— Annihilator Description ———

CS 361, Lecture 10

We first express our recurrence as a sequence T

We use these three operators to “annihilate” T, i.e. make it
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We can then determine the solution to the recurrence from

the sequence of operations performed to annihilate T'

— Outline —— — Example ——

e Consider the recurrence T'(n) =2T(n—1), T(0) =1

e If we solve for the first few terms of this sequence, we can
see they are (20,2122 23 ...)

e Thus this recurrence becomes the sequence:

e Annihilators

T=(20,21,2223 ...y

— Annihilator Operators — — Example (II) —

Let's annihilate 7= (29,21,22 23 ...)
We define three basic operations we can perform on this se-

uence:
d e Multiplying by a constant ¢ = 2 gets:

0 1 2 152 4
1. Multiply the sequence by a constant: cA = (cag, ca1,can, - - -) 27 = (2%20,221,2422, 223 ...y = (21,2223 2% ..
. Shift the sequence to the left: LA = (a1,a2,a3, ") e Shifting one place to the left gets LT = (21,2223 24 ...)
3. Add two sequences: if A = (ag,a1,a2, ) and B = (bg, b1, b, --), e Adding the sequence LT and —27T gives:
then A+B: <a0+b0,a1—|—b1,a2+b2,'-~>

N

LT —27 = (2! - 21,22 - 22,23 - 2%,...) =(0,0,0,- )




Distributive Property — Example —

| |

If we apply operator (L — 3) to sequence T above, it fails to
The distributive property holds for these three operators annihilate T
Thus can rewrite LT — 2T as (L — 2)T
The operator (L — 2) annihilates T' (makes it the sequence
of all 0's)
Thus (L — 2) is called the annihilator of T

(L-3)T = LT+ (-3)T
(21,2223, ) 4+ (-3 x 20, -3 x 21, —3 x 22,...)
(2-3)x2%(2-3)x2! (2-3)x22,...)
2-3)T=-T

0, the “Forbidden Annihilator” Example (II) ——

| |

What does (L—c) do to other sequences A = (agd™) when d # ¢?:

(L-0)A = (L—c){ao,aod,agd? agd>, - -)
L (a0, agd, agd?, agd>, - - -} — c(ag, agd, agd?, agd?, - - -)
<a0d7 a0d27 a0d37 T > - <Ca07 Ca0d7 Ca0d27 Ca‘Ods: e >

Multiplication by 0 will annihilate any sequence

Thus we disallow multiplication by 0 as an operation

In particular, we disallow (c—c) = 0 for any c as an annihilator
Must always have at least one L operator in any annihilator!

(apd — cag, aod2 — capd, a0d3 — caodz, S
((d = c)ag, (d — c)agd, (d — c)agd?, - --)

(d = e)(ao, agd, agd?, - -)

= (d—c)A

— Uniqueness — — Uniqueness —
e An annihilator annihilates exactly one type of sequence
e In general, the annihilator L — ¢ annihilates any sequence of e The last example implies that an annihilator annihilates one
the form (agc™) type of sequence, but does not annihilate other types of
e If we find the annihilator, we can find the type of sequence, sequences
and thus solve the recurrence e Thus Annihilators can help us classify sequences, and thereby
e We will need to use the base case for the recurrence to solve solve recurrences

for the constant ag
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—

e The annihilator L — a annihilates any sequence of the form

—

Lookup Table

(e1a™)
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—

Example ——

First calculate the annihilator:

e Recurrence: T(n) =4+xT(n—-1), T(0) =2
e Sequence: T = (2,2 4,242,243 ...)
e Calulate the annihilator:

—

— LT = (2%4,2%42,2x432x4% ...)
— 4T = (2%4,2%42,2x43 2544 ...)
— Thus LT — 4T = (0,0,0,---)

— And so L — 4 is the annihilator
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Example (II) —

Now use the annihilator to solve the recurrence

Look up the annihilator in the “Lookup Table”

It says: “The annihilator L — 4 annihilates any sequence of

the form (c14™)"

Thus T'(n) = c14™, but what is ¢;?

We know T'(0) = 2, so T(0) = ¢;49 =2 and so ¢; = 2
Thus T'(n) = 2 % 4"
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—

In Class Exercise —

Consider the recurrence T'(n) =3+ T(n — 1), T(0) = 3,

e Q1: Calculate 7(0),7(1),7(2) and T(3) and write out the
sequence T

e Q2: Calculate LT, and use it to compute the annihilator of
T

e Q3: Look up this annihilator in the lookup table to get the
general solution of the recurrence for T'(n)

e Q4: Now use the base case T'(0) = 3 to solve for the con-
stants in the general solution
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Multiple Operators ——

e We can apply multiple operators to a sequence
e For example, we can multiply by the constant ¢ and then by

the constant d to get the operator cd

e We can also multiply by ¢ and then shift left to get ¢cLT which

is the same as LcT'

e We can also shift the sequence twice to the left to get LLT

which we'll write in shorthand as L2T
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Multiple Operators —

e We can string operators together to annihilate more compli-

cated sequences

e Consider: T = (2043021 431 22432 ...}
e We know that (L—2) annihilates the powers of 2 while leaving

the powers of 3 essentially untouched

e Similarly, (L — 3) annihilates the powers of 3 while leaving

the powers of 2 essentially untouched

e Thus if we apply both operators, we'll see that (L—2)(L—3)

annihilates the sequence T
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— The Details —— — Fibonnaci Sequence —

We now know enough to solve the Fibonnaci sequence

o Consider: T = (a0 4+ 80, al +b1,a2 +12,...) e Recall the Fibonnaci recurrence is T'(0) = 0, T(1) = 1, and
o LT = (al + bl a2 +b2,a34+03,--.) T(n) =T(n—1)+T(n—2)
o al' = (al +axb0,a2+axbta®+axb?,...) e Let T}, be the n-th element in the sequence
o LT —aT = ((b—a)b?, (b—a)bl, (b—a)b?,---) e Then we've got:
e We know that (L —a)T annihilates the a terms and multiplies T = (Ty, Ty, To, T, ) 1)
the b terms by b —a 0,71, 42,43
LT = <T17T27T37T4a"'> (2)

Thus (L —a)T = ((b— a)b®, (b—a)bl, (b —a)b?,---)
e And so the sequence (L —a)T is annihilated by (L — b) LT = (12,73, T4, Ts, - -) (3
e Thus the annihilator of T is (L —b)(L —a) Thus L2T — LT —T = (0,0,0,---)

In other words, L2 —L —1 is an annihilator for T
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Key Point —— Factoring ———

| |

e In general, the annihilator (L —a)(L —b) (where a # b) will e L2 — L —1 is an annihilator that is not in our lookup table
anihilate only all sequences of the form (cja™ + cxb™) e However, we can factor this annihilator (using the quadratic
e We will often multiply out (L—a)(L—b) to L2— (a+b)L+ab formula) to get something similar to what’s in the lookup
e Left as an exercise to show that (L —a)(L —b)T is the same table
as (L2 — (a + b)L + ab)T e L2-L—-1=(L-g¢)(L—3), where ¢ =115 and § = 1=¥5.
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Lookup Table Quadratic Equation ——

| |
“Me fail English? That's Unpossible!” - Ralph, the Simpsons
High School Algebra Review:
e The annihilator L —a annihilates sequences of the form (cqa™) e To factor something of the form az? + bz + ¢, we use the
e The annihilator (L — a)(L — b) (where a # b) anihilates se- Quadratic Formula: R
quences of the form (cia™ + cob™) e az? + bz + ¢ factors into (z — ¢)(z — @), where:
b+ /b2 — 4ac
¢ = ou )
a
. b— /b2 — 4ac
¢ = 22 )
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Example

To factor: L2—L -1

Rewrite: 1%L2—1%L—1,a=1,b=-1,c=—-1
From Quadratic Formula: ¢ = 14Y5 and ¢ = 1=
So L2 - L — 1 factors to (L — ¢)(L — @)

)
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Back to FibonnaCi ——

—

—

Recall the Fibonnaci recurrence is T(0) = 0, T(1) = 1, and
T(n)=Tn-1)+T(n-2)

We've shown the annihilator for T is (L — ¢)(L — ¢), where
¢ =145 and § = 15/5

If we look this up in the “Lookup Table”, we see that the
sequence T must be of the form {(c1¢™ + ca¢™)

All we have left to do is solve for the constants ¢; and ¢
Can use the base cases to solve for these
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Finding the Constants —

)

We know T = (c1¢™ + cp¢"), where ¢ = 1+2 and ¢ = 1_2\/5
We know

TO) = c1+c=0 (6)
T(1) = cip+cd=1 )
We've got two equations and two unknowns
Can solve to get ¢; = % and cp = —%,
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The Punchline ——

—

e Recall Fibonnaci recurrence: T(0) =0, T(1) =1, and T'(n) =
T(n—1)+T(n—2)
e The final explicit formula for T'(n) is thus:
1 /14+v5\" 1 [1-v5\"
T(n)=—x=
V5 2 2

NG

(Amazingly, T'(n) is always an integer, in spite of all of the square
roots in its formula.)
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TodO —

e Finish hw2!
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