— Height of Skip List ——

Q: What is the probability that any of the nodes exceed
height klogn?

CS 361, Lecture 27 e A We want

Jared Saia P(Xy >klogn or X, > klogn or ... or X, > klogn)
University of New Mexico

By a Union Bound, this probability is no more than
P(X1 > klogn) + P(X2 > klogn) + -+ P(Xn > klogn)

: n _ 1-k
e Which equals SR

— Outline —— — Height of Skip List ———

e If we choose k to be, say 10, this probability gets very small
e Skip List Wrapup as n gets large
e Master Theorem e In particular, the probability of having a skip list of size ex-
ceeding klogn is o(1)
e So we say that the height of the skip list is O(logn) with
high probability

1,
4
Height of Skip List — earch Time —
—— Height of Skip —S
e Note that the expected number of ‘“siblings” of a node, =z,
at any level 7 is 2

e Assume there are n nodes in the list e Why? Because for a node to be a sibling of = at level 4, it

e Q: What is the probability that a particular key exceeds must have failed to advance to the next level
height klogn for some constant k7 e The first node that advances to the next level ends the pos-

o A:If p=1/2, P(X; > klogn) = (1/2)k109n — ﬁ sibility of further siblings.

e This is the same as asking expected number of times we
need to flip a coin to get a heads.

Flipping to get Heads —__ Master Theorem ——

| |

e How many times in expectation do we need to flip a coin to
get heads, if the coin is heads with probability p?

e Let X be a r.v. giving the number of times needed to flip
to get heads, then E(X) is the expected number of times
needed to flip to get heads

e Then E(X) =14 (1—-p)E(X) since we take 1 flip, plus in the

case where the coin is tails (which happens with probability

(1—p)), we then take ‘“the expected number of times needed

to flip to get heads” (i.e. we're no better off than when we

started)

Solving for E(X) gives E(X) =1/p

e If p=1/2, then E(X) =2

e Unfortunately, the Master Theorem doesn’t work for all func-
tions f(n)

e Further many useful recurrences don't look like T'(n)

e However, the theorem allows for fast solution of recurrences
when it applies

earch Time — Recursion Tree Review —
— S —
e The expected number of “siblings” of a node, z, at any level
iis 2
e The number of levels is O(logn) with high probability e Master Theorem is just a special case of the use of recursion
e From these two facts, we can argue that the expected search trees
time is O(logn) e Consider equation T'(n) = aT(n/b) + f(n)
e (Warning: The argument is not as simple as multiplying these e \We start by drawing a recursion tree
two values. We can't do this since the two random variables
are not independent.)
7 | 10
Master Theorem Recursion Tree Review —
| |

e Divide and conquer algorithms often give us running-time

ecurrences of the for|) -
recurren m e The root is a box containing the value f(n)

T(n) = aT(n/b) + f(n) (1) e It has a children, each of which is the root of a recursion tree
for T(n/b)

e Where a and b are constants and f(n) is some other function.)
e Each of these nodes has a children, etc., etc.

e The so-called ‘Master Theorem’ gives us a general method
for solving such recurrences f(n) is a simple polynomial.

8 11

— Another View — — Master Theorem ——

e Equivalently, a recursion tree is a complete a-ary tree where

each node at depth i contains the value f(n/b%). e We can now state the Master Theorem
e The tree stops when we get to the base case for the recur- e We will state it in a way slightly different from the book
rence e Note: The Master Method is just a “short cut” for the re-
e We'll assume T'(1) = f(1) is the base case cursion tree method. It is less powerful than recursion trees.

e Then there are logyn levels to the recursion tree

12 15

— Recursion Tree —— — Master Method ——

e For this tree, T(n) is just the sum of all values stored in all The recurrence T(n) = aT'(n/b) + f(n) can be solved as follows:
levels of the tree

T(n) = f(n)+af(n/b)+a2 f(n/b2)+---+a7"f(n/bi)+---+aL f(n/bL) e If a f(n/b) < f(n)/K for some constant K > 1, then T'(n) =

O(f(n)).
e Where L = logyn is the depth of the tree e If a f(n/b) > K f(n) for some constant K > 1, then T(n) =
e Since f(1) = ©(1), the last term of this summation is ©(al) = O(n'o%ay.
©(a'°% ") = ©(n/°%9) o If a f(n/b) = f(n), then T(n) = ©(f(n)logyn).
13 | 16
— A '"Log Fact” Aside — — Proof —

e If f(n) is a constant factor larger than a f(b/n), then the sum

is a descending geometric series. The sum of any geometric

e It's not hard to see that @!°9% 7" = plo9a series is a constant times its largest term. In this case, the
largest term is the first term f(n).

logyn __ log,a

alozzn : nloj:"*logba) e If f(n) is a constant factor smaller than a f(b/n), then the

a = ¢ 3 sum is an ascending geometric series. The sum of any ge-

logyn = loggn x10g,a (4 ometric series is a constant times its largest term. In this
e We get to the last eqgn by taking log, of both sides case, this is the last term, which by our earlier argument is
e The last eqn is true by our third basic log fact e (nlo9a),

e Finally, if a f(b/n) = f(n), then each of the L terms in the
summation is equal to f(n).

14 17

— Example — Example
e T'(n) =T(3n/4)+n e T'(n) =T(n/2)+nlogn
e If we write this as T'(n) = aT'(n/b) + f(n), then a = 1,b = e If we write this as T'(n) = aT'(n/b) + f(n), then a = 1,b =
4/3,f(n) =n 2,f(n) =nlogn
e Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of e Here a f(n/b) = n/2logn/2 is smaller than f(n) = nlogn by
4/3, so T'(n) = ©(n) a constant factor, so T'(n) = ©(nlogn)
18 | 21
— Example — In-Class Exercise

e Karatsuba’'s multiplication algorithm: T'(n) = 3T(n/2
P 9 () (n/2) + e Consider the recurrence: T'(n) = 4T (n/2) + nlgn

n
: i ?
o If we write this as T(n) = aT'(n/b) + f(n), then a = 3,b = * Q- What is f(n) and a f(n/b)?
2.f(n) =n e Q: Which of the three cases does the recurrence fall under

(when n is large)?

Here b) = 3n/2 is bigger than = n by a factor of
¢ af(n/b) n/ 99 F(n) el e Q: What is the solution to this recurrence?

3/2, so T(n) = ©(n!092(3/2))

19 22

Example In-Class Exercise

| |

e Consider the recurrence: T'(n) = 2T (n/4) + nlgn

e Q: What is f(n) and a f(n/b)?

e Q: Which of the three cases does the recurrence fall under
(when n is large)?

e Q: What is the solution to this recurrence?

e Mergesort: T'(n) =2T(n/2)+n

e If we write this as T'(n) = aT'(n/b) + f(n), then a = 2,b =
2,f(n)=n

e Here a f(n/b) = f(n), so T(n) = ©(nlogn)

20 23

