Partition ———

—
//PRE: Alp..r] is the array to be partitioned, p>=1 and r <= size
// of A, A[r] is the pivot element
//POST: Let A’ be the array A after the function is run. Then
// A’ [p..r] contains the same elements as A[p..r]. Further,
// all elements in A’[p..res-1] are <= A[r], A’[res] = Alrl,
CS 361' Lecture 17 // and all elements in A’[res+l..r] are > A[r]
Partition (4,p,r){
. x = Alr];
Jared Saia i=p-1;

University of New Mexico for (j=p;j<=r-1;j++){

if (A[j1<=x00{
i++;
exchange A[i] and A[j];
}
exchange A[i+1] and A[rl;
return i+1;

— Outline — — Correctness —

Basic idea: The array is partitioned into four regions, x is the
pivot

e Region 1: Region that is less than or equal to x
(between p and i)

e Region 2: Region that is greater than x
(between i+ 1 and j — 1)

e Region 3: Unprocessed region
(between j and r — 1)

e Region 4: Region that contains x only

(r)

Quicksort Wrapup
Randomized Quicksort
Intro to Probability
Birthday Paradox

Region 1 and 2 are growing and Region 3 is shrinking

1 1
4
— Quicksort — — Loop Invariant ——
//PRE: A is the array to be sorted, p>=1, and r is <= the size of A
//POST: Alp..r] is in sorted order At the beginning of each iteration of the for loop, for any index
Quicksort (A,p,r){ k:
if (p<r){

q = Partition (4,p,r); 1. If p<k<ithen Alk] <=z

Quicksort (A,p,q-1); 2. Ifi+1<k<j—1then A[k] >z

Quicksort (A,q+1,r); 3. If k=r then Alk] ==z

In Class Exercise — Worst Case —

| |
e Show Initialization for this loop invariant e In the worst case, the partition always splits the original list
e Show Termination for this loop invariant into a singleton element and the remaining list
e Show Maintenance for this loop invariant: e Then we have the recurrence T(n) = T(n—1)4+T(1)4+(n),
— Show Maintenance when A[j] > = which is the same as T'(n) =T(n — 1) + ©(n)
— Show Maintenance when A[j] <=z e The solution to this recurrence is T(n) = O(n2). Why?
6 9

Analysis — Average Case Intuition ——

| |

Even if the recurrence tree is somewhat unbalanced, Quick-
e The function Partition takes O(n) time, where n = p — 7. sort does well

Why? Imagine we always have a 9-to-1 split
e Q: What is the runtime of Quicksort? Then we get the recurrence T'(n) < T(9n/10) +T(n/10) +cn
e A: It depends on the size of the two lists in the recursive calls Solving this recurrence (with recursion tree and induction)
gives T'(n) = ©(nlogn)

Best Case — Wrap Up ———

—

e Take away: Both the worst case, best case, and average case
analysis of algorithms can be important.

e You will have a hw problem on the "“average case intuition”
for deterministic quicksort

e (Note: A solution to the in-class exercise is on page 147 of
the text)

e In the best case, the partition always splits the original list
into two lists of half the size

e Then we have the recurrence T'(n) = 2T(n/2) + ©(n)

e This is the same recurrence as for mergesort and its solution
is T(n) = O(nlogn)

— Randomized QuickSort —

e We'd like to ensure that we get reasonably good splits rea-
sonably quickly

We'd like an algorithm which is expected to perform well no
matter what sort of input it gets.

Q: How do we ensure that we *“usually” get good splits?
How can we ensure this even for worst case inputs?

e A: We use randomization.

12

— R-Partition ——

//PRE: Alp..r] is the array to be partitioned, p>=1 and r <= size
// of A
//POST: Let A’ be the array A after the function is run. Then

// A’ [p..r] contains the same elements as A[p..r]. Further,
// all elements in A’[p..res-1] are <= A[il, A’[res] = A[i],
// and all elements in A’ [res+1..r] are > A[i], where i is
// a random number between p and r.

R-Partition (A,p,r){
i = Random(p,r);
exchange A[r] and A[i];
return Partition(A,p,r);

}

13

— Randomized Quicksort —

//PRE: A is the array to be sorted, p>=1, and r is <= the size of A
//POST: Alp..r] is in sorted order
R-Quicksort (A,p,r){
if (p<r){
q = R-Partition (A,p,r);
R-Quicksort (A,p,q-1);
R-Quicksort (A,q+1,r);

14

—

—

—

Analysis —

R-Quicksort is a randomized algorithm

The run time is a random variable

We'd like to analyze the expected run time of R-Quicksort
To do this, we first need to learn some basic probability
theory.

15

Probability Definitions ——

(from Appendix C.3)

e A random variable is a variable that takes on one of several

values, each with some probability. (Example: if X is the
outcome of the role of a die, X is a random variable)

e The expected value of a random variable, X is defined as:

E(X) = E::r* P(X ==x)

(Example if X is the outcome of the role of a three sided
die,

E(X) = 1%(1/3)+2%(1/3)+3x%(1/3) (1)
=2 ()

16

Probability Definitions —

e Two events A and B are mutually exclusive if AN B is the

empty set (Example: A is the event that the outcome of a
die is 1 and B is the event that the outcome of a die is 2)
Two random variables X and Y are independent if for all x
andy, P(X =z and Y =y) = P(X = z)P(Y = y) (Example:
let X be the outcome of the first role of a die, and Y be the
outcome of the second role of the die. Then X and Y are
independent.)

17

Probability Definitions — Example —
— y — P
e An Indicator Random Variable associated with event A is e Indicator Random Variables and Linearity of Expectation used
defined as: together are a very powerful tool
— I(A) =1 if A occurs e The “Birthday Paradox” illustrates this point
— I(A) =0 if A does not occur e To analyze the run time of quicksort, we will also use indica-
e Example: Let A be the event that the role of a die comes tor r.v.’s and linearity of expectation (analysis will be similar
up 2. Then I(A) is 1 if the die comes up 2 and 0 otherwise. to “birthday paradox” problem)
18 | 21
Linearity of Expectation — “Birthday Paradox”
— ' p — y

e Let X and Y be two random variables
Then E(X+Y) = E(X) + E(Y)
(Holds even if X and Y are not independent.)

Assume there are k people in a room, and n days in a year
Assume that each of these k people is born on a day chosen
uniformly at random from the n days

e Q: What is the expected number of pairs of individuals that

e More generally, let X1, X5,..., Xy, be n random variables]
e Then have the same birthday?
n n e We can use indicator random variables and linearity of ex-
E(Y X)) =) E(X) pectation to compute this
i=1 i=1
19 | 22
Example — Analysis —
— P — y
e Forall1 <:i<j<k, let X;; be an indicator random variable
e For 1 < i < n, let X; be the outcome of the i-th role of defined such that:
three-sided die — X;; =1 if person i and person j have the same birthday
e Then — X;j = 0 otherwise
n n e Note that for all 4,7,
E(Y X)) =) E(X;)=2n
i=1 i=1 E(X;;) = P(person i and j have same birthday) (3)

= 1/n @

20 23

— Analysis

e Let X be a random variable giving the number of pairs of

people with the same birthday

We want E(X)

— Analysis —

B(X) =

The second step follows by

— Reality Check

The X =% ¥ 11X
So B(X) = E(Sfoq Yh_ i1 Xij)

24

ko k
ECY. Y X))
i=1j=it1

k

k
>N E(XG)
i=1 j=it1
k

k
> X 1n
i=1j=i4+1

k

(5)(x/m)

k(k—1)

2n

Linearity of Expectation

()

(6)

€]

(®
9

25

e Thus, if k(k— 1) > 2n, expected number of pairs of people
with same birthday is at least 1
e Thus if have at least v2n+1 people in the room, can expect
to have at least two with same birthday
e For n = 365, if k = 28, expected number of pairs with same

birthday is 1.04

26

TodOo ———

e Finish Chapter 7

27

