
CS 361, Lecture 22

Jared Saia

University of New Mexico

Outline

• Binary Trees

• Red Black Trees

1

HW Questions

• Are there any questions on the current HW?

2

Search in BT

Tree-Search(x,k){

if (x=nil) or (k = key(x)){

return x;

}

if (k<key(x)){

return Tree-Search(left(x),k);

}else{

return Tree-Search(right(x),k);

}

}

3

Analysis

• Let h be the height of the tree

• The run time is O(h)

• Correctness???

4

Previous In-Class Exercise

• Q1: What is the loop invariant for Tree-Search?

• Q2: What is Initialization?

• Q3: Maintenance?

• Q4: Termination?

5



Answers

• To show: If key k exists in the tree, Tree-Search returns the

elem with key k, otherwise Tree-Search returns nil.

• Loop Invariant: If key k exists in the tree, then it exists in

the subtree rooted at node x

6

Answers

• Initialization: Before the first iteration, x is the root of the

entire tree, therefor if key k exists in the tree, then it exists

in the subtree rooted at node x

7

Maintenance

• Maintenance: Assume at the beginning of the procedure, it’s

true that if key k exists in the tree that it is in the subtree

rooted at node x. There are three cases that can occur

during the procedure:

– Case 1: key(x) is k. In this case, the procedure terminates

and returns x, so the invariant continues to hold

– Case 2: k<key(x). In this case, by the Search Tree Prop-

erty, all keys in the subtree rooted on the right child of

x are greater than k (since key(x)>k). Thus, if k exists

in the subtree rooted at x, it must exist in the subtree

rooted at left(x).

– Case 3:k>key(x). In this case, by the Search Tree Prop-

erty, All keys in the subtree rooted on the right child of x

are less than k (since key(x)<k). Thus, if k exists in the

subtree rooted at x, it must exist in the subtree rooted at

right(x).

8

Termination

• By the loop invariant, we know that when the procedure

terminates, if k is in the tree, then it is in the subtree rooted

at x. If k is in fact in the tree, then x will never be nil, and so

the procedure will only terminate by returning a node with

key k. If k is not in the tree, then the only way the procedure

will terminate is when x is nil. Thus, in this case also, the

procedure will return the correct answer.

9

Tree Min/Max

• Tree Minimum(x): Return the leftmost child in the tree

rooted at x

• Tree Maximum(x): Return the rightmost child in the tree

rooted at x

10

Tree-Successor

Tree-Successor(x){

if (right(x) != null){

return Tree-Minimum(right(x));

}

y = parent(x);

while (y!=null and x=right(y)){

x = y;

y = parent(y);

}

return y;

}

11



Successor Intuition

• Case 1: If right subtree of x is non-empty, successor(x) is

just the leftmost node in the right subtree

• Case 2: If the right subtree of x is empty and x has a suc-

cessor, then successor(x) is the lowest ancestor of x whose

left child is also an ancestor of x. (i.e. the lowest ancestor

of x whose key is ≥ key(x))

12

Insertion

Insert(T,x)

1. Let r be the root of T .

2. Do Tree-Search(r,key(x)) and let p be the last node pro-

cessed in that search

3. If p is nil (there is no tree), make x the root of a new tree

4. Else if key(x) ≤ p, make x the left child of p, else make x

the right child of p

13

Deletion

• Code is in book, basically there are three cases, two are easy

and one is tricky

• Case 1: The node to delete has no children. Then we just

delete the node

• Case 2: The node to delete has one child. Then we delete

the node and “splice” together the two resulting trees

14

Case 3

Case 3: The node, x to be deleted has two children

1. Swap x with Successor(x) (Successor(x) has no more than 1

child (why?))

2. Remove x, using the procedure for case 1 or case 2.

15

Analysis

• All of these operations take O(h) time where h is the height

of the tree

• If n is the number of nodes in the tree, in the worst case, h

is O(n)

• However, if we can keep the tree balanced, we can ensure

that h = O(logn)

• Red-Black trees can maintain a balanced BST

16

Randomly Built BST

• What if we build a binary search tree by inserting a bunch of

elements at random?

• Q: What will be the average depth of a node in such a

randomly built tree? We’ll show that it’s O(logn)

• For a tree T and node x, let d(x, T ) be the depth of node x

in T

• Define the total path length, P (T ), to be the sum over all

nodes x in T of d(x, T )

17



Analysis

“Shut up brain or I’ll poke you with a Q-Tip” - Homer Simpson

• Note that the average depth of a node in T is

1

n

∑

x∈T
d(x, T ) =

1

n
P (T )

• Thus we want to show that P (T ) = O(n logn)

18

Analysis

• Let Tl, Tr be the left and right subtrees of T respectively.

Let n be the number of nodes in T

• Then P (T ) = P (Tl) + P (Tr) + n− 1. Why?

19

Analysis

• Let P (n) be the expected total depth of all nodes in a ran-

domly built binary tree with n nodes

• Note that for all i, 0 ≤ i ≤ n − 1, the probability that Tl has

i nodes and Tr has n− i− 1 nodes is 1/n.

• Thus P (n) = 1
n

∑n−1
i=0 (P (i) + P (n− i− 1) + n− 1)

20

Analysis

P (n) =
1

n

n−1∑

i=0

(P (i) + P (n− i− 1) + n− 1) (1)

=
1

n
(
n−1∑

i=0

(P (i) + P (n− i− 1)) +
1

n
(
n−1∑

i=0

n− 1)) (2)

=
1

n
(
n−1∑

i=0

(P (i) + P (n− i− 1)) + Θ(n) (3)

=
2

n
(
n−1∑

k=1

P (k)) + Θ(n) (4)

(5)

21

Analysis

• We have P (n) = 2
n(
∑n−1
k=1 P (k)) + Θ(n)

• This is the same recurrence for randomized Quicksort

• In your hw (problem 7-2), you show that the solution to this

recurrence is P (n) = O(n logn)

22

Take Away

• P (n) is the expected total depth of all nodes in a randomly

built binary tree with n nodes.

• We’ve shown that P (n) = O(n logn)

• There are n nodes total

• Thus the expected average depth of a node is O(logn)

23



Take Away

• The expected average depth of a node in a randomly built

binary tree is O(logn)

• This implies that operations like search, insert, delete take

expected time O(logn) for a randomly built binary tree

24

Warning!

• In many cases, data is not inserted randomly into a binary

search tree

• I.e. many binary search trees are not “randomly built”

• For example, data might be inserted into the binary search

tree in almost sorted order

• Then the BST would not be randomly built, and so the

expected average depth of the nodes would not be O(logn)

25

What to do?

• A Red-Black tree implements the dictionary operations in

such a way that the height of the tree is always O(logn),

where n is the number of nodes

• This will guarantee that no matter how the tree is built that

all operations will always take O(logn) time

• Next time we’ll see how to create Red-Black Trees

26


