CS 361, Lecture 23

Jared Saia
University of New Mexico

Outline —

—

o B-Trees
e Skip Lists

B-Trees —_

—

B-Trees are balanced search trees designed to work well on
disks

B-Trees are not binary trees: each node can have many
children

Each node of a B-Tree contains several keys, not just one
When doing searches, we decide which child link to follow by
finding the correct interval of our search key in the key set
of the current node.

Disk AccesseS ——

—

Consider any search tree

The number of disk accesses per search will dominate the
run time

Unless the entire tree is in memory, there will usually be a
disk access every time an arbitrary node is examined

The number of disk accesses for most operations on a B-tree
is proportional to the height of the B-tree

I.,e. The info on each node of a B-tree can be stored in main
memory

— B-Tree PropertieS m————— Note ———

The following is true for every node x

e The above properties imply that the height of a B-tree is no

e zx stores keys, keyi(x),...key;(x) in sorted order (nondecreas- more than logy ”T‘H for t > 2, where n is the number of keys.
ing) e If we make t, larger, we can save a larger (constant) fraction

e x contains pointers, ci(x),...,¢41(x) to its children over RB-trees in the number of nodes examined

e Let k; be any key stored in the subtree rooted at the i-th child o A (2-3-4)-tree is just a B-tree with t =2

of z, then k1 < keyi(z) < ko < keya(z) - - < keyy(z) < kg

— B-Tree PropertieS m———— — Example B-Tree ——

e All leaves have the same depth
e Lower and upper bounds on the number of keys a node can
contain, given as a function of a fixed integer ¢:

— Every node other than the root must have > (t — 1) keys,
and ¢t children. If the tree is non-empty, the root must
have at least one key (and 2 children)

— Every node can contain at most 2t—1 keys, so any internal
node can have at most 2t children

o In-Class Exercise —— L Skip ListS ——

We will now show that for any B-Tree with height h and n keys,
h < log; % where t > 2.

e Technically, not a BST, but they implement all of the same
operations

e Very elegant randomized data structure, simple to code but
analysis is subtle

e They guarantee that, with high probability, all the major op-
erations take O(logn) time

Consider a B-Tree of height h > 1

e Q1: What is the minimum number of nodes at depth 1, 2,
and 3

e Q2: What is the minimum number of nodes at depth 7

e Q3: Now give a lowerbound for the total number of keys
(e.g. n>777)

e Q4: Show how to solve for h in this inequality to get an
upperbound on h

Splay Trees — High Level Analysis —

I_ I_

Comparison of various BSTs

e A Splay Tree is a kind of BST where the standard operations e RB-Trees: + guarantee O(logn) time for each operation,
run in O(logn) amortized time easy to augment, — high constants

e This means that over [operations (e.g. Insert, Lookup, e AVL-Trees: + guarantee O(logn) time for each operation,
Delete, etc), the total cost is O(l *x logn) — high constants

e In other words, the average cost per operation is O(logn) e B-Trees: 4 works well for trees that won't fit in memory, —

e However a single operation could still take O(n) time inserts and deletes are more complicated

e In practice, they are very fast e Splay Tress: + small constants, — amortized guarantees only

e Skip Lists: 4+ easy to implement, — runtime guarantees are
probabilistic only

. 5 i)
o Which Data Structure to use? ——_ L Skip List ——

e Splay trees work very well in practice, the “hidden constants”

are small e A skip list is basically a collection of doubly-linked lists,
e Unfortunately, they can not guarantee that every operation Lq,Lp,...,Ly, for some integer x

takes O(logn) e Each list has a special head and tail node, the keys of these
e When this guarantee is required, B-Trees are best when the nodes are assumed to be —MAXINT and +MAXINT respec-

entire tree will not be stored in memory tively
e If the entire tree will be stored in memory, RB-Trees, AVL- e The keys in each list are in sorted order (non-decreasing)

Trees, and Skip Lists are good

12 14 |

Skip List —— Skip List ——

I_ I_

e Every node is stored in the bottom list

e For each node in the bottom list, we flip a coin over and
over until we get tails. For each heads, we make a duplicate
of the node.

e The duplicates are stacked up in levels and the nodes on
each level are strung together in sorted linked lists

e Each node v stores a search key (key(v)), a pointer to its
next lower copy (down(v)), and a pointer to the next node
in its level (right(v)).

e Technically, not a BST, but they implement all of the same
operations

e Very elegant randomized data structure, simple to code but
analysis is subtle

e They guarantee that, with high probability, all the major op-
erations take O(logn) time

13I 15|

Example —— Search ——

I_ I_

SkipListFind(x, L){
v = L;
while (v != NULL) and (Key(v) !'= x){
if (Key(Right(v)) > x)
v = Down(v);

else
v = Right(v);

}
return v;

}

16I 18|

o Search —— L Search Example ——

e To do a search for a key, z, we start at the leftmost node L
in the highest level

e We then scan through each level as far as we can without
passing the target value x and then proceed down to the next
level

e The search ends either when we find the key x or fail to find
x on the lowest level

17 19,

— Insert —— — AnalysisS ——

p is a constant between 0 and 1, typically p = 1/2, let rand()

return a random value between 0 and 1 e Intuitively, each level of the skip list has about half the num-
ber of nodes of the previous level, so we expect the total

Insert(k){ number of levels to be about O(logn)

First call Search(k), let pLeft be the leftmost elem <= k in L_1 e Similarly, each time we add another level, we cut the search

Insert k in L_1, to the right of pLeft time in half except for a constant overhead

i= 2; e So after O(logn) levels, we would expect a search time of

while (rand()<= p){ O(logn)

insert k in the appropriate place in L_i; e We will now formalize these two intuitive observations
}
20 | 22 |

— Deletion —— —— Height of Skip List ——

e For some key, i, let X; be the maximum height of ¢ in the
skip list.

e Q: What is the probability that X; > 2logn?

o A: If p=1/2, we have:

e Deletion is very simple 1\ 2logn
e First do a search for the key to be deleted P(X;>2logn) = (5)
e Then delete that key from all the lists it appears in from _ 1
the bottom up, making sure to “zip up” the lists after the o (2'09")2
deletion _ 1
n2

e Thus the probability that a particular key i achieves height

2logn is 7712

21I 23|

Height of Skip List ——— Expected Space ———

—
e QQ: What is the probability that any key achieves height
2logn?
e A: We want A trick for computing expectations of discrete positive random
variables:
P(Xq1>2logn or Xo >2logn or ... or Xp > 2logn)
e By a Union Bound, this probability is no more than e Let X be a discrete r.v., that takes on values from 1 to n
n
P(X1 > klogn) + P(X3 > klogn) 4 --- + P(Xp > klogn) E(X) =Y P(X > 1)
e Which equals: =1
noq n e Why7?77
i=1
24 26 |

Height of Skip List —— In-Class Exercise ———

I_ I_

e This probability gets small as n gets large Q: How much memory do we expect a skip list to use up?
e In particular, the probability of having a skip list of size ex-
ceeding 2logn is o(1) e Let X; be the number of lists elem 3 is inserted in
e If an event occurs with probability 1 — o(1), we say that it e Q: What is P(X; > 1), P(X; >2), P(X; >3)?
occurs with high probability e Q: What is P(X; > k) for general k7
e Key Point: The height of a skip list is O(logn) with high e Q: What is E(X;)?
probability. e Qi let X =31 ,X;. Whatis E(X)?

25 27 |

o Search Time ——— L Backward Search ——

e For every node v in the skip list Up(v) exists with probability
1/2. So for purposes of analysis, SLFBack is the same as

e Its easier to analyze the search time if we imagine running the following algorithm:

the search backwards
e Imagine that we start at the found node v in the bottommost FlipWalk(v){

list and we trace the path backwards to the top leftmost while (v '= L){

senitel, L if (COINFLIP == HEADS)
e This will give us the length of the search path from L to v v = Up(v);

which is the time required to do the search else

v = Left(v);
i3
28 | 30 |
o Backwards Search —— L Analysis ——

SLFback(v){ e For this algorithm, the expected number of heads is exactly
while (v != L){ the same as the expected number of tails
if (Up(v)!=NIL) e Thus the expected run time of the algorithm is twice the
v = Up(v); expected number of upward jumps
else e Since we already know that the number of upward jumps
v = Left(v); is O(logn) with high probability, we can conclude that the
33 expected search time is O(logn)

29 | 31

