
CS 361, Lecture 22

Jared Saia

University of New Mexico

Outline

• Red Black Trees

• Other Balanced Trees

1

HW Questions

• Are there any questions on the current HW?

2

Red-Black Properties

A BST is a red-black tree if it satisfies the RB-Properties

1. Every node is either red or black

2. The root is black

3. Every leaf (NIL) is black

4. If a node is red, then both its children are black

5. For each node, all paths from the node to descendant leaves

contain the same number of black nodes

3



Left-Rotate

• Left-Rotate(x) takes a node x and “rotates” x with its right

child

• Right-Rotate is the symmetric operation

• Both Left-Rotate and Right-Rotate preserve the BST Prop-

erty

• We’ll use Left-Rotate and Right-Rotate in the RB-Insert pro-

cedure

4

Picture

x

y

y

x
T1

T2 T3
T1 T2

T3

Left−Rotate(x)

Right−Rotate(y)

5

Example

x

y

5

7

6 8

3

42

y

x

7

5

3

2 4

6

8

Left−Rotate(x)

6

Binary Search Tree Property

• Let x be a node in a binary search tree. If y is a node in the

left subtree of x, then key(y)≤key(x). If y is a node in the

right subtree of x then key(y)≥key(x)

7



In-Class Exercise

Show that Left-Rotate(x) maintains the BST Property. In other

words, show that if the BST Property was true for the tree

before the Left-Rotate(x) operation, then it’s true for the tree

after the operation.

• Show that after rotation, the BST property holds for the

entire subtree rooted at x

• Show that after rotation, the BST property holds for the

subtree rooted at y

• Now argue that after rotation, the BST property holds for

the entire tree

8

RB-Insert(T,z)

1. Set left(z) and right(z) to be NIL

2. Let y be the last node processed during a search for z in T

3. Insert z as the appropriate child of y (left child if key(z)≤ y,

right child otherwise)

4. Color z red

5. Call the procedure RB-Insert-Fixup

9

RB-Insert-Fixup(T,z)

RB-Insert-Fixup(T,z){

while (color(p(z)) is red){

case 1: z’s uncle, y, is red{

do case 1

}

case 2: z’s uncle, y, is black and z is a right child{

do case 2

}

case 3: z’s uncle, y, is black and z is a left child{

do case 3

}

}

color(root(T)) = black;

}

10

Case 1

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

	 	 		 	 		 	 		 	 		 	 	


 
 

 
 

 
 

 
 

 
 


� � �� � �� � �� � �� � �

D

B

A

C C

A D

B

C

B

A

D

C

B

A

D

T1

T2 T3

T4 T5

T1 T2

T3 T4 T5

T1

T2 T3

T4 T5

T1 T2

T3 T4 T5

z

y

new z

z

y

new z

11



Case 2 and 3

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

B

A

C

T1

T2 T3

z

T4 y

C

B

A

T1 T2

T3

T4

Case 2
Case 3

B

A C

z

z

y

T1 T2 T3 T4

12

Loop Invariant

At the start of each iteration of the loop:

• Node z is red

• If parent(z) is the root, then parent(z) is black

• If there is a violation of the red-black properties, there is at

most one violation, and it is either property 2 or 4. If there is

a violation of property 2, it occurs because z is the root and

is red. If there is a violation of property 4, it occurs because

both z and parent(z) are red.

13

Pseudocode

• Detailed Pseudocode for RB-Insert and RB-Insert-Fixup is in

the book, Chapter 13.3

• A detailed proof of correctness for RB-Insert-Fixup in the the

same Chapter

• Code for RB-Deletion is also in Chapter 13

14

Other Balanced BSTs

• We’ll now briefly discuss some other balanced BSTs

• They all implement Insert, Delete, Lookup, Successor, Pre-

decessor, Maximum and Minimum efficiently

15



AVL Trees

• An AVL tree is height-balanced: For each node x, the heights

of the left and right subtrees of x differ by at most 1

• Each node has an additional height field h(x)

• Claim: An AVL tree with n nodes has height O(logn)

16

AVL Trees

• Claim: An AVL tree with n nodes has height O(logn)

• Q: For an AVL tree of height h, how many nodes must it

have in it?

• A: We can write a recurrence relation. Let T(h) be the

minimum number of nodes in a tree of height h

• Then T(h) = T(h − 1) + T(h − 2) + 1, T(2) = T(1) ≥ 1

• This is similar to the recurrence relation for Fibonnaci num-

bers! Solution:

T(h) =
1√
5

(

1 +
√

5

2

)h

− 2

17

AVL Trees

• So we have the equation n > T(h). Let φ = 1+
√

5
2 . Then:

n ≥
1√
5
(φh) − 2 (1)

logn ≥ log(
1√
5
) + h logφ − 1 (2)

logn − log(
1√
5
) + 1 ≥ h logφ (3)

C ∗ logn ≥ h (4)

• Where the final inequality holds for appropriate constant C,

and for n large enough. The final inequality implies that

h = O(logn)

18

AVL Tree Insertion

• After insert into an AVL tree, the tree may no longer be

height-balanced

• Need to “fix-up” the subtrees so that they become height-

balanced again

• Can do this using rotations (similar to case for RB-Trees)

• Similar story for deletions

19



B-Trees

• B-Trees are balanced search trees designed to work well on

disks

• B-Trees are not binary trees: each node can have many

children

• Each node of a B-Tree contains several keys, not just one

• When doing searches, we decide which child link to follow by

finding the correct interval of our search key in the key set

of the current node.

20

Disk Accesses

• Consider any search tree

• The number of disk accesses per search will dominate the

run time

• Unless the entire tree is in memory, there will usually be a

disk access every time an arbitrary node is examined

• The number of disk accesses for most operations on a B-tree

is proportional to the height of the B-tree

• I.e. The info on each node of a B-tree can be stored in main

memory

21

B-Tree Properties

The following is true for every node x

• x stores keys, key1(x), . . . keyl(x) in sorted order (nondecreas-

ing)

• x contains pointers, c1(x), . . . , cl+1(x) to its children

• Let ki be any key stored in the subtree rooted at the i-th child

of x, then k1 ≤ key1(x) ≤ k2 ≤ key2(x) · · · ≤ keyl(x) ≤ kl+1

22

B-Tree Properties

• All leaves have the same depth

• Lower and upper bounds on the number of keys a node can

contain, given as a function of a fixed integer t:

– Every node other than the root must have ≥ (t− 1) keys,

and t children. If the tree is non-empty, the root must

have at least one key (and 2 children)

– Every node can contain at most 2t−1 keys, so any internal

node can have at most 2t children

23



Note

• The above properties imply that the height of a B-tree is no

more than logt
n+1
2 , for t ≥ 2, where n is the number of keys.

• If we make t, larger, we can save a larger (constant) fraction

over RB-trees in the number of nodes examined

• A (2-3-4)-tree is just a B-tree with t = 2

24

In-Class Exercise

We will now show that for any B-Tree with height h and n keys,

h ≤ logt
n+1
2 , where t ≥ 2.

Consider a B-Tree of height h > 1

• Q1: What is the minimum number of nodes at depth 1, 2,

and 3

• Q2: What is the minimum number of nodes at depth i?

• Q3: Now give a lowerbound for the total number of keys

(e.g. n ≥???)

• Q4: Show how to solve for h in this inequality to get an

upperbound on h

25

Splay Trees

• A Splay Tree is a kind of BST where the standard operations

run in O(logn) amortized time

• This means that over l operations (e.g. Insert, Lookup,

Delete, etc), where l is sufficiently large, the total cost is

O(l ∗ logn)

• In other words, the average cost per operation is O(logn)

• However a single operation could still take O(n) time

• In practice, they are very fast

26

Skip Lists

• Technically, not a BST, but they implement all of the same

operations

• Very elegant randomized data structure, simple to code but

analysis is subtle

• They guarantee that, with high probability, all the major op-

erations take O(logn) time

• We’ll discuss them more next class

27



High Level Analysis

Comparison of various BSTs

• RB-Trees: + guarantee O(logn) time for each operation,

easy to augment, − high constants

• AVL-Trees: + guarantee O(logn) time for each operation,

− high constants

• B-Trees: + works well for trees that won’t fit in memory, −
inserts and deletes are more complicated

• Splay Tress: + small constants, − amortized guarantees only

• Skip Lists: + easy to implement, − runtime guarantees are

probabilistic only

28

Which Data Structure to use?

• Splay trees work very well in practice, the “hidden constants”

are small

• Unfortunately, they can not guarantee that every operation

takes O(logn)

• When this guarantee is required, B-Trees are best when the

entire tree will not be stored in memory

• If the entire tree will be stored in memory, RB-Trees, AVL-

Trees, and Skip Lists are good

29

Skip List

• Technically, not a BST, but they implement all of the same

operations

• Very elegant randomized data structure, simple to code but

analysis is subtle

• They guarantee that, with high probability, all the major op-

erations take O(logn) time

30

Skip List

• A skip list is basically a collection of doubly-linked lists,

L1, L2, . . . , Lx, for some integer x

• Each list has a special head and tail node, the keys of these

nodes are assumed to be −MAXINT and +MAXINT respec-

tively

• The keys in each list are in sorted order (non-decreasing)

31



Skip List

• Every key is in the list L1.

• For all i > 2, if a key x is in the list Li, it is also in Li−1.

Further there are up and down pointers between the x in Li

and the x in Li−1.

• All the head(tail) nodes from neighboring lists are inter-

connected

32

Example

1 2

2

3 4

4

4

5

5 6head tail

head

head

tail

tail

33

Search

Search(k){

pLeft = L_x.head;

for (i=x;i>=0;i--){

Search from pLeft in L_i to get the rightmost elem, r,

with value <= k;

pLeft = pointer to r in L_(i-1);

}

if (pLeft==k)

return pLeft

else

return nil

}

}

34


