
CS 361, Lecture 27

Jared Saia

University of New Mexico

Outline

• Skip List Wrapup

• Master Theorem

1

Height of Skip List

• Assume there are n nodes in the list

• Q: What is the probability that a particular key exceeds

height k logn for some constant k?

• A: If p = 1/2, P (Xi ≥ k logn) = (1/2)k logn = 1
nk

2

Height of Skip List

• Q: What is the probability that any of the nodes exceed

height k logn?

• A: We want

P (X1 ≥ k logn or X2 ≥ k logn or . . . or Xn ≥ k logn)

• By a Union Bound, this probability is no more than

P (X1 ≥ k logn) + P (X2 ≥ k logn) + · · ·+ P (Xn ≥ k logn)

• Which equals n
nk

= n1−k

3

Height of Skip List

• If we choose k to be, say 10, this probability gets very small

as n gets large

• In particular, the probability of having a skip list of size ex-

ceeding k logn is o(1)

• So we say that the height of the skip list is O(logn) with

high probability

4

Search Time

• Note that the expected number of “siblings” of a node, x,

at any level i is 2

• Why? Because for a node to be a sibling of x at level i, it

must have failed to advance to the next level

• The first node that advances to the next level ends the pos-

sibility of further siblings.

• This is the same as asking expected number of times we

need to flip a coin to get a heads.

5



Flipping to get Heads

• How many times in expectation do we need to flip a coin to

get heads, if the coin is heads with probability p?

• Let X be a r.v. giving the number of times needed to flip

to get heads, then E(X) is the expected number of times

needed to flip to get heads

• Then E(X) = 1+(1−p)E(X) since we take 1 flip, plus in the

case where the coin is tails (which happens with probability

(1−p)), we then take “the expected number of times needed

to flip to get heads” (i.e. we’re no better off than when we

started)

• Solving for E(X) gives E(X) = 1/p

• If p = 1/2, then E(X) = 2

6

Search Time

• The expected number of “siblings” of a node, x, at any level

i is 2

• The number of levels is O(logn) with high probability

• From these two facts, we can argue that the expected search

time is O(logn)

• (Warning: The argument is not as simple as multiplying these

two values. We can’t do this since the two random variables

are not independent.)

7

Master Theorem

• Divide and conquer algorithms often give us running-time

recurrences of the form

T (n) = aT (n/b) + f(n) (1)

• Where a and b are constants and f(n) is some other function.

• The so-called ‘Master Theorem’ gives us a general method

for solving such recurrences f(n) is a simple polynomial.

8

Master Theorem

• Unfortunately, the Master Theorem doesn’t work for all func-

tions f(n)

• Further many useful recurrences don’t look like T (n)

• However, the theorem allows for fast solution of recurrences

when it applies

9

Recursion Tree Review

• Master Theorem is just a special case of the use of recursion

trees

• Consider equation T (n) = aT (n/b) + f(n)

• We start by drawing a recursion tree

10

Recursion Tree Review

• The root is a box containing the value f(n)

• It has a children, each of which is the root of a recursion tree

for T (n/b)

• Each of these nodes has a children, etc., etc.

11



Another View

• Equivalently, a recursion tree is a complete a-ary tree where

each node at depth i contains the value f(n/bi).

• The tree stops when we get to the base case for the recur-

rence

• We’ll assume T (1) = f(1) is the base case

• Then there are logb n levels to the recursion tree

12

Recursion Tree

• For this tree, T (n) is just the sum of all values stored in all

levels of the tree

T (n) = f(n)+a f(n/b)+a2 f(n/b2)+· · ·+ai f(n/bi)+· · ·+aL f(n/bL)

• Where L = logb n is the depth of the tree

• Since f(1) = Θ(1), the last term of this summation is Θ(aL) =

Θ(alogb n) = Θ(nlogb a)

13

A “Log Fact” Aside

• It’s not hard to see that alogb n = nlogb a

alogb n = nlogb a (2)

alogb n = aloga n∗logb a (3)

logb n = loga n ∗ logb a (4)

• We get to the last eqn by taking loga of both sides

• The last eqn is true by our third basic log fact

14

Master Theorem

• We can now state the Master Theorem

• We will state it in a way slightly different from the book

• Note: The Master Method is just a “short cut” for the re-

cursion tree method. It is less powerful than recursion trees.

15

Master Method

The recurrence T (n) = aT (n/b) + f(n) can be solved as follows:

• If a f(n/b) ≤ f(n)/K for some constant K > 1, then T (n) =

Θ(f(n)).

• If a f(n/b) ≥ K f(n) for some constant K > 1, then T (n) =

Θ(nlogb a).

• If a f(n/b) = f(n), then T (n) = Θ(f(n) logb n).

16

Proof

• If f(n) is a constant factor larger than a f(b/n), then the sum

is a descending geometric series. The sum of any geometric

series is a constant times its largest term. In this case, the

largest term is the first term f(n).

• If f(n) is a constant factor smaller than a f(b/n), then the

sum is an ascending geometric series. The sum of any ge-

ometric series is a constant times its largest term. In this

case, this is the last term, which by our earlier argument is

Θ(nlogb a).

• Finally, if a f(b/n) = f(n), then each of the L terms in the

summation is equal to f(n).

17



Example

• T (n) = T (3n/4) + n

• If we write this as T (n) = aT (n/b) + f(n), then a = 1,b =

4/3,f(n) = n

• Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of

4/3, so T (n) = Θ(n)

18

Example

• Karatsuba’s multiplication algorithm: T (n) = 3T (n/2) +

n

• If we write this as T (n) = aT (n/b) + f(n), then a = 3,b =

2,f(n) = n

• Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of

3/2, so T (n) = Θ(nlog2(3/2))

19

Example

• Mergesort: T (n) = 2T (n/2) + n

• If we write this as T (n) = aT (n/b) + f(n), then a = 2,b =

2,f(n) = n

• Here a f(n/b) = f(n), so T (n) = Θ(n logn)

20

Example

• T (n) = T (n/2) + n logn

• If we write this as T (n) = aT (n/b) + f(n), then a = 1,b =

2,f(n) = n logn

• Here a f(n/b) = n/2 logn/2 is smaller than f(n) = n logn by

a constant factor, so T (n) = Θ(n logn)

21

In-Class Exercise

• Consider the recurrence: T (n) = 4T (n/2) + n lgn

• Q: What is f(n) and a f(n/b)?

• Q: Which of the three cases does the recurrence fall under

(when n is large)?

• Q: What is the solution to this recurrence?

22

In-Class Exercise

• Consider the recurrence: T (n) = 2T (n/4) + n lgn

• Q: What is f(n) and a f(n/b)?

• Q: Which of the three cases does the recurrence fall under

(when n is large)?

• Q: What is the solution to this recurrence?

23


