— Question 1 —

Collection of true/false questions and short answer on:

CS 361, Lecture 15

e sorting algorithms (mergesort, heapsort, bubblesort)

e heaps (heights, number of nodes, heap algorithms, where is
the max?, where is the min?)

e theta notation (i give you a bunch of functions and ask you
to give me the simplest possible theta notation for each)

Jared Saia
University of New Mexico

— Outline —— — Question 2 —

e Midterm e A question on annihilators and recurrence trees (like problems
e Quicksort 1-3 of hw)
e You'll need to know the formula for sum of an infinite con-
vergent series
1 |

4

— Midterm — — Question 3 —

5 questions, 20 points each

e Hard but fair

e There will be some time pressure, so make sure you can e.g.
solve recurrences both quickly and correctly.

I expect a class mean of between 50 :(and 65 :) points

e A question on using annihilators to solve a recurrence with
both homogeneous and non-homogeneous parts

Question 4 Review Session —

| |

There will be a review session Today at 1pm

e A question on writing recurrences for both the result of a Other Review Session Options:
function and the time cost of the function, and solving both

of these recurrences using annihilators e Today at 5pm
e Today at 7pm
e Tomorrow at 3pm
e Tomorrow at 5pm
6 | 9 1
uestion 5 In-Class Exercise —
— Q 5 — C
e Imagine you have a min-heap with the following operations
e A question asking you to prove the correctness of an algo- defined and taking O(logn):
rithm using loop invariants — (key,data) Heap-Extract-Min (A)
e I'll give you the loop invariant and ask you to prove initial- — Heap-Insert (A key,data)
ization, maintenance and termination e Now assume you're given k sorted lists, each of length n/k
e Will be for an algorithm on heaps e Use this min-heap to give a O(nlogk) algorithm for merging
these k lists into one sorted list of size n.
7 | 10 |
uestions — In-Class Exercise —
| Q | c

e Q1: What is the high level idea for solving this problem?
e Q2: What is the pseudocode for solving the problem?
e Any questions? e Q3: What is the runtime analysis?
e Q4: What would be an appropriate loop invariant for proving
correctness of the algorithm?

8 11

—

—

—

In-Class Exercise —

KMerge (int arrList[]1[], int n, int k)\{
int arrI[] = new int[k];
int arrRes[] = new int[n];
for (i=1;i<= k;i++){
Heap-Insert (A,arrList[i][1],i);
arrI[i] = 1;
}
for (i=1;i<=n;i++){
(key,listNum) = Heap-Extract-Min (A);

arrRes[i] = key;
arrI[listNum]++;
if (arrI[lisNum] <= n/k){
Heap-Insert (A,arrList([listNum] [arrI[listNum]],
arrI[listNum]);

12

Takeaway —

e Can use heaps to merge k lists in O(nlogk) time
e Heaps are a simple but very handy data structure for solving
lots of problems

13

Quicksort —

Based on divide and conquer strategy
Worst case is ©(n?2)

Expected running time is ©(nlogn)

An In-place sorting algorithm

Almost always the fastest sorting algorithm

14

—

—

Quicksort —

“To conquer the enemy without resorting to war is the most
desirable. The highest form of generalship is to conquer the
enemy by strategy” - Sun Tzu, The Art of War

e Divide: Pick some element A[g] of the array A and partition
A into two arrays A1 and A, such that every element in A;
is < A[q], and every element in Ay is > Alp]

e Conquer: Recursively sort A; and Aj

e Combine: A; concatenated with A[g] concatenated with A5
is now the sorted version of A

15

The Algorithm ——

//PRE: A is the array to be sorted, p>=1, and r is <= the size of A

//POST: Alp..r] is in sorted order
Quicksort (A,p,r){
if (p<r){
q = Partition (4,p,r);
Quicksort (A,p,q-1);
Quicksort (A,q+l,r);

16

Partition ———

—

//PRE: A is the array to be partitioned, p>=1 and r <= size of A
//POST: A[]
Partition (A,p,r){
x = Alr];
i=p-1;
for (j=p;j<=r-1;j++){
if (A[jI<=x){
i++;
exchange A[i] and A[j];
}
exchange A[i+1] and Alrl;

return i+1;

17

— Correctness — — Loop Invariant ——

Basic idea: The array is partitioned into four regions, x is the
ivot
P At the beginning of each iteration of the for loop, for any index

k:
Region 1: Region that is less than or equal to x

L[]

Region 2: Region that is greater than x
* Regl 9 or 1. Ifp<k<ithen Alk] <z
e Region 3: Unprocessed region
L]

2. Ifi+1<k<j—1then A
Region 4: Region that contains x only 3 I ;c+ TchkerT,jéx[k] the (k] > @
. =T =x

Region 1 and 2 are growing and Region 3 is shrinking

18 21

— Correctness — — In Class Exercise¢ ——

Basic idea: The array is partitioned into four regions, x is the
pivot

e Region 1: Region that is less than or equal to x

(between p and i) e Show Initialization for this loop invariant
e Region 2: Region that is greater than x e Show Termination for this loop invariant
(between i +1 and j—1) e Show Maintenance for this loop invariant:
e Region 3: Unprocessed region — Show Maintenance when A[j] > =
(between j and r — 1) — Show Maintenance when A[j] < =z
e Region 4: Region that contains x only
(r)

Region 1 and 2 are growing and Region 3 is shrinking

19 | 22

— Example — — Scratch Space —

e Consider the array (26 4 15 3)

20 | 23

— Scratch Space — — Worst Case —

e In the worst case, the partition always splits the original list
into a singleton element and the remaining list

e Then we have the recurrence T'(n) = T(n—1)4+T(1) +(n),
which is the same as T'(n) =T(n — 1) + ©(n)

e The solution to this recurrence is T(n) = O(n2). Why?

24 | 27
Analysis — Todo ——
 — y —
e The function Partition takes O(n) time. Why? e Read Chapter 7
e Q: What is the runtime of Quicksort? e Finish HW
e A: It depends on the size of the two lists in the recursive calls e Study for Midterm!
25 | 28

— Best Case —

e In the best case, the partition always splits the original list
into two lists of half the size

e Then we have the recurrence T'(n) = 2T(n/2) + ©(n)

e This is the same recurrence as for mergesort and its solution
is T(n) = O(nlogn)

26

