
CS 361, Lecture 20

Jared Saia

University of New Mexico

Outline

• Dictionary ADT

• Hash Tables

1

Administrivia

• Note from last time: Bucket Sort is not a comparison based

sorting algorithm

• Challenge problem: Recall the coin and scale problem we

discussed many lectures back. We gave an algorithm that

uses O(logn) weighings to find the fake coin. Now use the

decision tree technique to show that any algorithm for this

problem requires Ω(logn) weighings.

2

Dictionary ADT

A dictionary ADT implements the following operations

• Insert(x): puts the item x into the dictionary

• Delete(x): deletes the item x from the dictionary

• IsIn(x): returns true iff the item x is in the dictionary

3

Dictionary ADT

• Frequently, we think of the items being stored in the dictio-

nary as keys

• The keys typically have records associated with them which

are carried around with the key but not used by the ADT

implementation

• Thus we can implement functions like:

– Insert(k,r): puts the item (k,r) into the dictionary if the

key k is not already there, otherwise returns an error

– Delete(k): deletes the item with key k from the dictionary

– Lookup(k): returns the item (k,r) if k is in the dictionary,

otherwise returns null

4

Implementing Dictionaries

• The simplest way to implement a dictionary ADT is with a

linked list

• Let l be a linked list data structure, assume we have the

following operations defined for l

– head(l): returns a pointer to the head of the list

– next(p): given a pointer p into the list, returns a pointer

to the next element in the list if such exists, null otherwise

– previous(p): given a pointer p into the list, returns a

pointer to the previous element in the list if such exists,

null otherwise

– key(p): given a pointer into the list, returns the key value

of that item

– record(p): given a pointer into the list, returns the record

value of that item

5



Done Last Time

• Q1: Write the operation Lookup(k) which returns a pointer

to the item with key k if it is in the dictionary or null otherwise

• Q2: Write the operation Insert(k,r)

6

In-Class Exercise

Implement a dictionary with a linked list

• Q3: Write the operation Delete(k)

• Q4: For a dictionary with n elements, what is the runtime

of all of these operations for the linked list data structure?

• Q5: Describe how you would use this dictionary ADT to

count the number of occurences of each word in an online

book.

• Q6: If m is the total number of words in the online book,

and n is the number of unique words, what is the runtime of

the algorithm for the previous question?

7

Dictionaries

• This linked list implementation of dictionaries is very slow

• Q: Can we do better?

• A: Yes, with hash tables, AVL trees, etc

8

Hash Tables

Hash Tables implement the Dictionary ADT, namely:

• Insert(x) - O(1) expected time, Θ(n) worst case

• Lookup(x) - O(1) expected time, Θ(n) worst case

• Delete(x) - O(1) expected time, Θ(n) worst case

9

Direct Addressing

• Suppose universe of keys is U = {0,1, . . . ,m− 1}, where m is

not too large

• Assume no two elements have the same key

• We use an array T [0..m− 1] to store the keys

• Slot k contains the elem with key k

10

Direct Address Functions

DA-Search(T,k){ return T[k];}

DA-Insert(T,x){ T[key(x)] = x;}

DA-Delete(T,x){ T[key(x)] = NIL;}

Each of these operations takes O(1) time

11



Direct Addressing Problem

• If universe U is large, storing the array T may be impractical

• Also much space can be wasted in T if number of objects

stored is small

• Q: Can we do better?

• A: Yes we can trade time for space

12

Hash Tables

• “Key” Idea: An element with key k is stored in slot h(k),

where h is a hash function mapping U into the set {0, . . . ,m−
1}
• Main problem: Two keys can now hash to the same slot

• Q: How do we resolve this problem?

• A1: Try to prevent it by hashing keys to “random” slots and

making the table large enough

• A2: Chaining

• A3: Open Addressing

13

Chained Hash

In chaining, all elements that hash to the same slot are put in a

linked list.

CH-Insert(T,x){Insert x at the head of list T[h(key(x))];}

CH-Search(T,k){search for elem with key k in list T[h(k)];}

CH-Delete(T,x){delete x from the list T[h(key(x))];}

14

Analysis

• CH-Insert and CH-Delete take O(1) time if the list is doubly

linked and there are no duplicate keys

• Q: How long does CH-Search take?

• A: It depends. In particular, depends on the load factor,

α = n/m (i.e. average number of elems in a list)

15

CH-Search Analysis

• Worst case analysis: everyone hashes to one slot so Θ(n)

• For average case, make the simple uniform hashing assump-

tion: any given elem is equally likely to hash into any of the

m slots, indep. of the other elems

• Let ni be a random variable giving the length of the list at

the i-th slot

• Then time to do a search for key k is 1 + nh(k)

16

CH-Search Analysis

• Q: What is E(nh(k))?

• A: We know that h(k) is uniformly distributed among {0, ..,m−
1}
• Thus, E(nh(k)) =

∑m−1
i=0 (1/m)ni = n/m = α

17



Hash Functions

• Want each key to be equally likely to hash to any of the m

slots, independently of the other keys

• Key idea is to use the hash function to “break up” any pat-

terns that might exist in the data

• We will always assume a key is a natural number (can e.g.

easily convert strings to naturaly numbers)

18

Division Method

• h(k) = k mod m

• Want m to be a prime number, which is not too close to a

power of 2

• Why?

19

Multiplication Method

• h(k) = bm ∗ (kA mod 1)c
• kA mod 1 means the fractional part of kA

• Advantage: value of m is not critical, need not be a prime

• A = (
√

5− 1)/2 works well in practice

20

Open Addressing

• All elements are stored in the hash table, there are no sepa-

rate linked lists

• When we do a search, we probe the hash table until we find

an empty slot

• Sequence of probes depends on the key

• Thus hash function maps from a key to a “probe sequence”

(i.e. a permutation of the numbers 0, ..,m− 1)

21

Open Addressing

All positions are taken modulo m, and i ranges from 1 to m− 1

• Linear Probing: Initial probe is to position h(k), successive

probes are to positions h(k) + i,

• Quadratic Probing: Initial probes is to position h(k), succes-

sive probes are to position h(k) + c1i+ c2i
2

• Double Hashing: Initial probe is to position h(k), successive

probes are to positions h(k) + ih2(k)

22

Feedback Request

Please answer the following two questions on a separate half

sheet of paper:

• Is the pace of the class now too fast, too slow, or just right?

• What is the one single thing you would change about the

class to make it better?

Thanks!

23


