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1. True/False and Theta Notation (20 points)

True or False: (circle one, 2 points each)

(a) True or False: Any sorting algorithm takes Ω(n log n) time in the worst case? Solution:
False. Only comparison based sorting algorithms

(b) True or False: Randomized Quicksort always takes O(n logn) time? Solution: False.
O(n2) time

(c) True or False: Bucketsort takes Θ(n) time in the best case? Solution: True

(d) True or False: Mergesort takes Θ(n) time in the best case? Solution: False: Best and
worst case for Mergesort are Θ(n log n)

(e) True or False: An array that is in sorted order (i.e. non-decreasing) is a min-heap?
Solution: True: it satisfies the heap property

Theta Notation: (2 points each)
For each function below, give a Θ() expression that is as simplified as possible. Justify your
answers briefly.

(a) n3 log n− n√n+ 1000 log10 n Solution: Θ(n3 log n)

(b) log2 n+ 10 logn100 Solution: Θ(log2 n), since 10 log n100 = 1000 log n which is asymptot-
ically smaller than log2 n

(c)
√
n+ log2 n Solution: Θ(

√
n) since

√
n is asymptotically larger than log2 n

(d) n ∗ (
∑n
i=1 1/i) Solution: Θ(n log n)

(e) 9log3 n Solution: 9log3 n = 32 log3 n = n2 = Θ(n2)
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2. Short Answer (20 points total, 5 points each)

(a) Heaps are a type of tree with a specific order property. Define the order property for
min-heaps.

Solution: All descendants of any node r must be greater than or equal to r itself

(b) Binary search tree are a type of tree with a specific order property. Define the order
property for binary search trees.

Solution: For any node r, all descendants to the left of r must be ≤ r and all descendants
to the right of r must be greater than r.

(c) Consider a full binary tree of height h, where every internal node has two children and
all leaf nodes have the same depth. Question: What is the ratio of the number of leaf
nodes to the total number of nodes in such a tree as h grows large? Hint: First com-
pute the number of leaf nodes, then compute the number of nodes total, then compute
the ratio. Solution: The number of leaf nodes is 2h. The number of nodes total is∑h
i=0 2i = 2h+1 − 1. The ratio as h gets large is 1/2
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(d) Consider a hash table with m cells. Imagine that we insert n items into the table, in such
a way that each item is hashed uniformly at random to one of the m cells. Question:
What is the expected number of items that are hashed to the first cell? Justify your
answer (hint: use linearity of expectation). Solution: For i = 1, . . . , n let Xi be a random
variable that is 1 if the i-th item is hashed to the first cell and 0 otherwise. Note that
E(Xi) is 1/m for any i. Let X be the total number of items hashed to the first cell. Note
that X =

∑n
i=1Xi. So E(X) = E(

∑n
i=1Xi) =

∑n
i=1E(Xi) = n/m
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3. Recurrences (20 points)
Consider the recurrence: T (n) = 8T (n/2) + n2 (and T (k) = Θ(1) for k a constant)

(a) Use the recurrence tree method to get a “guess” (i.e. simplest possible big-O) on the
solution to this recurrence. You need not prove your guess correct.

(b) Now use annihilators (and change of variable) to get a tight upperbound (i.e. simplest
possible big-O) on the solution to this recurrence.

(c) Now use the Master Theorem to solve the recurrence (all three bounds should match)

Solution: Recurrence Tree: T (n) = 8T (n/2) + n2, T (n/2) = 8T (n/4) + (n/2)2, T (n/4) =
8T (n/8) + (n/4)2. Writing this out in a recurrence tree, we get that the zero level is one n2,
the first level is eight n2/4’s, the second level is 64 n2/16’s. In general, the i-th level sums to
(8/4)in2 = 2in2. There are log2 n levels, so the sum of all of them is:

n2
log2 n−1∑

i=0

(2)i = n2

(
1− 2logn

1− 2

)
(1)

= Θ(n3) (2)

Annihilators: Let n = 2i and t(i) = T (2i). Then

t(i) = 8t(i− 1) + 22i (3)

t(i) = 8t(i− 1) + 4i (4)

The annihilator for this is (L − 8)(L − 4), and thus from the lookup table, the form of the
recurrence is:

t(i) = c18i + c24i (5)

t(i) = c1(2i)3 + c2(2i)2 (6)

The reverse transformation gives that

T (n) = c1n
3 + c2n

2

This is Θ(n3)
Master Theorem: T (n) = 8T (n/2) + n2 is of the form T (n) = aT (n/b) + f(n) where
a = 8,b = 2 and f(n) = n2. Note that af(n/b) = 8(n/2)2 = 2n2, and this is larger than
f(n) by a constant factor. Thus in the recurrence tree, the leaf nodes dominate, and so the
solution is of the form T (n) = Θ(nlog2 8) = Θ(n3)
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3. Recurrences (20 points), continued.
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4. Annihilators

Consider the recurrence T (n) = 2T (n − 1) − T (n − 2) + 4, T (0) = 0, T (1) = 0. Solve this
recurrence exactly using annihilators. Don’t forget to check your answer.

Solution: Consider the homogeneous part first. Let Tn = 2T (n−1)−T (n−2), and T = 〈Tn〉.
Then

T = 〈Tn〉 (7)

LT = 〈Tn+1〉 (8)

L2T = 〈Tn+2〉 (9)

Since 〈Tn+2〉 = 〈2Tn+1 − Tn〉, we know that L2T − 2LT + T = 〈0〉, and thus L2 − 2L + 1 =
(L− 1)(L− 1) annihilates T . Further we know that (L− 1) annihilates the non-homogeneous
part. Thus the annihilator of the whole sequence is (L− 1)3. Thus T (n) is of the form:

T (n) = c1n
2 + c2n+ c3

We know:

T (0) = 0 = c3 (10)

T (1) = 0 = c1 + c2 (11)

T (2) = 4 = 4c1 + 2c2 (12)

so c1 = 2, c2 = −2, c3 = 0 and thus

T (n) = 2n2 − 2n

Check: T (3) = 2 ∗ 4− 0 + 4 = 12 and 2 ∗ 9− 6 = 12.
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5. Recursion and Recurrences (20 points)

Consider the following recursive sorting algorithm which takes a list l of numbers:

Zanysort(l){

if(l.size()<=1){

return l;

} else{

Zanysort the first third of l;

Heapsort the remaining two thirds of l;

Merge the two sorted lists together;

}

}

(a) Let T (n) be the run time of Zanysort. Write down a recurrence relation for T (n) (hint:
Use Θ notation in the recurrence relation).

Solution: T (n) = T (n/3) + Θ(n logn)

(b) Now solve this recurrence relation in terms of tight big-O. Hint: Use the Master Theorem.

Solution: T (n) ≤ T (n/3) + k(n log n) for some constant k. If we write this as T (n) =
aT (n/b) + f(n), then a = 1, b = 3, f(n) = kn logn. Then af(n/b) = k(n/3 log(n/3))
which is a constant factor smaller than f(n). Hence the root node dominates the re-
cursion tree and so the solution is T (n) = Θ(n logn). So surprisingly, this silly sorting
algorithm is as good as the best of them.
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6. Loop Invariants (20 points)

In this question, you will be proving the correctness of the procedure Tree-Search using loop
invariants. This procedure takes as input a key k, and the root, r, of a binary search tree. If
the key k exists in the tree rooted at r, the procedure returns the node with key k. Otherwise,
the procedure returns nil. The procedure is given below:

Tree-Search(r,k){

while (r!=nil && k != key(r)){

if (k<=key(r)){

r = left(r);

}else{

r = right(r);

}

}

return r;

}

(a) State a loop invariant for the while loop of Tree-Search.
Solution: If the key k is in the original tree then the key k is in the subtree rooted at r

(b) Establish initialization, maintenance and termination for your loop invariant.

Solution: Initialization: Before the first iteration of the while loop, the invariant is
obviously true since the subtree rooted at r is the entire tree.
Maintenance: Let r′ be the value of r at the beginning of some fixed iteration of the
while loop. Note that we know by induction that if the key k is in the original tree, it
is in the subtree rooted at r′. Now if we execute the while loop, it most be the case that
key(r′) is not equal to k. Thus if k is in the subtree rooted at r′, it must be in either the
left or right subtree. By the binary search tree property, k must be in the left subtree if
k ≤ key(r) and in the right subtree otherwise. Thus the body of the while loop sets r to
the correct value, and the invariant is maintained.
Termination: Assume the invariant holds right after exit of the while loop. Note that
we only exit the while loop if r is nil or key(r) is k. Thus, if the key is in the original
tree, r can not be nil, so key(r) is k and so the algorithm does in fact find the key k.
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6. Loop Invariants (20 points), continued.


