CS 361, Lecture 9

Jared Saia
University of New Mexico

L Outline

“For NASA, space is still a high priority”, Dan Quayle

e Heap Sort
e Priority Queues
e Quicksort

—— Build-Max-Heap

Build-Max-Heap (A)

1. heap-size (A) = length (A)
2. for (i = |length(A)/2];i > 0;i — —)
(a) do Max-Heapify (A,i)

L Example

A=42167911538
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—— Max-Heapify ——

Max-Heapify (A,i)

| = Left(i)
r = Right(i)
largest =1
if (I <heap-size(A) and A[l] > A[i]) then largest =1
if (r < heap-size(A) and A[r] > Allargest]) then largest = r
if largest # i then
(a) exchange A[i] and A[largest]
(b) Max-Heapify (A,largest)

@.U‘r“.‘*’!\’!"

L Example
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L Heap-Sort Review

Heap-Sort (A)

1. Build-Max-Heap (A)

2. for (i=length (A);i > 1;i — —)
(a) do exchange A[1] and A[i]
(b) heap-size (A) = heap-size (A) - 1
(c) Max-Heapify (A,1)

—— Analysis

e Heap-Sort takes O(nlogn) time. Q: What is best case run-
time? Q: What is runtime if the array is already in sorted
order?

e Q: Correctness?




Analysis — Applications of Priority Queue ——

I_ I_

Application: Scheduling jobs on a workstation
Priority Queue holds jobs to be performed and their priorities
When a job is finished or interrupted, highest-priority job is

We can prove correctness by using the following loop invariant:

e At the start of each iteration of the for loop, the subarray chosen using Extract-Max
A[1..i] is a max-heap containing the i smallest elements of e New jobs can be added using Insert
A[l..n] and the subarray A[i4+1..n] contains the n-i largest
elements of A[1l..n] in sorted order. (note: an application of a min-priority queue is scheduling events

in a simulation)

Priority Queues — Implementation ——

I_ I_
A Priority Queue is an ADT for a set S which supports the
following operations:
e Insert (S,x): inserts x into the set S
e Maximum (S): returns the maximum element in S e A Priority Queue can be implemented using heaps
e Extract-Max (S): removes and returns the element of S with e We'll show how to implement each of these four functions
the largest key using heaps

e Increase-Key (S,x,k): increases the value of z's key to the
new value k (k is assumed to be as large as z's current key)

(note: can also have an analagous min-priority queue)
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Heap-Maximum ——

Heap-Maximum (A)

1.

—

return A[1]
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Heap-Extract-Max

Heap-Extract-Max (A)

ook

if (heap-size (A)<1) then return “error”

max = A[1];

A[1] = Al[heap-size (A)];
heap-size (A)——;
Max-Heapify (A,1);
return max;
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Heap-Increase-Key

—

Heap-Increase-Key (A,i key)

1. if (key < AJi]) then error “new key is smaller than current
key"

2. Ali] = key;

3. while (i>1 and A[Parent (i)] < Ali])
(a) do exchange A[i] and A[Parent (i)]
(b) i = Parent (i);
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—— Example
Increase-key(i,10) a °
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Heap-Insert —— In-Class Exercise ——

I_ I_
e Imagine you have a min-heap with the following operations
Heap-Insert (A key) defined and taking O(logn):
— (key,data) Heap-Extract-Min (A)
1. heap-size (A) ++; — Heap-Insert (A, key,data)
2. Al[heap-size (A)] = - infinity e Now assume you're given k sorted lists, each of length n/k
3. Heap-Increase-Key (A,heap-size (A), key) e Use this min-heap to give a O(nlogk) algorithm for merging
these k lists into one sorted list of size n.
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Analysis — In-Class Exercise ——
I_ Y I_

Heap-Maximum takes O(1) time
Heap-Extract-Max takes O(logn)
Heap-Increase-Key takes O(logn)
Heap-Insert takes O(logn)

e Q1: What is the high level idea for solving this problem?

e Q2: What is the pseudocode for solving the problem?

e Q3: What is the runtime analysis?

e Q4: What would be an appropriate loop invariant for proving
correctness of the algorithm?

Correctness?
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L Quicksort —

Based on divide and conquer strategy
Worst case is ©(n?)

Expected running time is @(nlogn)

An In-place sorting algorithm

Almost always the fastest sorting algorithm
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L Quicksort —

e Divide: Pick some element A[q] of the array A and partition
A into two arrays A; and A, such that every element in Aq

is < A[q], and every element in A is > A[p]

e Conquer: Recursively sort A1 and Aj

e Combine: A concatenated with A[q] concatenated with A,

is now the sorted version of A
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— The Algorithm ———

//PRE: A is the array to be sorted, p>=1;
// r is <= the size of A
//POST: A[p..r] is in sorted order
Quicksort (A,p,r){
if (p<r)d{

q = Partition (A,p,r);

Quicksort (A,p,q-1);

Quicksort (A,q+1,r);

}
22 .
Partition —
—

//PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size
// of A, A[r] is the pivot element
//POST: Let A’ be the array A after the function is run. Then
// A’ [p..r] contains the same elements as A[p..r]. Further,
// all elements in A’ [p..res-1] are <= A[r], A’[res] = A[r],
// and all elements in A’[res+l..r] are > A[r]
Partition (A,p,r){

x = Alr];

i=p-1;

for (j=p;j<=r-1;j++){
if (A[jl<=x){
i++;
exchange A[i] and A[jl;
}
exchange A[i+1] and A[r];
return i+1;

}
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L Correctness of Partition ———

Basic idea: The array is partitioned into four regions, x is the
pivot

Region 1: Region that is less than or equal to x
Region 2: Region that is greater than x

Region 3: Unprocessed region

Region 4: Region that contains x only

Region 1 and 2 are growing and Region 3 is shrinking
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—— Correctness —

Basic idea: The array is partitioned into four regions, X is the
pivot

e Region 1: Region that is less than or equal to x
(between p and )

e Region 2: Region that is greater than x
(between i+ 1 and j—1)

e Region 3: Unprocessed region
(between j and r — 1)

e Region 4: Region that contains x only

()

Region 1 and 2 are growing and Region 3 is shrinking
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L Example ——

e Consider the array (26 415 3)
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— Loop Invariant ——

At the beginning of each iteration of the for loop, for any index
k:

1. If p< k <i then A[k] <z
2. Ifi+1<k<j—1then A[k] >z
3. If k=1 then Alk] ==
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Todo

e Finish Chapter 6
e Start Chapter 7
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