— Administrative ——

CS 361, Lecture 26
e The project is due this Thursday in class.
Jared Saia e This deadline is strict - late projects will recieve no credit. (A
University of New Mexico partially completed project turned in on time will get some
credit but a complete project turned in late will get no credit)

o Outline —— L Project Deliverables —

Each Group should turn in one project consisting of:

e Administrative
e Dynamic Programming
e Course Evaluations

e About 6-12 pages of text and figures

e 6-12 figures (please put multiple figures on one page where
possible)

e Task list giving which tasks were performed by which group
members if appropriate. This should be signed by all mem-
bers of the group.

— Project Deliverables —— Dynamic Programming —

Dynamic Programming is different than Divide and Conquer in

Each individual should turn in the following: the following way:

e An evaluation of the contribution to the group project of e "Divide and Conquer” divides problem into independent sub-
every member of your group on a scale of 1(poor) to 10(ex- problems, solves the subproblems recursively and then com-
cellent). To do this, write down the name of each member bines solutions to solve original problem
of your group (including yourself), and put a number be- e Dynamic Programming is used when the subproblems are not
tween 1 and 10 next to each name. Please be honest and independent, i.e. the subproblems share subsubproblems
professional in your evaluation. Your evaluation will be one e For these kinds of problems, divide and conquer does more
factor used to determine the project grade for each member work than necessary
of your group. e Dynamic Programming solves each subproblem once only and

saves the answer in a table for future reference

—— Project Comments —— —— [he Pattern ——

e Formulate the problem recursively.. Write down a formula
for the whole problem as a simple combination of answers to
smaller subproblems

Before you turn in the project: e Build solutions to your recurrence from the bottom up.

Write an algorithm that starts with the base cases of your

e Reread “The Top n Project Mistakes" section in the project recurrence and works its way up to the final solution by con-
description section on the course web page sidering the intermediate subproblems in the correct order.

e You will loose points if you make these same mistakes
Note: Dynamic Programs store the results of intermediate sub-
problems. This is frequently but not always done with some type
of table.

— Edit Distance — —— Example ——

e The edit distance between two words is the minimum number e String Alignment for "FOOD" and "MONEY":

of letter insertions, letter deletions, and letter substitutions F O O D
required to transform one word into another. For example, M O N E Y
the edit distance between FOOD and MONEY is at most four:

e It's not too hard to see that we can’t do better than four for
FOOD — MOOD — MOND — MONED — MONEY

the edit distance between “Food” and “Money”

String Alignment —— Example II ——

I_ I_

Better way to display this process:

e Unfortunately, it can be more difficult to compute the edit

e Place the words one above the other in a table distance exactly. Example:

e Put a gap in the first word for every insertion and a gap in
the second word for every deletion
e Columns with two different characters correspond to substi- A L
tutions A L
e Then the number of editing steps is just the number of
columns that don’t contain the same character twice

G O R I T H M
T R UI S T I C

—

Key Observation — L Recursive Definition ——

e If we remove the last column in an optimal alignment, the

—

remaining alignment must also be optimal

Easy to prove by contradiction: Assume there is some better e Say we want to compute E(i,5) for some i and j
subalignment of all but the last column. Then we can just e Further say that the “Recursion Fairy” can tell us the solu-
paste the last column onto this better subalignment to get tion to E(,j"), for all ¢/ < i, j' < j, except for i/ = i and
a better overall alignment. j =3
Note: The last column can be either: 1) a blank on top e QQ: Can we compute E(i,7) efficiently with help from the our
aligned with a character on bottom, 2) a character on top fairy friend?
aligned with a blank on bottom or 3) a character on top
aligned with a character on bottom

12 | 14 |

DP Solution ——_ L Recursive Definition ——

To develop a DP algorithm for this problem, we first need to
find a recursive definition

Assume we have a m length string A and an n length string
B

Let E(i,7) be the edit distance between the first ¢ characters
of A and the first j characters of B

Then what we want to find is E(n,m)

There are three possible cases:

e Insertion: E(i,j) =1+ E(G —1,5)

e Deletion: E(i,j) =14+ E(i,j—1)

e Substitution: If a; = b;, E(i,j) = E(i—1,j-1), else E(i,j) =
E(i—1,j—-1)+1

13I 15|

Summary ——— Recursive Alg ———

— I_
e We now have enough info to directly create a recursive al-
gorithm
Let I(A[i] # B[j]) = 1 if A[i] and B[j] are different, and 0 if they e The run time of this recursive algorithm would be given by
are the same. Then: the following recurrence:
E(G—1,5)+1, T(m,0) = T(0,n) = O(1)
E(i—1,j — 1)+ I(Al]] # B[j]) T(m,n) =T(m,n—1)+T(m—1,n)+T(n—1,m—1)+0(1)
e Solution: T(n,n) = ©(1 + v/2"), which is terribly, terribly
slow.
16 | 18
Base Case(s) —— Better Idea ——
— (s) —
e We can build up a m x n table which contains all values of
E(i,35)
It's not too hard to see that: e We start by filling in the base cases for this table: the entries
in the O-th row and 0-th column
e E£(0,5) = j for all j, since the j characters of B must be e To fill in any other entry, we need to know the values directly
aligned with blanks above, to the left and above and to the left.
e Similarly, E(i,0) =i for all i e Thus we can fill in the table in the standard way: left to

right and top down to ensure that the entries we need to fill
in each cell are always available

17 19,

—

Example Table ——

Bold numbers indicate places where characters in the strings
are equal

Arrows represent predecessors that define each entry: hori-
zontal arrow is deletion, vertical is insertion and diagonal is
substitution.

Bold diagonal arrows are ‘“free” substitutions of a letter for
itself

Any path of arrows from the top left to the bottom right cor-
ner gives an optimal alignment (there are three paths in this
example table, so there are three optimal edit sequences).

20I

c n 4 - >

4 v

A L G ORI T H M
0—-1-2-3—-+4—-5—-6—-7—8—9
N
1 0-1-2—-3—-54—-55—-6—->7—38
I\

2 1 0-1-2—-3—-54—-5—-6—>7
I l\ NONCONN

3 2 —+2—+3—e4 4556
] l NN\ NN
4 3 2 2 2 2-3-54-5-6
Lol l\l\l\l\ AV VN
5 4 3 3 3—-4—-5—6
]| l\l\l\l\ NN N
6 5 4 4 3-4—-5—-6
1 l\\l\\\L\\l NN
7T 6 5 5 5 5 4 4 5 6
ool INININL DN NN
8 7 6 6 6 6 5 4—-5—-6
N A A D VRN
9 8 v 7 7 7T 6 5 5—6
Lol INININL L NN
10 9 8 8 8 8 7 6

—— AnalysisS ——

Let n be the length of the first string and m the length of
the second string

Then there are @(nm) entries in the table, and it takes ©(1)
time to fill each entry

This implies that the run time of the algorithm is ©(nm)
Q: Can you find a faster algorithm?

21I

—— The code ———

EditDistance(A[1,..,m],B[1,..,n]1){
for (i=1;i<=m;i++){
Edit[i,0] = i;}
for (j=1;j<=n;j++){
Edit[0,3j] = j;2
for (i=1;i<=m;i++){
for (j=1;j<=n;j++){
if (A[i1==B[j1O{
Edit[i,j] = min(Edit[i-1,j]1+1,
Edit[i,j-1]1+1,
Edit[i-1,j-11);
Yelsed{
Edit[i,j] = min(Edit[i-1,j]1+1,
Edit[i,j-1]1+1;
Edit[i-1,j-1]1+1);
33}
return Edit[m,n];}

22|

— Reconstructing an optimal alignment

— Take Away —

e In this code, we do not keep info around to reconstruct the
optimal alignment

e However, it is a simple matter to keep around another array
which stores, for each cell, a pointer to the cell that was used

to achieve the current cell’s minimum edit distance e To solve the string alignment problem, we did the following:
pointers from the bottom right corner up to the top left the recurrence from the bottom up
corner
23 |
;o In Class Exercise —— T Dynamic Programming —

e We've seen a use of DP for the String Alignment Problem

e Many other uses including: Finding the optimal way to mul-
tiply matrices, algorithms for scheduling jobs, finding the
shortest paths in a graph, application in Al (the Viterbi al-
gorithm), etc.

e In all cases, we first find a recursive formulation of the prob-
lem and then use memorization (i.e. we build a table)

e Create a string alignment table for the two strings ‘“abba”
and “bab”. Put “abba” at the top of the table and “bab”
on the left side

e Qi: (:=1,2,...,5) What is the i-th row of your table

e Q6. What is the minimum edit distance and how many align-
ments achieve it?

