
CS 361, Lecture 21

Jared Saia

University of New Mexico

Outline

• Class Evaluation

• Binary Trees

1

Evaluation Results

• Vast majority of students said class pace is “just right”, so

pace will stay the same as it is now

• Major other problem is “hw is too difficult”

2

HW Difficulty

• The HW in this class is inherently difficult, this is a difficult

class.

• You need to be able to solve problems as hard as the prob-

lems in the book to be competitive with students from other

schools

• Some of these problems require deep thinking

• However there are things we can do to make things easier

3

Things you can do

• Start the hws early!!

• You have three resources you can use to do well on the hws:

– Other students - use email,class list, or phone

– Lab Sections - bring specific questions to lab section

– Office Hours - come to these

4

Things I will do

• Answer any HW questions at the beginning of class

• Answer any HW questions emailed to the class mailing list

• Note: You need to start hw early in order to be able to ask

me questions about problems you are having

5



HW Questions

• Are there any questions on the current HW?

6

Binary Search Trees

• Q: What is a search tree?

• A1: It’s yet another data structure for implementing the

dictionary ADT

• Q: Don’t we already know enough of those?

• A: No

7

Hash Tables

Hash Tables implement the Dictionary ADT, namely:

• Insert(x) - O(1) expected time, Θ(n) worst case

• Lookup(x) - O(1) expected time, Θ(n) worst case

• Delete(x) - O(1) expected time, Θ(n) worst case

8

Red-Black Trees

Red-Black trees (a kind of binary tree) also implement the Dic-

tionary ADT, namely:

• Insert(x) - O(logn) time

• Lookup(x) - O(logn) time

• Delete(x) - O(logn) time

9

Why BST?

• Q: When would you use a Search Tree?

• A1: When need a hard guarantee on the worst case run times

(e.g. “mission critical” code)

• A2: When want something more dynamic than a hash table

(e.g. don’t want to have to enlarge a hash table when the

load factor gets too large)

• A3: Search trees can implement some other important op-

erations...

10

Search Tree Operations

• Insert

• Lookup

• Delete

• Minimum/Maximum

• Predecessor/Successor

11



What is a BST?

• It’s a binary tree

• Each node holds a key and record field, and a pointer to left

and right children

• Binary Search Tree Property is maintained

12

Binary Search Tree Property

• Let x be a node in a binary search tree. If y is a node in the

left subtree of x, then key(y)≤key(x). If y is a node in the

right subtree of x then key(x)≤key(y)

13

Example BST

14

Inorder Walk

• BSTs are arranged in such a way that we can print out the

elements in sorted order in Θ(n) time

• Inorder Tree-Walk does this

15

Inorder Tree-Walk

Inorder-TW(x){

if (x is not nil){

Inorder-TW(left(x));

print key(x);

Inorder-TW(right(x));

}

16

Example Tree-Walk

17



Analysis

• Correctness?

• Run time?

18

Search in BT

Tree-Search(x,k){

if (x=nil) or (k = key(x)){

return x;

}

if (k<key(x)){

return Tree-Search(left(x),k);

}else{

return Tree-Search(right(x),k);

}

}

19

Analysis

• Let h be the height of the tree

• The run time is O(h)

• Correctness???

20

In-Class Exercise

• Q1: What is the loop invariant for Tree-Search?

• Q2: What is Initialization?

• Q3: Maintenance?

• Q4: Termination?

21

Tree Min/Max

• Tree Minimum(x): Return the leftmost child in the tree

rooted at x

• Tree Maximum(x): Return the rightmost child in the tree

rooted at x

22

Tree-Successor

Tree-Successor(x){

if (right(x) != null){

return Tree-Minimum(right(x));

}

y = parent(x);

while (y!=null and x=right(y)){

x = y;

y = parent(y);

}

return y;

}

23



Successor Intuition

• Case 1: If right subtree of x is non-empty, successor(x) is

just the leftmost node in the right subtree

• Case 2: If the right subtree of x is empty and x has a suc-

cessor, then successor(x) is the lowest ancestor of x whose

left child is also an ancestor of x.

24

Insertion

Insert(T,x)

1. Let r be the root of T .

2. Do Tree-Search(r,key(x)) and let p be the last node pro-

cessed in that search

3. If p is nil (there is no tree), make x the root of a new tree

4. Else if key(x) ≤ p, make x the left child of p, else make x

the right child of p

25

Deletion

• Code is in book, basically there are three cases, two are easy

and one is tricky

• Case 1: The node to delete has no children. Then we just

delete the node

• Case 2: The node to delete has one child. Then we delete

the node and “splice” together the two resulting trees

26

Case 3

Case 3: The node, x to be deleted has two children

1. Swap x with Successor(x) (Successor(x) has no more than 1

child (why?))

2. Remove x, using the procedure for case 1 or case 2.

27

Analysis

• All of these operations take O(h) time where h is the height

of the tree

• If n is the number of nodes in the tree, in the worst case, h

is O(n)

• However, if we can keep the tree balanced, we can ensure

that h = O(logn)

• Next time, we’ll see how Red-Black trees can maintain a

balanced BST

28


