
CS 361, Lecture 23

Jared Saia

University of New Mexico

Outline

• Red Black Trees

1

What is a RB-Tree

• A RB-Tree is a balanced binary search tree

• The height of the tree is always O(logn) where n is the

number of nodes in the tree

2

RB Trees

• Each node has a “color” field in addition to a key, left, right,

and parent pointer

• If the child or parent of a node does not exist, the corre-

sponding pointer field will contain the value NIL

• We will say that these NIL’s are pointers to external nodes

(leaves) of the tree, and say that all key-bearing nodes are

internal nodes of the tree

3

Red-Black Properties

A BST is a red-black tree if it satisfies the RB-Properties

1. Every node is either red or black

2. The root is black

3. Every leaf (NIL) is black

4. If a node is red, then both its children are black

5. For each node, all paths from the node to descendant leaves

contain the same number of black nodes

4

Example RB-Tree

5



Black Height

• Black-height of a node x, bh(x) is the number of nodes on

any path from, but not including x down to a leaf node.

• Note that the black-height of a node is well-defined since all

paths have the same number of black nodes

• The black-height of an RB-Tree is just the black-height of

the root

6

Key Lemma

• Lemma: A RB-Tree with n internal nodes has height at most

2 log(n+ 1)

• Proof Sketch: 1) The subtree rooted at the node x contains

at least 2bh(x) − 1 internal nodes

• 2) For the root r, bh(r) ≥ h/2, thus n ≥ 2h/2 − 1. Taking

logs of both sides, we get that h ≤ 2 log(n+ 1)

7

Proof

1) The subtree rooted at the node x contains at least 2bh(x)− 1

internal nodes

• Show by induction on the height of x

• BC: If the height of x is 0, then x is a leaf, and subtree

rooted at x does indeed contain 20 − 1 = 0 internal nodes

• IS: Consider a node x which is an internal node with two

children(all internal nodes have two children). Each child

has black-height of either bh(x) or bh(x) − 1 (the former if

it is red, the latter if it is black). Since the height of these

children is less than x, we can apply the inductive hypothesis

to conclude that each child has at least 2bh(x)−1− 1 internal

nodes. This implies that the subtree rooted at x has at least

(2bh(x)−1−1) + (2bh(x)−1−1) + 1 = 2bh(x)−1 internal nodes.

This proves the claim.

8

Maintenance?

• How do we ensure that the Red-Black Properties are main-

tained?

• I.e. when we insert a new node, what do we color it? How do

we re-arrange the new tree so that the Red-Black Property

holds?

• How about for deletions?

9

Left-Rotate

• Left-Rotate(x) takes a node x and “rotates” x with its right

child

• Right-Rotate is the symmetric operation

• Both Left-Rotate and Right-Rotate preserve the BST Prop-

erty

• We’ll use Left-Rotate and Right-Rotate in the RB-Insert pro-

cedure

10

Picture

x

y

y

x
T1

T2 T3
T1 T2

T3

Left−Rotate(x)

Right−Rotate(y)

11



Example

x

y

5

7

6 8

3

42

y

x

7

5

3

2 4

6

8

Left−Rotate(x)

12

Binary Search Tree Property

• Let x be a node in a binary search tree. If y is a node in the

left subtree of x, then key(y)≤key(x). If y is a node in the

right subtree of x then key(y)≥key(x)

13

In-Class Exercise

Show that Left-Rotate(x) maintains the BST Property. In other

words, show that if the BST Property was true for the tree

before the Left-Rotate(x) operation, then it’s true for the tree

after the operation.

• Show that after rotation, the BST property holds for the

entire subtree rooted at x

• Show that after rotation, the BST property holds for the

subtree rooted at y

• Now argue that after rotation, the BST property holds for

the entire tree

14

RB-Insert(T,z)

1. Set left(z) and right(z) to be NIL

2. Let y be the last node processed during a search for z in T

3. Insert z as the appropriate child of y (left child if key(z)≤ y,

right child otherwise)

4. Color z red

5. Call the procedure RB-Insert-Fixup

15

RB-Insert-Fixup(T,z)

RB-Insert-Fixup(T,z){

while (color(p(z)) is red){

case 1: z’s uncle, y, is red{

do case 1

}

case 2: z’s uncle, y, is black and z is a right child{

do case 2

}

case 3: z’s uncle, y, is black and z is a left child{

do case 3

}

}

color(root(T)) = black;

}

16

Case 1

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	


�
�


�
�


�
�


�
�


�
�


�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

D

B

A

C C

A D

B

C

B

A

D

C

B

A

D

T1

T2 T3

T4 T5

T1 T2

T3 T4 T5

T1

T2 T3

T4 T5

T1 T2

T3 T4 T5

z

y

new z

z

y

new z

17



Case 2 and 3

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

B

A

C

T1

T2 T3

z

T4 y

C

B

A

T1 T2

T3

T4

Case 2
Case 3

B

A C

z

z

y

T1 T2 T3 T4

18

Loop Invariant

At the start of each iteration of the loop:

• Node z is red

• If parent(z) is the root, then parent(z) is black

• If there is a violation of the red-black properties, there is at

most one violation, and it is either property 2 or 4. If there is

a violation of property 2, it occurs because z is the root and

is red. If there is a violation of property 4, it occurs because

both z and parent(z) are red.

19

Pseudocode

• Detailed Pseudocode for RB-Insert and RB-Insert-Fixup is in

the book, Chapter 13.3

• There’s also a detailed proof of correctness for RB-Insert-

Fixup in the the same Chapter

20


