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Outline

• Red-Black Trees
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Randomly Built BSTs

• We want to answer the question: “What will be the average

depth of a node in a randomly built tree?”

• Define the random variable X to be the depth of a node

chosen uniformly at random in the tree

• X takes on n possible values, it takes on each value with

probability 1/n
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Our Problem

• For a tree T and node x, let d(x, T) be the depth of node x

in T

• Define the total path length, P(T), to be the sum over all

nodes x in T of d(x, T)

• Then

E(X) =
1

n

∑

x∈T

d(x, T)

=
1

n
P(T)

• Thus we want to show that P(T) = O(n logn)
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Analysis

“Shut up brain or I’ll poke you with a Q-Tip” - Homer Simpson

• Let Tl, Tr be the left and right subtrees of T respectively.

Let n be the number of nodes in T

• Then P(T) = P(Tl) + P(Tr) + n − 1. Why?
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Analysis

• Let P(n) be the expected total depth of all nodes in a ran-

domly built binary tree with n nodes

• Note that for all i, 0 ≤ i ≤ n − 1, the probability that Tl has

i nodes and Tr has n − i − 1 nodes is 1/n.

• Thus P(n) = 1
n

∑n−1
i=0(P(i) + P(n − i − 1) + n − 1)
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Analysis

P(n) =
1

n

n−1∑

i=0

(P(i) + P(n − i − 1) + n − 1) (1)

=
1

n
(
n−1∑

i=0

(P(i) + P(n − i − 1)) +
1

n
(
n−1∑

i=0

n − 1)) (2)

=
1

n
(
n−1∑

i=0

(P(i) + P(n − i − 1)) + Θ(n) (3)

=
2

n
(
n−1∑

k=1

P(k)) + Θ(n) (4)

(5)
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Analysis

• We have P(n) = 2
n(

∑n−1
k=1 P(k)) + Θ(n)

• This is the same as the recurrence for randomized Quicksort

• Recall from hw problem 7-2, that the solution to this recur-

rence is P(n) = O(n logn)
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Take Away

• P(n) is the expected total depth of all nodes in a randomly

built binary tree with n nodes.

• We’ve shown that P(n) = O(n logn)

• There are n nodes total

• Thus the expected average depth of a node is O(logn)
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Take Away

• The expected average depth of a node in a randomly built

binary tree is O(logn)

• This implies that operations like search, insert, delete take

expected time O(logn) for a randomly built binary tree
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Warning!

• In many cases, data is not inserted randomly into a binary

search tree

• I.e. many binary search trees are not “randomly built”

• For example, data might be inserted into the binary search

tree in almost sorted order

• Then the BST would not be randomly built, and so the

expected average depth of the nodes would not be O(logn)
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What to do?

• A Red-Black tree implements the dictionary operations in

such a way that the height of the tree is always O(logn),

where n is the number of nodes

• This will guarantee that no matter how the tree is built that

all operations will always take O(logn) time
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What is a RB-Tree

• A RB-Tree is a balanced binary search tree

• The height of the tree is always O(logn) where n is the

number of nodes in the tree
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RB Trees

• Each node has a “color” field in addition to a key, left, right,

and parent pointer

• If the child or parent of a node does not exist, the corre-

sponding pointer field will contain the value NIL

• We will say that these NIL’s are pointers to external nodes

(leaves) of the tree, and say that all key-bearing nodes are

internal nodes of the tree
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Red-Black Properties

A BST is a red-black tree if it satisfies the RB-Properties

1. Every node is either red or black

2. The root is black

3. Every leaf (NIL) is black

4. If a node is red, then both its children are black

5. For each node, all paths from the node to descendant leaves

contain the same number of black nodes
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Example RB-Tree
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Black Height

• Black-height of a node x, bh(x) is the number of black nodes

on any path from, but not including x down to a leaf node.

• Note that the black-height of a node is well-defined since all

paths have the same number of black nodes

• The black-height of an RB-Tree is just the black-height of

the root
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Key Lemma

• Lemma: A RB-Tree with n internal nodes has height at most

2 log(n + 1)

• Proof Sketch:

1. The subtree rooted at the node x contains at least

2bh(x) − 1 internal nodes

2. For the root r, bh(r) ≥ h/2, thus n ≥ 2h/2 − 1. Taking

logs of both sides, we get that h ≤ 2 log(n + 1)
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Proof

1) The subtree rooted at the node x contains at least 2bh(x) − 1

internal nodes. Show by induction on the height of x.

• BC: If the height of x is 0, then x is a leaf, and subtree

rooted at x does indeed contain 20 − 1 = 0 internal nodes

• IH: For all nodes y of height less than x, the subtree rooted

at y contains at least 2bh(y) − 1 internal nodes.

• IS: Consider a node x which is an internal node with two

children(all internal nodes have two children). Each child

has black-height of either bh(x) or bh(x) − 1 (the former if

it is red, the latter if it is black). Since the height of these

children is less than x, we can apply the inductive hypothesis

to conclude that each child has at least 2bh(x)−1 − 1 internal

nodes. This implies that the subtree rooted at x has at least

(2bh(x)−1−1)+(2bh(x)−1−1)+1 = 2bh(x)−1 internal nodes.

This proves the claim.
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Maintenance?

• How do we ensure that the Red-Black Properties are main-

tained?

• I.e. when we insert a new node, what do we color it? How do

we re-arrange the new tree so that the Red-Black Property

holds?

• How about for deletions?
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Left-Rotate

• Left-Rotate(x) takes a node x and “rotates” x with its right

child

• Right-Rotate is the symmetric operation

• Both Left-Rotate and Right-Rotate preserve the BST Prop-

erty

• We’ll use Left-Rotate and Right-Rotate in the RB-Insert pro-

cedure
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Example
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Binary Search Tree Property

• Let x be a node in a binary search tree. If y is a node in the

left subtree of x, then key(y)≤key(x). If y is a node in the

right subtree of x then key(y)≥key(x)
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In-Class Exercise

Show that Left-Rotate(x) maintains the BST Property. In other

words, show that if the BST Property was true for the tree

before the Left-Rotate(x) operation, then it’s true for the tree

after the operation.

• Show that after rotation, the BST property holds for the

entire subtree rooted at x

• Show that after rotation, the BST property holds for the

subtree rooted at y

• Now argue that after rotation, the BST property holds for

the entire tree
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