— Administrative ——

CS 361, Lecture 26

Lab Section evaluation this week
. This week, Kanglin will take attendance at sections, if you're
Jared Saia , . X
. itv of N Mexi there, you'll get an extra check for participation
niversity of Wew vexico Sections are Thursday 3:30-4:20 and Friday 1:00-1:50
Good chance to review material for final

— Outline —— — Project ———

e Project will be due May 8th in class
e SKkip Lists e Late projects will not be accepted
e You can get partial credit for an unfinished project turned in
on time but will get no credit for a finished project turned in
late

— Project —— — HW —

e There will also be a hw due on May 8th in class

e Any questions on the group project? (hw6) This will be a “final review" hw
[)

Final

— _ — Skip List ——

e Technically, not a BST, but they implement all of the same

e Final will be Tuesday May 13th, 7:30-9:30am in our regular operations

classroom . ¢ " d (F h e Very elegant randomized data structure, simple to code but
. Ch|OSfd) book, but two pieces of paper are allowed (for cheat analysis is subtle
sheets

e They guarantee that, with high probability, all the major op-

* No calculators erations take O(logn) time

High Level Analysis — Skip List ———

| |

Comparison of various BSTs

e RB-Trees: + guarantee O(logn) time for each operation,

easy to augment, — high constants e A skip list is basically a collection of doubly-linked lists,
e AVL-Trees: + guarantee O(logn) time for each operation, Ly, Lp,..., Ly, for some integer z

— high constants e Each list has a special head and tail node, the keys of these
e B-Trees: + works well for trees that won't fit in memory, nodes are assumed to be —MAXNUM and +MAXNUM re-

guarantee O(logn) time for each operation, — inserts and spectively

deletes are more complicated e The keys in each list are in sorted order (non-decreasing)

e Splay Tress: 4 small constants, — amortized guarantees only
e Skip Lists: + easy to implement, — runtime guarantees are
probabilistic only

— Which Data Structure to use? —_ — Skip List ——
e Splay trees work very well in practice, the “hidden constants”
are small e Every key is in the list L.
e Unfortunately, they can not guarantee that every operation e For all > 2, if a key k is in the list L;, it is also in L;_1.
takes O(logn) Further there are up and down pointers between the k in L;
e When this guarantee is required, B-Trees are best when the and the kin L;_1.
entire tree will not be stored in memory e All the head(tail) nodes from neighboring lists are inter-
e If the entire tree will be stored in memory, RB-Trees, AVL- connected

Trees, and Skip Lists are good

Example — Deletion ———

| |

et o po e Deletion is very simple
e First do a search for the key to be deleted
head 2] 4 5 al . . .
e Then delete that key from all the lists it appears in from
[t 1 | 2 B 3 s 5 -l the bottom up, making sure to “zip up” the lists after the
deletion
12 | 15 |
earch — In-Class Exercise Trick —
— S — C

Search(k){
pLeft = L_x.head;
for (i=x;i>=0;i--){

Search from pLeft in L_i to get the rightmost elem, r, A trick for computing expectations of discrete positive random
with value <= k; variables:
plLeft = pointer to r in L_(i-1);
} e Let X be a discrete r.v., that takes on values from 1 to n
if (pLeft==k) n
return pLeft E(X)= Y P(X>1)
else i=1

return nil

13 16

— Insert — — Why?

p is a constant between 0 and 1, typically p = 1/2, let rand()
return a random value between 0 and 1

n

S P(X>i) = P(X=1)+P(X=2)+P(X=3)+...
Insert (k){ =1

First call Search(k), let pLeft be the leftmost elem <= k in L_1 + PX=2)+PX=3)+PX=4+...

Insert k in L_1, to the right of pLeft + P(X=3)+P(X=4)+P(X=5)+...

i=2; + ...

while (rand()<= p){ = 1xP(X=1)42xP(X =2)4+3+«xP(X=3)+...

insert k in the appropriate place in L_ij;

}

B(X)

14 17

—

In-Class Exercise —

Q: How much memory do we expect a skip list to use up?

e Let X; be the number of lists that element ¢ is inserted in.
e Q: What is P(X; > 1), P(X; >2), P(X; >3)7

e Q: What is P(X; > k) for general k7

e Q: What is E(X;)?

e QLet X =37, X;. Whatis E(X)?

—

18

Height of Skip List ———

e Assume there are n nodes in the list

e Q: What is the probability that a particular key ¢ achieves
height exceeding klogn for some constant k?

o Allf p=1/2, P(X; > klogn) = L

—

19

Height of Skip List ——

e Q: What is the probability that any of the nodes achieve
height higher than klogn?
e A: We want

P(Xy >klogn or X > klogn or ... or X, > klogn)

e By a Union Bound, this probability is no more than

P(X1 > klogn) + P(X2 > klogn) + -+ P(Xp > klogn)

: n _ 1-k
Which equals SE=N

20

—

—

—

Height of Skip List ——

e If we choose k to be, say 10, this probability gets very small

as n gets large

e In particular, the probability of having a skip list of size ex-

ceeding klogn is o(1)

e So we say that the height of the skip list is O(logn) with

high probability

21

Search Time —

Note that the expected number of “siblings” of a node, z,
at any level 7 is 2

Why? Because for a node to be a sibling of z at level ¢, it
must have failed to advance to the next level

The first node that advances to the next level ends the pos-
sibility of further siblings.

This is the same as asking expected number of times we
need to flip a coin to get a heads.

22

Flipping to get Heads —

How many times in expectation do we need to flip a coin to
get heads, if the coin is heads with probability p?

Let X be a random variable giving the number of times the
coin is flipped until we get heads, then E(X) is the expected
number of times needed to flip to get heads

Then E(X) =14 (1-p)E(X) since we take 1 flip, plus in the
case where the coin is tails (which happens with probability
(1—p)), we then take ‘“the expected number of times needed
to flip to get heads” (i.e. we're no better off than when we
started)

Solving for E(X) gives E(X) =1/p. If p=1/2, then E(X) =
2

23

— Search Time ——

e The expected number of “siblings” of a node, x, at any level

iis 2

The number of levels is O(logn) with high probability

e From these two facts, we can prove that the expected search
time is O(logn) (the proof is omitted)

e (Warning: The argument is not as simple as multiplying these
two values. We can't do this since the two random variables
are not independent.)

24

