B-Trees ____

CS 361, Lecture 23

Jared Saia
University of New Mexico

Outline ____

- B-Trees
- Skip Lists

- B-Trees are balanced search trees designed to work well on disks
- B-Trees are not binary trees: each node can have many children
- Each node of a B-Tree contains several keys, not just one
- When doing searches, we decide which child link to follow by finding the correct interval of our search key in the key set of the current node.

2

Disk Accesses _____

- Consider any search tree
- The number of disk accesses per search will dominate the run time
- Unless the entire tree is in memory, there will usually be a disk access every time an arbitrary node is examined
- The number of disk accesses for most operations on a B-tree is proportional to the height of the B-tree
- I.e. The info on each node of a B-tree can be stored in main memory

B-Tree	Properties
--------	------------

Note ____

The following is true for every node x

• x stores keys, $key_1(x), \dots key_l(x)$ in sorted order (nondecreasing)

- x contains pointers, $c_1(x), \ldots, c_{l+1}(x)$ to its children
- Let k_i be any key stored in the subtree rooted at the *i*-th child of x, then $k_1 \leq key_1(x) \leq k_2 \leq key_2(x) \cdots \leq key_l(x) \leq k_{l+1}$

• The above properties imply that the height of a B-tree is no more than $\log_t \frac{n+1}{2}$, for $t \ge 2$, where n is the number of keys.

- If we make t, larger, we can save a larger (constant) fraction over RB-trees in the number of nodes examined
- A (2-3-4)-tree is just a B-tree with t=2

4

B-Tree Properties _____

Example B-Tree ____

- All leaves have the same depth
- Lower and upper bounds on the number of keys a node can contain, given as a function of a fixed integer t:
 - Every node other than the root must have $\geq (t-1)$ keys, and t children. If the tree is non-empty, the root must have at least one key (and 2 children)
 - Every node can contain at most 2t-1 keys, so any internal node can have at most 2t children

In-Class Exercise _____

We will now show that for any B-Tree with height h and n keys, $h \leq \log_t \frac{n+1}{2}$, where $t \geq 2$.

Consider a B-Tree of height h > 1

- Q1: What is the minimum number of nodes at depth 1, 2, and 3
- Q2: What is the minimum number of nodes at depth *i*?
- Q3: Now give a lowerbound for the total number of keys (e.g. n > ????)
- ullet Q4: Show how to solve for h in this inequality to get an upperbound on h

Splay Trees _____

- A Splay Tree is a kind of BST where the standard operations run in $O(\log n)$ amortized time
- \bullet This means that over l operations (e.g. Insert, Lookup, Delete, etc), the total cost is $O(l * \log n)$
- In other words, the average cost per operation is $O(\log n)$
- However a single operation could still take O(n) time
- In practice, they are very fast

Skip Lists _____

- Technically, not a BST, but they implement all of the same operations
- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time

10

High Level Analysis _____

Comparison of various BSTs

- RB-Trees: + guarantee $O(\log n)$ time for each operation, easy to augment, - high constants
- AVL-Trees: + guarantee $O(\log n)$ time for each operation, high constants
- B-Trees: + works well for trees that won't fit in memory, inserts and deletes are more complicated
- Splay Tress: + small constants, amortized guarantees only
- Skip Lists: + easy to implement, runtime guarantees are probabilistic only

Which	Data	Structure	to	use?	
-------	------	-----------	----	------	--

Skip List _____

- Splay trees work very well in practice, the "hidden constants" are small
- Unfortunately, they can not guarantee that every operation takes $O(\log n)$
- When this guarantee is required, B-Trees are best when the entire tree will not be stored in memory
- If the entire tree will be stored in memory, RB-Trees, AVL-Trees, and Skip Lists are good

- A skip list is basically a collection of doubly-linked lists, L_1, L_2, \ldots, L_x , for some integer x
- Each list has a special head and tail node, the keys of these nodes are assumed to be -MAXINT and +MAXINT respectively
- The keys in each list are in sorted order (non-decreasing)

14

Skip List ____

12

• Technically, not a BST, but they implement all of the same operations

- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time

• Every node is stored in the bottom list

Skip List ____

- For each node in the bottom list, we flip a coin over and over until we get tails. For each heads, we make a duplicate of the node.
- The duplicates are stacked up in levels and the nodes on each level are strung together in sorted linked lists
- Each node v stores a search key (key(v)), a pointer to its next lower copy (down(v)), and a pointer to the next node in its level (right(v)).

Example ____

_ Search ____


```
SkipListFind(x, L){
    v = L;
    while (v != NULL) and (Key(v) != x){
        if (Key(Right(v)) > x)
            v = Down(v);
        else
            v = Right(v);
    }
return v;
}
```

16

18

Search ____

- ullet To do a search for a key, x, we start at the leftmost node L in the highest level
- ullet We then scan through each level as far as we can without passing the target value x and then proceed down to the next level
- The search ends either when we find the key x or fail to find x on the lowest level

Search Example _____

p is a constant between 0 and 1, typically p=1/2, let rand() return a random value between 0 and 1

```
Insert(k){
First call Search(k), let pLeft be the leftmost elem <= k in L_1
Insert k in L_1, to the right of pLeft
i = 2;
while (rand() <= p){
  insert k in the appropriate place in L_i;
}</pre>
```

20

Deletion _____

- Deletion is very simple
- First do a search for the key to be deleted
- Then delete that key from all the lists it appears in from the bottom up, making sure to "zip up" the lists after the deletion

- Intuitively, each level of the skip list has about half the number of nodes of the previous level, so we expect the total number of levels to be about $O(\log n)$
- Similarly, each time we add another level, we cut the search time in half except for a constant overhead
- So after $O(\log n)$ levels, we would expect a search time of $O(\log n)$
- We will now formalize these two intuitive observations

_ Height of Skip List ____

- For some key, i, let X_i be the maximum height of i in the skip list.
- Q: What is the probability that $X_i \ge 2 \log n$?
- A: If p = 1/2, we have:

$$P(X_i \ge 2\log n) = \left(\frac{1}{2}\right)^{2\log n}$$
$$= \frac{1}{(2^{\log n})^2}$$
$$= \frac{1}{n^2}$$

 \bullet Thus the probability that a particular key i achieves height $2\log n$ is $\frac{1}{n^2}$

Height of Skip List _____

Expected Space ____

- Q: What is the probability that any key achieves height $2 \log n$?
- A: We want

$$P(X_1 \ge 2 \log n \text{ or } X_2 \ge 2 \log n \text{ or } \dots \text{ or } X_n \ge 2 \log n)$$

• By a Union Bound, this probability is no more than

$$P(X_1 \ge k \log n) + P(X_2 \ge k \log n) + \dots + P(X_n \ge k \log n)$$

• Which equals:

$$\sum_{i=1}^{n} \frac{1}{n^2} = \frac{n}{n^2} = 1/n$$

A trick for computing expectations of discrete positive random variables:

 \bullet Let X be a discrete r.v., that takes on values from 1 to n

$$E(X) = \sum_{i=1}^{n} P(X \ge i)$$

• Why???

24

26

Height of Skip List _____

•

- ullet This probability gets small as n gets large
- In particular, the probability of having a skip list of size exceeding $2 \log n$ is o(1)
- If an event occurs with probability 1 o(1), we say that it occurs with high probability
- Key Point: The height of a skip list is $O(\log n)$ with high probability.

Q: How much memory do we expect a skip list to use up?

- ullet Let X_i be the number of lists elem i is inserted in
- Q: What is $P(X_i \ge 1)$, $P(X_i \ge 2)$, $P(X_i \ge 3)$?
- Q: What is $P(X_i \ge k)$ for general k?

In-Class Exercise _____

- Q: What is $E(X_i)$?
- Q: Let $X = \sum_{i=1}^{n} X_i$. What is E(X)?

Search Time ____

- Its easier to analyze the search time if we imagine running the search backwards
- ullet Imagine that we start at the found node v in the bottommost list and we trace the path backwards to the top leftmost senitel, L
- ullet This will give us the length of the search path from L to v which is the time required to do the search

28

Backwards Search _____

```
SLFback(v){
  while (v != L){
    if (Up(v)!=NIL)
       v = Up(v);
    else
      v = Left(v);
}
```

Backward Search _____

• For every node v in the skip list Up(v) exists with probability 1/2. So for purposes of analysis, SLFBack is the same as the following algorithm:

```
FlipWalk(v) {
  while (v != L) {
    if (COINFLIP == HEADS)
      v = Up(v);
    else
      v = Left(v);
}
```

Analysis ____

- For this algorithm, the expected number of heads is exactly the same as the expected number of tails
- Thus the expected run time of the algorithm is twice the expected number of upward jumps
- Since we already know that the number of upward jumps is $O(\log n)$ with high probability, we can conclude that the expected search time is $O(\log n)$