
CS 361, Lecture 17

Jared Saia

University of New Mexico

Outline

• Randomized Quicksort

• Analysis

1

Midterm

• Mean was 68.7/100 (better than I expected)

• Distribution:

• 90-100 4

• 80-89 8

• 70-79 10

• 60-69 5

• 50-59 3

• 40-49 4

• 0-40 3

2

Problem Areas

• Loop invariant problem

• Asymptotic Analysis (second part of problem 1)

3

Midterm

• Grades (Roughly):

• 80-100 A

• 70-80 B

• 60-70 C

• 50-60 D

• 0-50 F

4

Midterm

• These grades are approximate

• But, if you got 55 or below on the midterm, come see me in

my office hours

• If you do much better on the final than on the midterm, I

will weight the final more heavily

5

Questions?

• Any Questions?

6

Quicksort

• Based on divide and conquer strategy

• Worst case is Θ(n2)

• Expected running time is Θ(n logn)

• An in-place sorting algorithm

• Almost always the fastest sorting algorithm

7

Quicksort

“To conquer the enemy without resorting to war is the most

desirable. The highest form of generalship is to conquer the

enemy by strategy” - Sun Tzu, The Art of War

• Divide: Pick some element A[q] of the array A and partition

A into two arrays A1 and A2 such that every element in A1

is ≤ A[q], and every element in A2 is > A[p]

• Conquer: Recursively sort A1 and A2

• Combine: A1 concatenated with A[q] concatenated with A2

is now the sorted version of A

8

The Algorithm

//PRE: A is the array to be sorted, p>=1, and r is <= the size of A

//POST: A[p..r] is in sorted order

Quicksort (A,p,r){

if (p<r){

q = Partition (A,p,r);

Quicksort (A,p,q-1);

Quicksort (A,q+1,r);

}

9

Partition

//PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size

// of A, A[r] is the pivot element

//POST: Let A’ be the array A after the function is run. Then

// A’[p..r] contains the same elements as A[p..r]. Further,

// all elements in A’[p..res-1] are <= A[r], A’[res] = A[r],

// and all elements in A’[res+1..r] are > A[r]

Partition (A,p,r){

x = A[r];

i = p-1;

for (j=p;j<=r-1;j++){

if (A[j]<=x){

i++;

exchange A[i] and A[j];

}

exchange A[i+1] and A[r];

return i+1;

}

10

Correctness

Basic idea: The array is partitioned into four regions, x is the

pivot

• Region 1: Region that is less than or equal to x

• Region 2: Region that is greater than x

• Region 3: Unprocessed region

• Region 4: Region that contains x only

Region 1 and 2 are growing and Region 3 is shrinking

11

Correctness

Basic idea: The array is partitioned into four regions, x is the

pivot

• Region 1: Region that is less than or equal to x

(between p and i)

• Region 2: Region that is greater than x

(between i+ 1 and j − 1)

• Region 3: Unprocessed region

(between j and r − 1)

• Region 4: Region that contains x only

(r)

Region 1 and 2 are growing and Region 3 is shrinking

12

Example

• Consider the array (2 6 4 1 5 3)

13

Loop Invariant

At the beginning of each iteration of the for loop, for any index

k:

1. If p ≤ k ≤ i then A[k] ≤ x
2. If i+ 1 ≤ k ≤ j − 1 then A[k] > x

3. If k = r then A[k] = x

14

In Class Exercise

• Show Initialization for this loop invariant

• Show Termination for this loop invariant

• Show Maintenance for this loop invariant:

– Show Maintenance when A[j] > x

– Show Maintenance when A[j] ≤ x

15

Scratch Space

16

Scratch Space

17

Analysis

• The function Partition takes O(n) time. Why?

• Q: What is the runtime of Quicksort?

• A: It depends on the size of the two lists in the recursive calls

18

Best Case

• In the best case, the partition always splits the original list

into two lists of half the size

• Then we have the recurrence T (n) = 2T (n/2) + Θ(n)

• This is the same recurrence as for mergesort and its solution

is T (n) = O(n logn)

19

Worst Case

• In the worst case, the partition always splits the original list

into a singleton element and the remaining list

• Then we have the recurrence T (n) = T (n−1)+T (1)+Θ(n),

which is the same as T (n) = T (n− 1) + Θ(n)

• The solution to this recurrence is T (n) = O(n2). Why?

20

Average Case Intuition

• Even if the recurrence tree is somewhat unbalanced, Quick-

sort does well

• Imagine we always have a 9-to-1 split

• Then we get the recurrence T (n) ≤ T (9n/10)+T (n/10)+cn

• Solving this recurrence (with annihilators or recursion tree)

gives T (n) = Θ(n logn)

21

Randomized Quick-Sort

• We’d like to ensure that we get reasonably good splits rea-

sonably quickly

• Q: How do we ensure that we “usually” get good splits?

How can we ensure this even for worst case inputs?

• A: We use randomization.

22

R-Partition

//PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size

// of A

//POST: Let A’ be the array A after the function is run. Then

// A’[p..r] contains the same elements as A[p..r]. Further,

// all elements in A’[p..res-1] are <= A[i], A’[res] = A[i],

// and all elements in A’[res+1..r] are > A[i], where i is

// a random number between p and r.

R-Partition (A,p,r){

i = Random(p,r);

exchange A[r] and A[i];

return Partition(A,p,r);

}

23

Randomized Quicksort

//PRE: A is the array to be sorted, p>=1, and r is <= the size of A

//POST: A[p..r] is in sorted order

R-Quicksort (A,p,r){

if (p<r){

q = R-Partition (A,p,r);

R-Quicksort (A,p,q-1);

R-Quicksort (A,q+1,r);

}

24

Todo

• Finish Chapter 7

25

