permutations. From there, we can

reverse our mapping to take points back to permutation

space, providing MAP estimates or efficient permutation

sampling (e.g., for an MCMC algorithm).

Prior approaches have worked by approximating a general

probability distribution with a restricted set of basis func-

tions [1], or by embedding the permutation space only im-

plicitly, and working with a heuristically chosen probability

distribution [6].

We show that our approach provides efficient, accurate

permutation inference by...

• We demonstrate an embedding of the n! permutation

set onto the surface of a hypersphere Sd centered at

the origin in Rd+1 with d = (n− 1)− 1.

– We propose a hypersphere embedding of permuta-

tions.

– We develop polynomial time transformations be-

tween the discrete n! permutation space and its

continuous hypersphere representation.

• We demonstrate a bridge between directional statis-

tics [5] and permutation sets that leads to efficient

inference.

– We propose the von Mises-Fisher density over

permutations.

– We develop efficient inference over permutations

in a state-space model.

∗ We employ closed-form product and marginal-

ization operations.

∗ We show efficient transformation of partially

observed permutations onto the surface of the

hypersphere Sd.

II. EMBEDDING PERMUTATIONS ONTO A HYPERSPHERE

In this work we use the widespread vector-based repre-

sentation of permutations, where a permutation on n objects

is denoted by a permuted version of the vector (1, 2, · · · , n).
These n-element vectors are elements of Rn. We will call

such vectors permutation vectors and denote them p.

A. Representation

We show how to embed a permutation set consisting of n!
elements onto the surface of a d-hypersphere, Sd, embedded

in Rn−1, where d = n− 2 consequently.

Our representation takes advantage of the geometry of

the permutohedron, which is defined as an (n− 1)-polytope
formed by the convex hull of n! permutation vectors [7].

The convex hull of the n! permutations of the vector

(0, 1, · · · , n− 1) is sometimes called the regular permu-

tohedron and is known to be the most symmetric among

the family of permutohedra [4], which also applies to the

permutohedron we are considering.

Next, we obtain a result (summarized in Lemma 1) that

the rest of the section is based on.

Lemma 1. The extreme points of the permutohedron are

located on the surface of a hypersphere of radius

rs =

√
1

12
(n3 − n) (1)

centered at the center of mass of all n! permutation vectors.

Proof: We first compute the center of mass and then

show that each permutation is located at an equal distance

from this center.

The center of mass for all the permutation vectors is

defined in Rn as cM = 1
n!

∑n!
i=1 pi. We observe that the

number of permutation vectors for which p1 = 1 is (n−1)!.
Additionally there are n possible values for p1, and, by

symmetry, this is true for any element of p. To say it in

a different way, it means that across all permutations, every

object occurs at a given vector index the same number of

times. This observation leads to an expression of an element

of the center of mass

cMi =
1

n!

n∑

j=1

j(n− 1)! =
1

n

n∑

j=1

j =
1

2
(n+ 1). (2)

To see that all permutations are equidistant from the center

of mass, we observe that since the actual order of elements

in p is irrelevant for the L2-norm, the following holds

‖cM − p‖2 =

√√√√
n∑

i=1

(
1

2
(n+ 1)− i

)2

. (3)

Summing the above series we arrive at (1).

The permutohedron is located on a hyperplane in Rn [4];

consequently the sphere that inscribes it is also defined in

that hyperplane, i.e. in Rn−1. A translation, scaling, and a

basis change is required to get the zero-centered unit-radius

hypersphere in Rn−1.

B. Transformations

Our goal is to use approaches from continuous mathemat-

ics to develop probability distributions on this hypersphere.

That will allow efficient representation and inference over

the set of permutations. However, this will only be useful

in practice when there is a way to efficiently transform

elements of one space to the other. Next we show how this

can be achieved in polynomial time.

We want to efficiently map vectors between the discrete

n! space of permutations and the continuous space of Sd.

This will require two different maps:

1) one-to-one function from n! permutation space to Sd

2) many-to-one function from Sd to n! permutation space

Item 2 poses a considerably more challenging problem

than item 1, because it requires finding the nearest discrete

point (permutation vector) to a continuous point, while the

former is already described in Lemma 1. We develop re-

quired transformations in the proof to the following lemma.

Lemma 2. Transformation of a single point between the

discrete n! permutation space and the surface of the origin-

centered (n − 1)-dimensional hypersphere takes no more

than polynomial time.

Proof: We will need additional notation before we

proceed. Let us denote by ρ an arbitrary vector in Rn

restricted to the surface of the hypersphere inscribing the

permutohedron, and by ρS its image on the hypersurface

Sd. We also employ an orthogonal matrix Q̃ = [Q;Qort]
whose rows span Rn, where the row Qort is collinear to the

cM , and n−1 rows of Q project into Rn−1 space containing

the permutohedron.1

Now we construct transformations for both directions.

From the permutation space to Sd the transformation

requires only a short sequence of linear operations, as it is

made possible by Lemma 1:

1) Put the center of mass at the origin by shifting the

permutation vector:

p̃ = p− cM (4)

2) Change the basis by projecting into the R(n−1) sub-

space:

p̂
S = Qp̃ (5)

3) Rescale by the radius to obtain a unit length vector

pS =
p̂
S

√
(n3 − n)/12

(6)

Since size of Q is n× (n− 1), the projection operation in

step 2 takes O(n2) time. Note that the basis can be obtained

1We use matlab semicolon notation for stacking matrices and vectors.

0.5

1

1.5

2

2.5

3

3.5

0.5

1

1.5

2

2.5

3

3.5

−1

0

1

2

3

4 (2,1,3)

(3,2,1) (2,3,1)

(3,1,2) (1,3,2)

(1,2,3)

(a) permutohedron for n = 3 (b) weight matrix

1 2 3

1

2

3

(c) matching solution

Figure 1: A step-by-step demonstration of how an arbitrary point on Sd is transformed to the closest vertex of the

permutohedron for the case when n = 3. Initially a point ρ is transformed from Sd to Rn (Figure 1a), then the weighting

matrix is constructed (Figure 1b), and finally the closest permutation is obtained by a matching algorithm (Figure 1c).

by the QR factorization of the center of mass vector cM ,

which is O(n2) in this case, and needs to be computed only

once for a given n.
From Sd to the permutation space the transformation

is more challenging. Now we have to linearly transform

the point from Sd to Rn and then, among n! possibilities,
find the permutation that is the closest, in L2 sense, to

the projection. (Since we are considering the points on the

surface of a hypersphere, the points closest in L2 sense will

also be the closest with respect to the geodesic distance. This

is true because a hypersphere is a closed convex manifold of

a constant curvature.) The transformation is easily done by

inverting the order of operations for going from Rn to Sd

(inverting an orthogonal transformation basis only requires

a matrix transpose):

ρ =

√
1

12
(n3 − n)Q̃T [ρS; 0] + cM (7)

which amounts to O(n2) operations. Next, we show how

to efficiently find the permutation vector closest to the

transformed point.

Given an arbitrary point ρ in Rn, corresponding to a point

on Sd, from expression (7), we introduce an auxiliary matrix

W:

Wij = (ρi − j)2 (8)

An example for n = 3 is shown in Figure 1a. The

hypersphere in this case is a R2 circle embedded in R3.

Permutation vectors are the vertices of the hexagon inscribed

in this circle. Point ρ is denoted by a star (its coordinates in

R3 are shown in Figure 1b). Figure 1b shows construction

of the corresponding cost matrix W.

We constructed W such that finding the permutation p

closest to the point ρ amounts to finding a p that minimizes
∑

i

W(i,p
i
). (9)

This is the same as matching every column and each row

to a single counterpart so that the sum of matching weights

(elements of W) is minimal. Figure 1c shows a matching

result as a 3 × 3 matrix, where column 1 is matched to

row 1, and column 2 is matched to row 2, and column 3 is

matched to row 3, signifying the permutation p closest to

ρ. This figure should also make it clear that the result of

the minimization is a permutation matrix, that automatically

provides us with the closest permutation vector.

If we treat the row indices of W as graph nodes, the

column indices as a separate set of graph nodes, and the

entries of W as edge weights connecting them, then our

goal is to find the minimum weight set of edges that

connects every row node to exactly one column node, and

vice versa. This is the familiar minimum weighted bipartite

matching problem [8]. This observation allows us to apply a

minimum weighted bipartite matching algorithm and obtain

the permutation p closest to ρ.

The running time of the widespread Hungarian algo-

rithm [8] for solving this problem is O(n2 log n + n2e),
where e is the number of edges in the bipartite graph.

Since the number of edges (roughly on the order of nonzero

entries in W) in our case can easily be n2, the running time

effectively becomes O(n4), which is the dominating term in

the developed transformations.

When each permutation on the permutohedron surface

is labeled with the corresponding ordering (inverse of this

permutation), then its neighbors (with respect to the per-

mutohedron) are those who are one step away in Kendall

tau distance [9]. Developments of this section allows us to

establish a continuous probability density on Sd. Coupling

the probability representations to the transformation oper-

ations bridges the gap between the discrete, combinatorial

space of permutations and the continuous, low-dimensional

hypersphere. This allows us to lift the large body of results

developed for directional statistics [5] directly to permuta-

tion inference. The next section demonstrates how this is

done.

III. DIRECTIONAL STATISTICS

A number of probability density functions on Sd have

been developed in the field of directional statistics [5]. A

detailed account is given for an interested reader in [5,

Chapter 9]. The directional statistics framework allows us

to define quite general classes of density functions over

permutations. In the rest of the paper, we use one of the basic

models to demonstrate the usefulness of our representation

and the model as well.

A. von Mises-Fisher distribution

This is a m-variate von Mises-Fisher2 (vMF) distribution

of a m-dimensional vector x, where ‖µ‖ = 1, κ ≥ 0 and

m ≥ 2:

f(x|µ, κ) = Zm (κ) eκµ
Tx (10)

with normalization term

Zm (κ) =
κm/2−1

(2π)m/2Im/2−1(κ)
, (11)

where Ir(·) is the rth order modified Bessel function of

the first kind and κ is called the concentration parameter.

Examples of this distribution in S2 are shown in Figure 2

for various values of µ and κ, which also demonstrates how

to establish a continuous density over permutations of 4

objects.

In terms of a pdf on permutations the vMF establishes a

distance-based model, where distances are geodesic on Sd.

The advantage of the formulation in a continuous space is

the ability to apply a range of operations on the pdf and still

end up with the result on Sd. This advantage is realized in

the inference procedures which we establish next.

B. Efficient inference in a state space model

The results presented above establish a framework in

which it is possible to define and manage in reasonable

time probability densities over permutations. An important

application of this framework is in the probabilistic data

association (PDA) [10]. In PDA we are interested in main-

taining links between objects and tracks under the noisy

tracking conditions. Ignoring the underlying position esti-

mation problem we focus on the part related to the identity

management, as in [11], which boils down to tracking

a hidden permutation (identity assignment) under a noisy

observed assignment.

In order to perform identity tracking of permutations in

the context of recursive Bayesian filtering (which we are

going to do) we need to define the following components:

1) A transition model, P (xt|xt−1);

2Sometimes also called the Langevin distribution.

2) An observation model, P (yt|xt) where yt is the noisy

observation of the hidden permutation vector xt;

3) A way to perform the following operations:

multiplication: (12)

P (xt|yt) ∝P (yt|xt)P (xt|yt−1)

marginalization: (13)

P (xt|yt−1) =

∫
P (xt|xt−1)P (xt−1|yt−1)dxt−1

Avoiding transformation overhead we restrict all of the

above to Sd. Hence, x and y are Sd representations of their

respective hidden and observed permutations. We define both

transition and observation models as vMF functions centered

at the true permutation. Due to similarity of the vMF model

to the multivariate Gaussian density, it seems natural to view

this recursive filter as an analogy of the Kalman filter. In this

view, the result of this sections is porting a widely successful

tracking model to the discrete n! permutation space.

To further stress the analogy with the Kalman fil-

ter, we show that projection operation can be computed

analytically in a closed form and marginalization oper-

ation can be efficiently approximated with good accu-

racy [5, 12]. In the following, we use subscripts obs, tr
and pos to attribute a parameter to observation, transi-

tion, and posterior distributions respectively. For observation

model P (yt|xt) ∝ vMF(yt, κobs) and posterior model

P (xt|yt−1) ∝ vMF(µpos, κpos) the multiplication opera-

tion results in a vMF for P (xt|yt) parametrized as

µt =
1

κ

(
κobsyt + κposµpos

)
(14)

κt = ‖κobsyt + κposµpos‖. (15)

In the case of a vMF transition model, the marginalization

can be performed with a reasonable accuracy and speed

using the fact that a vMF can be approximated by an angular

Gaussian and performing analytical convolution of angular

Gaussian with subsequent projection back to vMF space [5].

Resulting vMF P (xt|yt−1) is parametrized as:

µ = xt−1 + µpos (16)

κ = A−1
d (Ad(κpos)Ad(κtr)) (17)

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
(18)

The ratio of modified Bessel functions required for this

approach can be efficiently computed with high accuracy

by using Lentz method based on evaluating continued frac-

tions [13].

C. Partial observations

Analytical computation of the Bayesian recursive filtering

presented above relies on the fact that permutations are

observed completely. In tracking problems that would mean

the algorithm has to receive observations (up to noise) of

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

(3,1,2,4)

(3,2,1,4)

(4,1,2,3)

(4,2,1,3)

Figure 2: The von Mises-Fisher density function on S2 for different µ and κ. Lighter color indicates more probable areas.

Points that correspond to some of the permutations of 4 objects are also shown.

−1

0

1

−1

0

1

−1

0

1

(3,2,1,4)

(2,4,1,3)

(4,2,1,3)

(2,3,1,4)

(3,4,1,2)

(4,3,1,2)

Figure 3: An example of a fallback to a lower dimensional

permutohedron that needs to be integrated out when a partial

observation becomes available: in this case object 1 was

observed at track 3.

identities of every tracked object. This is a rare setting and

most commonly observations are available only partially.

When a partial observation of o objects becomes available,

the dimension of the unknown part of y is reduced from n to

(n−o). The mechanism of this is shown in Figure 3, where

we show what happens when an object identity 1 is observed

at track 3, while no other observations are available. The

unknown part of the representation of p on Sd needs to

be marginalized out to obtain the likelihood used in (12).

Figure 3 shows that this marginalization is straightforward

in Rn space. Unfortunately, to implement (13), we need to

marginalize on the surface of the sphere, Sd ⊂ R(n−1) – a

much more difficult task.

We project a permutation vector p into theRn−1 subspace

by:

p̃ =
(p− cM)√
(n3 − n)/12

(19)

y = QT p̃. (20)

In the case of a partial observation, we know which elements

of the vector being projected are consistent with the obser-

vation and are not going to change and which elements can

have any possible value. This allows us to split the resulting

vector y into

y = y
∗
+ y?, (21)

where y∗ and y? respectively denote the observed and

unobserved parts.

The likelihood with the unknown observations marginal-

ized out becomes:

1

Z

∫

y
?

eκ1yT

∗
x+κ1yT

?
xdy? =

1

Z
eκ1yT

∗
x
∫

y
?

eκ1yT

?
xdy?

(22)

Some details make computing the integral in (22) not

totally trivial: x,y
∗
, and y? are of different length; although

x is fixed, y
∗
and y? are not allowed to take any possible

angle in R(n−1). We omit the details of the derivation

dealing with these difficulties and just state the parameters

of the resulting vMF likelihood function:

µ =
y
∗

‖y
∗
‖2

κ = ‖κ1y∗
‖2 (23)

Thus, in the case of vMF we can execute a recursive

Bayesian filter using only analytical computation even in

the cases when only partially observed data is available.

This makes the state space model applicable in a much

wider range of scenarios than our initial model presented

in Section III-B.

IV. EXPERIMENTS

To demonstrate correctness of our approach, we show

inference of a fixed hidden permutation from its noisy partial

observations. Figure 4 shows results of this inference on

dataset of 10, 30 and 50 objects. In these first, synthetic

data, experiments, we first randomly chose a true (hidden)

permutation, ptrue. Figure 4 shows 9 cases of fully observed

data with various levels of noise (the plot of observation

error provides an idea of the difficulty of each problem).

Noisy observations were drawn from vMF(ptrue,κ). There
are 3000 observations per plot. Values of κ are listed. To also

have a sanity check we provide a plot of the error for the

case when noisy observation vectors are simply averaged,

computing cumulative average at each point, and then the

closest permutation vector is found. By the error in this

section we mean the ratio of incorrectly identified objects to

the total number of objects. As Figure 4 shows, our approach

always outperforms the averaging and quickly arrives at the

true underlying permutation, although larger n requires more

iterations to do so (e.g. for the case of n = 50 the method

does not converge within the displayed 3000 steps).

To demonstrate the behavior of our approach in the

missing data case, pm, was generated by hidingm percent of

entries from the noisy observation matrix, chosen uniformly

at random without replacement. Figure 5 shows that our

representation of the n! discrete permutation space is func-

tional and the approach can gracefully handle large number

of objects, partial observations and observation noise.

A significant advantage of our embedding approach is its

execution speed. We demonstrate it by comparing to the run-

ning time of the exact HMM inference that takes O((n!)2)
time. As Figure 6 shows, the polynomial complexity of our

approach makes a difference that allows to handle large

values of n in reasonable time.

Figure 6: Comparing wall-clock running time of our algo-

rithm based on treating permutations as angular data (PAD)

to the exact O((n!)3) approach for 1000 observations.

The above simulations were generated with the noise

model used by the inference and did not have a temporal

component, although it was applied to a really large state

space. Next we show experiments on a tracking dataset with

a non-vMF transition model. We use a dataset of planar

locations of aircraft within a 30 mile diameter of John

F. Kennedy airport of New York. The data, in streaming

format, is available at http://www4.passur.com/jfk.html. The

complexity of the plane routes and frequent crossings of

tracks in the planar projection make this an interesting

dataset for identity tracking. Identity tracking results on this

dataset, in the context of the symmetric semigroup approach

to permutation inference, were previously reported in [11].

Replicating the task reported in [11], we show results on

tracking datasets of 6 and 10 flights, dropping the 15 flights

dataset (but see below).

The dataset comes prelabeled and identities of flights

is always a sorted list as in the identity permutation

vector (1, 2, . . . , n). The dynamical behavior is introduced

by randomly swapping identities of flights i and j at

their respective locations xi and xj with probability

pswapexp(−‖xj(t)−xi(t)‖
2/(2s2)), where pswap = 0.1 and

s = 0.1 are strength and scale parameters respectively.

We then generated observation and hidden identity noise

in the same way as for the prior experiment. Figure 7

shows results of applying our identity tracking method to the

air traffic control dataset for various levels of observation

noise and amount of missing identity observations. Each

point on the figure shows the identity error (percentage

incorrect) averaged across all observations in the given

time period. Thus, although we have explicitly used our

temporal tracking model of Section III-B, only aggregate

performance measures are shown (for a similar evaluation

approach see [11]).

It is difficult to compare the performance to the method

of [11] applied to the same dataset, since it is not clear how

observation noise levels correspond to each other. However,

error values reported in [11] were 0.12 to 0.17 on the 6

flights dataset and 0.2 to 0.32 on the 10 flights dataset. In

the 6 flights case, this is comparable to what we get with our

approach for observation error below 20%, even when 20%

of the flight identities are unobserved. The case of 10 flights

is more difficult and we get results comparable to [11] only

for the fully observed case, but for the level of observation

error of 10%, 20% and 30%. Results of the application of

our state space model to this dataset indicate robustness of

the model to the choice of the transition model (at least in

the cases where noise level below 30%) which was different

from the generative model of our tracking inference engine.

V. CONCLUSIONS

The main result of this work is embedding permutations

into a continuous manifold, thus lifting a body of results

from directional statistics field [5] to the fields of rank-

ing, identity tracking and others, where permutations play

essential role. Among many potential applications of this

embedding we have chosen probabilistic identity tracking

and were able to set up a state-space model with efficient

recursive Bayesian filter that produced results comparable

with the state of the art techniques very efficiently. There

remains much to be done in this direction. However, a simple

model, that can be thought of as a continuous generalization

of the Mallows model [6, 14], equipped with results from the

field of directional statistics has efficiently produced results

of a reasonable accuracy. This is promising and encour-

ages further development of more complicated probability

distributions for permutations: further exploration of the

(a) κ = 11 (b) κ = 12 (c) κ = 27

(d) κ = 25 (e) κ = 50 (f) κ = 100

(g) κ = 25 (h) κ = 50 (i) κ = 100

Figure 4: Simulation results of inferring a static random permutation from its noisy observations for n ∈ {10, 30, 50}.
Percentage incorrect is the ratio of incorrectly assigned identities to their total number at any given iteration. Values of the

observation model concentration κ parameter increase from the left plot to the right indicating reduction in the observation

noise. The thin solid line indicating observation error shows that for the case of larger n we have made the problem more

difficult that for n = 10 by never letting the algorithm observe more that 80% of identities correctly at a given time.

Dash-dotted line with a square marker is the result of cumulative averaging of noisy observations and indicates that the

problem is indeed difficult and cannot be solved by a simple approach.

exponential family already developed in the field [5] as well

as developing more complex representations using spherical

harmonics representations.

ACKNOWLEDGMENTS

We thank Risi Kondor for generously providing the air

traffic control dataset. This work was supported by NIH

under grant numbers NCRR 1P20RR021938 and NIBIB

1R01EB000840. Dr. Lane’s work was supported by NSF

under Grant No. IIS-0705681.

REFERENCES

[1] J. Huang, C. Guestrin, and L. Guibas, “Fourier theo-

retic probabilistic inference over permutations,” Jour-

nal of Machine Learning Research, vol. 10, pp. 997–

1070, May 2009.

[2] J. Huang and C. Guestrin, “Learning hierarchical riffle

independent groupings from rankings,” in ICML, June

2010.

[3] N. Friedman and D. Koller, “Being bayesian about

(a) κ = 27, n = 10 (b) κ = 200, n = 30 (c) κ = 200, n = 50

Figure 5: Demonstration of the algorithm’s performance in the case of missing data. Each line corresponds to a certain

percent of missing observations, which is indicated in the figure legend.

(a) tracking identities of 6 flights (b) tracking identities of 10 flights

Figure 7: Tracking error on the air traffic control dataset for 6 and 10 planes as a function of observation noise shown

as the fraction of incorrectly reported planes. Each point of the plot shows the average percentage incorrect inferences for

all temporal observations of each experiment. Separate plots show error for partial observations when a fraction of object

identities is unobserved.

network structure. a bayesian approach to structure

discovery in bayesian networks,” January 2003.

[4] A. Postnikov, “Permutohedra, associahedra, and be-

yond,” International Mathematics Research Notices,

2009.

[5] K. V. Mardia and P. E. Jupp, Directional Statistics,

2nd ed. John Wiley & Sons, 2000.

[6] M. Meila, K. Phadnis, A. Patterson, and J. Bilmes,

“Consensus ranking under the exponential model,” in

UAI. Corvallis, Oregon: AUAI Press, 2007, pp. 285–

294.

[7] P. Gaiha and S. K. Gupta, “Adjacent vertices on a per-

mutohedron,” SIAM Journal on Applied Mathematics,

vol. 32, no. 2, pp. 323–327, 1977.

[8] D. B. West, Introduction to graph theory. Prentice

Hall, 2001.

[9] G. L. Thompson, “Generalized permutation polytopes

and exploratory graphical methods for ranked data,”

The Annals of Statistics, vol. 21, no. 3, pp. –1401,

1993.

[10] C. Rasmussen and G. D. Hager, “Probabilistic data as-

sociation methods for tracking complex visual objects,”

IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 23, no. 6, pp. 560–576, 2001.

[11] R. Kondor, A. Howard, and T. Jebara, “Multi-object

tracking with representations of the symmetric group,”

in AISTATS, March 2007.

[12] A. Chiuso and G. Picci, “Visual tracking of points as

estimation on the unit sphere,” The confluence of vision

and control, pp. 90–105, 1998.

[13] W. J. Lentz, “Generating bessel functions in mie scat-

tering calculations using continued fractions,” Applied

Optics, vol. 15, pp. 668–671, 1976.

[14] M. A. Fligner and J. S. Verducci, “Distance based rank-

ing models,” Journal of the Royal Statistical Society.

Series B (Methodological), vol. 48, no. 3, pp. 359–369,

1986.

