
CS 361, Lecture 23

Jared Saia

University of New Mexico

Outline

• B-Trees

• Skip Lists

1

B-Trees

• B-Trees are balanced search trees designed to work well on

disks

• B-Trees are not binary trees: each node can have many

children

• Each node of a B-Tree contains several keys, not just one

• When doing searches, we decide which child link to follow by

finding the correct interval of our search key in the key set

of the current node.

2

Disk Accesses

• Consider any search tree

• The number of disk accesses per search will dominate the

run time

• Unless the entire tree is in memory, there will usually be a

disk access every time an arbitrary node is examined

• The number of disk accesses for most operations on a B-tree

is proportional to the height of the B-tree

• I.e. The info on each node of a B-tree can be stored in main

memory

3



B-Tree Properties

The following is true for every node x

• x stores keys, key1(x), . . . keyl(x) in sorted order (nondecreas-

ing)

• x contains pointers, c1(x), . . . , cl+1(x) to its children

• Let ki be any key stored in the subtree rooted at the i-th child

of x, then k1 ≤ key1(x) ≤ k2 ≤ key2(x) · · · ≤ keyl(x) ≤ kl+1

4

B-Tree Properties

• All leaves have the same depth

• Lower and upper bounds on the number of keys a node can

contain, given as a function of a fixed integer t:

– Every node other than the root must have ≥ (t− 1) keys,

and t children. If the tree is non-empty, the root must

have at least one key (and 2 children)

– Every node can contain at most 2t−1 keys, so any internal

node can have at most 2t children

5

Note

• The above properties imply that the height of a B-tree is no

more than logt
n+1
2 , for t ≥ 2, where n is the number of keys.

• If we make t, larger, we can save a larger (constant) fraction

over RB-trees in the number of nodes examined

• A (2-3-4)-tree is just a B-tree with t = 2

6

Example B-Tree

10

1 , 2

3 , 6

4 , 5 7 , 8, 9 15 , 17 19 , 2111 , 12

14 , 18 , 22

23 , 24

7



In-Class Exercise

We will now show that for any B-Tree with height h and n keys,

h ≤ logt
n+1
2 , where t ≥ 2.

Consider a B-Tree of height h > 1

• Q1: What is the minimum number of nodes at depth 1, 2,

and 3

• Q2: What is the minimum number of nodes at depth i?

• Q3: Now give a lowerbound for the total number of keys

(e.g. n ≥???)

• Q4: Show how to solve for h in this inequality to get an

upperbound on h

8

Splay Trees

• A Splay Tree is a kind of BST where the standard operations

run in O(logn) amortized time

• This means that over l operations (e.g. Insert, Lookup,

Delete, etc), the total cost is O(l ∗ logn)

• In other words, the average cost per operation is O(logn)

• However a single operation could still take O(n) time

• In practice, they are very fast

9

Skip Lists

• Technically, not a BST, but they implement all of the same

operations

• Very elegant randomized data structure, simple to code but

analysis is subtle

• They guarantee that, with high probability, all the major op-

erations take O(logn) time

10

High Level Analysis

Comparison of various BSTs

• RB-Trees: + guarantee O(logn) time for each operation,

easy to augment, − high constants

• AVL-Trees: + guarantee O(logn) time for each operation,

− high constants

• B-Trees: + works well for trees that won’t fit in memory, −

inserts and deletes are more complicated

• Splay Tress: + small constants, − amortized guarantees only

• Skip Lists: + easy to implement, − runtime guarantees are

probabilistic only

11



Which Data Structure to use?

• Splay trees work very well in practice, the “hidden constants”

are small

• Unfortunately, they can not guarantee that every operation

takes O(logn)

• When this guarantee is required, B-Trees are best when the

entire tree will not be stored in memory

• If the entire tree will be stored in memory, RB-Trees, AVL-

Trees, and Skip Lists are good

12

Skip List

• Technically, not a BST, but they implement all of the same

operations

• Very elegant randomized data structure, simple to code but

analysis is subtle

• They guarantee that, with high probability, all the major op-

erations take O(logn) time

13

Skip List

• A skip list is basically a collection of doubly-linked lists,

L1, L2, . . . , Lx, for some integer x

• Each list has a special head and tail node, the keys of these

nodes are assumed to be −MAXINT and +MAXINT respec-

tively

• The keys in each list are in sorted order (non-decreasing)

14

Skip List

• Every node is stored in the bottom list

• For each node in the bottom list, we flip a coin over and

over until we get tails. For each heads, we make a duplicate

of the node.

• The duplicates are stacked up in levels and the nodes on

each level are strung together in sorted linked lists

• Each node v stores a search key (key(v)), a pointer to its

next lower copy (down(v)), and a pointer to the next node

in its level (right(v)).

15



Example

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

1 2 3 4 5 6 7 8 90

1 6 7 90

1 6 7

3

1 7

7

16

Search

• To do a search for a key, x, we start at the leftmost node L

in the highest level

• We then scan through each level as far as we can without

passing the target value x and then proceed down to the next

level

• The search ends either when we find the key x or fail to find

x on the lowest level

17

Search

SkipListFind(x, L){

v = L;

while (v != NULL) and (Key(v) != x){

if (Key(Right(v)) > x)

v = Down(v);

else

v = Right(v);

}

return v;

}

18

Search Example

−∞ +∞1 2 3 4 5 6 7 8 90

−∞ +∞1 6 7 90

−∞ +∞1 6 7

3

−∞ +∞1 7

−∞ +∞7

−∞ +∞

19



Insert

p is a constant between 0 and 1, typically p = 1/2, let rand()

return a random value between 0 and 1

Insert(k){

First call Search(k), let pLeft be the leftmost elem <= k in L_1

Insert k in L_1, to the right of pLeft

i = 2;

while (rand()<= p){

insert k in the appropriate place in L_i;

}

20

Deletion

• Deletion is very simple

• First do a search for the key to be deleted

• Then delete that key from all the lists it appears in from

the bottom up, making sure to “zip up” the lists after the

deletion

21

Analysis

• Intuitively, each level of the skip list has about half the num-

ber of nodes of the previous level, so we expect the total

number of levels to be about O(logn)

• Similarly, each time we add another level, we cut the search

time in half except for a constant overhead

• So after O(logn) levels, we would expect a search time of

O(logn)

• We will now formalize these two intuitive observations

22

Height of Skip List

• For some key, i, let Xi be the maximum height of i in the

skip list.

• Q: What is the probability that Xi ≥ 2 logn?

• A: If p = 1/2, we have:

P(Xi ≥ 2 logn) =

(

1

2

)2 logn

=
1

(2logn)2

=
1

n2

• Thus the probability that a particular key i achieves height

2 logn is 1
n2

23



Height of Skip List

• Q: What is the probability that any key achieves height

2 logn?

• A: We want

P(X1 ≥ 2 logn or X2 ≥ 2 logn or . . . or Xn ≥ 2 logn)

• By a Union Bound, this probability is no more than

P(X1 ≥ k logn) + P(X2 ≥ k logn) + · · · + P(Xn ≥ k logn)

• Which equals:
n

∑

i=1

1

n2
=

n

n2
= 1/n

24

Height of Skip List

• This probability gets small as n gets large

• In particular, the probability of having a skip list of size ex-

ceeding 2 logn is o(1)

• If an event occurs with probability 1 − o(1), we say that it

occurs with high probability

• Key Point: The height of a skip list is O(logn) with high

probability.

25

Expected Space

A trick for computing expectations of discrete positive random

variables:

• Let X be a discrete r.v., that takes on values from 1 to n

E(X) =
n

∑

i=1

P(X ≥ i)

• Why???

26

In-Class Exercise

Q: How much memory do we expect a skip list to use up?

• Let Xi be the number of lists elem i is inserted in

• Q: What is P(Xi ≥ 1), P(Xi ≥ 2), P(Xi ≥ 3)?

• Q: What is P(Xi ≥ k) for general k?

• Q: What is E(Xi)?

• Q: Let X =
∑n

i=1 Xi. What is E(X)?

27



Search Time

• Its easier to analyze the search time if we imagine running

the search backwards

• Imagine that we start at the found node v in the bottommost

list and we trace the path backwards to the top leftmost

senitel, L

• This will give us the length of the search path from L to v

which is the time required to do the search

28

Backwards Search

SLFback(v){

while (v != L){

if (Up(v)!=NIL)

v = Up(v);

else

v = Left(v);

}}

29

Backward Search

• For every node v in the skip list Up(v) exists with probability

1/2. So for purposes of analysis, SLFBack is the same as

the following algorithm:

FlipWalk(v){

while (v != L){

if (COINFLIP == HEADS)

v = Up(v);

else

v = Left(v);

}}

30

Analysis

• For this algorithm, the expected number of heads is exactly

the same as the expected number of tails

• Thus the expected run time of the algorithm is twice the

expected number of upward jumps

• Since we already know that the number of upward jumps

is O(logn) with high probability, we can conclude that the

expected search time is O(logn)

31


