
CS 361, Lecture 28

Jared Saia

University of New Mexico

Outline

• Administrative

• Master Theorem

• Search Engines

1

Administrative

• The project is due this Thursday in class.

• This deadline is strict - late projects will recieve no credit. (A

partially completed project turned in on time will get some

credit but a complete project turned in late will get no credit)

• To give you more time to work on the project, I’m not going

to have a hw due on Thursday

2

Project Deliverables

Each Group should turn in one group project consisting of:

• About 6-12 pages of text (can be longer with appendix)

• 6-12 figures (please put multiple figures on one page where

possible)

• Task list giving which tasks were performed by which group

members. This should be signed by all members of the group.

3

Project Deliverables

Each individual should turn in the following:

• An evaluation of the contribution to the group project of

every member of your group on a scale of 1(poor) to 10(ex-

cellent). To do this, write down the name of each member

of your group (beside yourself), and put a number between 1

and 10 next to each name. Please be honest and professional

in your evaluation. Your evaluation will be one factor used to

determine the project grade for each member of your group.

4

Project Comments

Before you turn in the project:

• Reread “The Top n Project Mistakes” section in the project

description section on the course web page

• You will loose points if you make these same mistakes

5



Master Method

The recurrence T (n) = aT (n/b) + f(n) can be solved as follows:

• If a f(n/b) ≤ f(n)/K for some constant K > 1, then T (n) =

Θ(f(n)).

• If a f(n/b) ≥ K f(n) for some constant K > 1, then T (n) =

Θ(nlogb a).

• If a f(n/b) = f(n), then T (n) = Θ(f(n) logb n).

6

Proof

• If f(n) is a constant factor larger than a f(b/n), then the sum

is a descending geometric series. The sum of any geometric

series is a constant times its largest term. In this case, the

largest term is the first term f(n).

• If f(n) is a constant factor smaller than a f(b/n), then the

sum is an ascending geometric series. The sum of any ge-

ometric series is a constant times its largest term. In this

case, this is the last term, which by our earlier argument is

Θ(nlogb a).

• Finally, if a f(b/n) = f(n), then each of the L terms in the

summation is equal to f(n).

7

Example

• T (n) = T (n/2) + n logn

• If we write this as T (n) = aT (n/b) + f(n), then a = 1,b =

2,f(n) = n logn

• Here a f(n/b) = n/2 logn/2 is smaller than f(n) = n logn by

a constant factor, so T (n) = Θ(n logn)

8

Last In-Class Exercise

• Consider the recurrence: T (n) = 2T (n/4) + n logn

• If we write this as T (n) = aT (n/b) + f(n), then a = 2,b =

4,f(n) = n logn

• f(n) = n logn and a f(n/b) = n/2 log(n/4)

• a f(n/b) is a constant factor smaller than f(n), so the root

node dominates.

• Thus the solution is T (n) = Θ(n logn)

9

In-Class Exercise

• Consider the recurrence: T (n) = 4T (n/2) + n2

• Q: What is f(n) and a f(n/b)?

• Q: Which of the three cases does the recurrence fall under

(when n is large)?

• Q: What is the solution to this recurrence?

10

Limits of Master Theorem

• Consider the recurrence: T (n) = 2T (n/2) + n/ logn

• We can’t apply the master thm here, because a f(n/b) =

n/(logn− 1) isn’t equal to n/ lgn, but the difference isn’t a

constant factor

• We can use the recursion tree method

11



Limits of Master Theorem

• Consider the recurrence: T (n) = 2T (n/2) + n/ logn

• Not hard to see that the sum of the i-th level is n/(logn− i)
• Depth of tree is logn

T (n) =

logn∑

i=0

n

logn− i (1)

=

logn∑

j=1

n

j
(2)

= n

logn∑

j=1

1

j
(3)

= Θ(n log logn) (4)

12

Take Away

• The Master Theorem is a fast way to solve certain types of

recurrences

• However it is not as powerful as the recursion tree method

• When you see an appropriate recurrence, first try the Master

Theorem, if this doesn’t work, try recursion tree method or

annihilators.

13

The Deep End of the Sandbox

“That’s the deep end of the sandbox. I don’t like to go there. A

lephrechaun lives there and he tells me to burn things” - Ralph

from the Simpsons

Beyond 361:

• CS461: More advanced data structures and algorithms, dif-

ferent classes of algorithms (greedy, dynamic programming),

advanced mathematical analysis of algorithms (amortization,

proofs of correctness, graph theory)

• Approximation Algorithms, Randomized Algorithms, Compu-

tational Geometry, Computational Biology, Graph Theoretic

Algorithms, Cryptography, Online Algorithms, Experimental

Algorithms, Smoothed Analysis, Complexity Theory, etc, etc.

14

Example Algorithmic Application

• Modern search engines are beginning to use algorithmic tools

• Google and Clever are two good search engines that use

algorithmic techniques

• Their ranking algorithms are based on linear algebra (they

make use of the eigenvectors of a certain type of matrix)

• These algorithms could not have been developed without

rigorous mathematical analysis

15

The Two Types of Search Queries

Two types of search engine queries

• Specific Queries: E.g. “Does Netscape support the JDK 1.1

codesigning API?”

• General Queries: E.g. “Find Information about Java”

16

The Abundance Problem

For General Queries, we have

• The Abundance Problem: The number of relevant pages

is far too large for a human to digest.

More specifically:

• There are now hundreds of millions of pages on the web

• For most search queries, the number of pages that contain

the query words is on the order of thousands

• A person typically wants to look at less than five pages

17



What we want

One way to handle the abundance problem:

• Filter out from the huge set of relevant pages, those few

pages which are most “authoritative” or definitive”

• To do this, we need a notion of what makes a page “author-

itative”

18

An Example Problem

• If we search for all pages containing the word “Microsoft”

we get back over a million pages.

• There is nothing about content of the page www.microsoft.com

that makes it stand out.

– This page doesn’t use the term “microsoft” most fre-

quently.

– This page doesn’t use the term “microsoft” most promi-

nently.

– There is nothing completely unique in the textual content

of the page that identifies it as being authoritative.

• What is it that makes the page www.microsoft.com most

authoritative?

19

Link Analysis

• Link Structure is one external measure of authority of a page

• If page x links to page y, x is conferring authority on page y

• There are some potential pitfalls here

– Links don’t always confer authority (e.g. they could be

for navigation or to ads)

– There is a balance between popularity and relevance

20

Crash Course in Graph Theory

A Graph is:

• A set of nodes, V , and

• A set of edges, E, where each edge is directed from some

node in V to some other node in V

Note:

• A tree is a just a graph without cycles

• There are many useful algorithms known for graphs, so it’s

useful to frame problems in terms of Graph Theory where

possible.

21

The Web as a Graph

• Let each page in the web, be a node of a graph

• Let there be an edge from node x to node y iff there is a link

from page x to page y

• This formulation allows us to bring lots of great tools of

graph theory to bear on the problem of link analysis.

22

Popularity and Relevance

• Consider the simple heuristic for returning authoritative pages:

of all pages containing the search term, return those which

have the greatest number of in-links.

• This heuristic fails

– Many authoritative pages for a search term do not contain

that term.

– Examples: “seach engines”, “automobile manufactures”

– Many pages which are not authoritative for a given term

would be incorrectly identified.

– Examples: www.yahoo.com and www.microsoft.com would

be considered authoritative for any search term these pages

contained.

23



The Clever Approach

• Key observation: Certain pages point mainly to sites that

are authoritative.

• These pages are called good Hubs

• Examples:

– www.yahoo.com

– “Jared’s Big Page Of Links To Cool Sites”

• Question: But then how do we define what makes a page a

good Hub?

• The Clever algorithm and Google solve this problem

24

The Clever Approach

• We use a mutually-recursive definition of the notion of Au-

thoritative and Hub-like

• Good Hub pages point to many good Authoritative pages

• Good Authoritative pages are pointed to by many good Hub

pages

25

The Clever Algorithm

High Level Idea:

• Clever collects all pages containing the search term, or pages

that are neighbors of pages containing the search term.

• It then iteratively propogates “authority” scores and “hub”

scores

– All pages start with equal authority and hub scores. In

each step:

– The pages with hub weight confer authority weight to the

pages they point to.

– The pages with authority weight confer hub weight to the

pages that point to them

26


