
CS 361, Lecture 3

Jared Saia

University of New Mexico

Today’s Outline

• Asymptotic Analysis review

• Why do we care?

• Logs

• An Interview Question

1

What is Asymptotic Analysis?

• Asymptotic notation is used to give a rough estimate of the

rate of growth of a formula. The formula usually gives the

run time of an algorithm

• Informally, O notation is the leading (i.e. quickest growing)

term of a formula with the coefficient stripped off

• O is sort of a relaxed version of “≤”

2

Computing big-O of an Algorithm

• Write down a formula, f , which gives the number of elemen-

tary operations performed by the algorithm

• Compute the big-O value for f

3

An Example

Consider the following (silly) algorithm:

Alg 1 (int n)

For i=1 to n

For j=1 to i

print "hi"

4

An Example (II)

• First we write down the formula f giving the number of basic

operations the algorithm performs: f =
∑n
i=1 i = (n+ 1)n/2

• Next we compute the big-O value for f : (n+ 1)n/2 is O(n2)

We can then say that Alg1 takes O(n2) time. Or, for short, we

just say Alg1 is O(n2)

5



Examples from last class

Following are some formulas that represent the number of oper-

ations of some algorithm. Give the big-O notation for each.

• E.g. n, 10,000n− 2000, and .5n+ 2 are all O(n)

• n+ logn, n−√n are O(n)

• n2 + n+ logn, 10n2 + n−√n are O(n2)

• n logn+ 10n is O(n logn)

• 10 ∗ log2 n is O(log2 n)

• n√n+ n logn+ 10n is O(n
√
n)

• 10,000, 250 and 4 are O(1)

6

Computing big-O of an Algorithm

Following is a shorter way to compute big-O for an algorithm:
“Atomic operations” Constant time
Consecutive statements Sum of times
Conditionals Larger branch time plus test time
Loops Sum of iterations
Function Calls Time of function body
Recursive Functions Solve Recurrence Relation

7

Alg: Linear Search

bool LinearSearch (int arr[], int n, int key){

for (int i=0;i<n;i++){

if (arr[i]==key)

return true;

}

return false;

}

Run Time?

8

Alg: Binary Search

bool BinarySearch (int arr[], int s, int e, int key){

if (e-s<=0) return false;

int mid = (e-s)/2;

if (arr[key]==arr[mid]){

return true;

}else if (key < arr[mid]){

return BinarySearch (arr,s,mid,key);}

else{

return BinarySearch (arr,mid,e,key)}

}

9

Analysis of Binary Search

• Note that even in the worst case, the size of the array we

search is being split in half in each call

• Thus if x is the number of recursive calls, and n is the original

size of the array, n(1/2)x = 1 in the worst case

• This implies that 2x = n

• Taking log of both sides, we get x = logn

• Since each invocation of the function takes O(1) time (minus

the recursive calls), and the total number of invocations is

at most logn, the running time is O(logn)

• Much better than Linear Search

10

Digression on Logs

Definition:

• logx y is by definition the value z such that xz = y

• xlogx y = y by definition

11



Facts about exponents

Recall that:

• (xy)z = xyz

• xyxz = xy+z

From these, we can derive some facts about logs

12

Facts about logs

To prove both equations, raise both sides to the power of 2, and

use facts about exponents

• Fact 1: log(xy) = logx+ log y

• Fact 2: log ac = c log a

Memorize these two facts

13

Incredibly useful fact about logs

• Fact 3: logc a = log a/ log c

To prove this, consider the equation a = clogc a, take log2 of both

sides, and use Fact 2. Memorize this fact

14

Log facts to memorize

• Fact 1: log(xy) = logx+ log y

• Fact 2: log ac = c log a

• Fact 3: logc a = log a/ log c

These facts are sufficient for all your logarithm needs. (You just

need to figure out how to use them)

15

Logs and O notation

• Note that log8 n = logn/ log 8.

• Note that log600 n
200 = 200 ∗ logn/ log 600.

• Note that log100000 30∗n2 = 2∗logn/ log 100000+log 30/ log 100000.

• Thus, log8 n, log600 n
600, and log100000 30∗n2 are all O(logn)

• In general, for any constants k1 and k2, logk1
nk2 = k2 logn/ log k1,

which is just O(logn)

16

Take Away on Logs

• All log functions of form k1 log k2n
k3 for constants k1, k2 and

k3 are O(logn)

• For this reason, we don’t really “care” about the base of the

log function when we do asymptotic notation

• Thus, binary search, ternary search and k-ary search all take

O(logn) time

• Memorize the 3 log facts!

17



In Class Exercise

Simplify the following formulas, and then give the simplest pos-

sible O notation for each:

• log 10 ∗ n2

• log2 n5

• log log
√
n

• 2log4 n

18

Does big-O really matter?

Let n = 100000 and ∆t = 1µs

logn 1.2 ∗ 10−5 seconds√
n 3.2 ∗ 10−4 seconds

n .1 seconds
n logn 1.2 seconds
n
√
n 31.6 seconds

n2 2.8 hours
n3 31.7 years
2n > 1 century

(from Classic Data Structures in C++ by Timothy Budd)

19

Another Interview Question

• The Question: Design an algorithm to return the largest sum

of contiguous integers in an array of ints

• Example: if the input is (−10,2,3,−2,0,5,−15), the largest

sum is 8, which we get from (2,3,−2,0,5).

20

A Naive Algorithm

MaxSeq1 (int arr[], int n)

int max = 0;

for (int i = 0;i<n;i++)

for (int j=i;j<n;j++)

int sum = 0;

for (int k=i;k<=j;k++)

sum += arr[k];

if (sum > max)

max = sum;

return max;

21

Analysis

• Need to count the total number of operations of MaxSeq1

• Might as well assume time to do the inner loop is 1 (since

it’s a constant and therefor O(1))

• Let f be the number of ops, (recall
∑x
i=1 = (x/2)(x+ 1))

f =
n∑

i=1

n∑

j=i

j∑

k=i

1 (1)

=
n∑

i=1

n∑

j=i

(j − i) (2)

=
n∑

i=1

n−i∑

j=1

j (3)

=
n∑

i=1

((n− i)/2)(n− i+ 1) (4)

22

Analysis (II)

f =
n∑

i=1

((n− i)/2)(n− i+ 1) (5)

f =
n−1∑

i=1

(i/2)(i+ 1) (6)

f = 1/2 ∗
n−1∑

i=1

(i2 + i) (7)

f = 1/2 ∗ (
n−1∑

i=1

i2 +
n−1∑

i=1

i) (8)

f = 1/2 ∗ (O(n3) +O(n2)) (9)

f = O(n3) (10)

23



Challenge

• MaxSeq1 is very slow

• This kind of algorithm won’t impress an interviewer

• Can you do better?

24

Todo

• Finish Chapter 3 (Growth of Functions) in textbook

25


