
CS 361, Lecture 19

Jared Saia

University of New Mexico

Outline

• Deletion in BSTs

• Probability Review

• Randomly built BSTs

1

Successor

• The successor of a node x is the node that comes after x in

the sorted order determined by an in-order tree walk.

• If all keys are distinct, the successor of a node x is the node

with the smallest key greater than x

• We can compute the successor of a node in O(logn) time

2

Tree-Successor

Tree-Successor(x){

if (right(x) != null){

return Tree-Minimum(right(x));

}

y = parent(x);

while (y!=null and x=right(y)){

x = y;

y = parent(y);

}

return y;

}

3

Successor Intuition

• Case 1: If right subtree of x is non-empty, successor(x) is

just the leftmost node in the right subtree

• Case 2: If the right subtree of x is empty and x has a suc-

cessor, then successor(x) is the lowest ancestor of x whose

left child is also an ancestor of x. (i.e. the lowest ancestor

of x whose key is ≥ key(x))

4

Insertion

Insert(T,x)

1. Let r be the root of T .

2. Do Tree-Search(r,key(x)) and let p be the last node pro-

cessed in that search

3. If p is nil (there is no tree), make x the root of a new tree

4. Else if key(x) ≤ p, make x the left child of p, else make x

the right child of p

5

Deletion

• Code is in book, basically there are three cases, two are easy

and one is tricky

• Case 1: The node to delete has no children. Then we just

delete the node

• Case 2: The node to delete has one child. Then we delete

the node and “splice” together the two resulting trees

6

Case 3

Case 3: The node, x to be deleted has two children

1. Swap x with Successor(x) (Successor(x) has no more than 1

child (why?))

2. Remove x, using the procedure for case 1 or case 2.

7

Example

8

Analysis

• All of these operations take O(h) time where h is the height

of the tree

• If n is the number of nodes in the tree, in the worst case, h

is O(n)

• However, if we can keep the tree balanced, we can ensure

that h = O(logn)

• Red-Black trees can maintain a balanced BST

9

Randomly Built BST

• What if we build a binary search tree by inserting a bunch of

elements at random?

• Q: What will be the average depth of a node in such a

randomly built tree? We’ll show that it’s O(logn)

10

Probability Review

• We want to answer the question: “What will be the average

depth of a node in a randomly built tree?”

• We can define a random variable which gives the depth of a

node chosen uniformly at random in the tree.

• We want to compute the expectation of this random variable.

• (Note: Appendix C in the book gives a good review of prob-

ability theory. If you are confused, make sure you read this

appendix)

11

Random Variable

• Recall that a random variable is a function from a sample

space to the real numbers

• It associates a real number with each possible outcome of

an experiment.

• For a random variable X and a real number x, P(X = x) is

the probability that the random variable X takes on the value

x.

12

Example

• Consider the experiment of rolling two 6-sided die.

• There are 36 possible outcomes of this experiment (6 ∗ 6)

• Define the random variable X to be the maximum of the two

values showing on the dice

• Then we can say that P(X = 3) = 5/36 since X assigns the

value of 3 to 5 of the 36 possible outcomes

((1,3),(2,3),(3,3),(3,2),(3,1))

13

Expectation

• A simple and useful summary of the distribution of a random

variable is the “average” of the values it takes on

• The expectation (or expected value) of a random variable X

is:

E(X) =
∑

x
x ∗ P(X = x)

14

Example

• Consider a game where you flip two coins

• You earn $3 for each head but lose $2 for each tail.

• Let X be a random variable representing your earnings. The

expected value of X is

E(X) = 6 ∗ P(2 H’s) + 1 ∗ P(1 H, 1 T) − 4 ∗ P(2 T’s)

= 6 ∗ (1/4) + 1(1/2) − 4(1/4)

= 1

15

Our Problem

• We want to answer the question: “What will be the average

depth of a node in a randomly built tree?”

• Define the random variable X to be the depth of a node

chosen uniformly at random in the tree

• X takes on n possible values, it takes on each value with

probability 1/n

16

Our Problem

• For a tree T and node x, let d(x, T) be the depth of node x

in T

• Define the total path length, P(T), to be the sum over all

nodes x in T of d(x, T)

• Then

E(X) =
1

n

∑

x∈T

d(x, T)

=
1

n
P(T)

• Thus we want to show that P(T) = O(n logn)

17

Analysis

“Shut up brain or I’ll poke you with a Q-Tip” - Homer Simpson

• Let Tl, Tr be the left and right subtrees of T respectively.

Let n be the number of nodes in T

• Then P(T) = P(Tl) + P(Tr) + n − 1. Why?

18

Analysis

• Let P(n) be the expected total depth of all nodes in a ran-

domly built binary tree with n nodes

• Note that for all i, 0 ≤ i ≤ n − 1, the probability that Tl has

i nodes and Tr has n − i − 1 nodes is 1/n.

• Thus P(n) = 1
n

∑n−1
i=0(P(i) + P(n − i − 1) + n − 1)

19

Analysis

P(n) =
1

n

n−1∑

i=0

(P(i) + P(n − i − 1) + n − 1) (1)

=
1

n
(
n−1∑

i=0

(P(i) + P(n − i − 1)) +
1

n
(
n−1∑

i=0

n − 1)) (2)

=
1

n
(
n−1∑

i=0

(P(i) + P(n − i − 1)) + Θ(n) (3)

=
2

n
(
n−1∑

k=1

P(k)) + Θ(n) (4)

(5)

20

Analysis

• We have P(n) = 2
n(

∑n−1
k=1 P(k)) + Θ(n)

• This is the same as the recurrence for randomized Quicksort

• Recall from hw problem 7-2, that the solution to this recur-

rence is P(n) = O(n logn)

21

Take Away

• P(n) is the expected total depth of all nodes in a randomly

built binary tree with n nodes.

• We’ve shown that P(n) = O(n logn)

• There are n nodes total

• Thus the expected average depth of a node is O(logn)

22

Take Away

• The expected average depth of a node in a randomly built

binary tree is O(logn)

• This implies that operations like search, insert, delete take

expected time O(logn) for a randomly built binary tree

23

Warning!

• In many cases, data is not inserted randomly into a binary

search tree

• I.e. many binary search trees are not “randomly built”

• For example, data might be inserted into the binary search

tree in almost sorted order

• Then the BST would not be randomly built, and so the

expected average depth of the nodes would not be O(logn)

24

What to do?

• A Red-Black tree implements the dictionary operations in

such a way that the height of the tree is always O(logn),

where n is the number of nodes

• This will guarantee that no matter how the tree is built that

all operations will always take O(logn) time

• Next time we’ll see how to create Red-Black Trees

25

