CS 361, HW7

Prof. Jared Saia, University of New Mexico

Ungraded

- 1. Consider the recurrence T(n) = 3T(n/3) + n
 - (a) Use the recurrence tree method to get a tight upper bound (i.e. big-O) on the solution to this recurrence
 - (b) Now use annihilators (and change of variables) to get a tight upperbound on the solution to this recurrence.
 - (c) Now solve using the Master Theorem (all three bounds should match)
- 2. Consider the recurrence T(n) = 3T(n-1) 2T(n-2) + 4, T(0) = 0, T(1) = 0. Solve this recurrence exactly using annihilators. Don't forget to check your answer.
- 3. (From Cris Moore's old midterm) Consider the following recursive sorting algorithm:

Wackysort:

- (a) Bubblesort the first half of the list
- (b) Wackysort the second half of the list
- (c) Merge the two sorted halfs together
- (a) Write down and solve in terms of tight big-O, the recurrence relation for the run time of Wackysort on a list of size n.
- (b) Assuming that the merge subroutine and Bubblesort are correct, prove by induction that Wackysort is correct.
- 4. Search Tree and Skip List questions (some taken from old finals by Cris)

- (a) Recall that a node in a skip list at level i has i copies (one at each level less than or equal to i). Imagine the following new scheme for choosing the level of a node in a skip list. Let X be the random variable giving the level chosen for a new node. Then $P(X \ge i) = (1/3)^{i-1}$ for i from 1 to infinity. What is the expected height of each node? (Recall that $E(X) = \sum_i P(X \ge i)$). Now what is the expected total height of all n nodes in such a skip list? (Note: Think about how you would solve this problem if there was some cutoff for i e.g. $P(X \ge i) = 0$ for $i \ge k$)
- (b) Suppose we have a balanced trinary tree where every internal node has 3 children instead of 2 and where all the leaves are the same distance from the root. When the number of nodes n is large, what is the fraction of nodes that are leaf nodes?
- (c) Recall that an AVL tree is one where every node has a height imbalance on its children of +1,0, or -1. How many leaf nodes does the AVL tree of depth 7 with the smallest number of nodes have? Try to avoid actually drawing the tree.
- 5. The following algorithm takes an input array A and assigns each array location the value of the maximum element in the original array.

```
ChangeToMax(A,n){
  for (i=0;i<n;i++){
    if(A[i+1]<A[i]){
        A[i+1] = A[i];
    }
    else{
        //change each elem in A[0..i] to A[i+1]
        for(j=0;j<=i;j++){
            A[j] = A[i+1];
        }
    }
}</pre>
```

- State a loop invariant for the outer for loop. You can assume that the inner loop does what the comment says it does
- Establish initialization, maintenance and termination for your loop invariant.