
CS 361, Lecture 4

Jared Saia

University of New Mexico

Today’s Outline

• Interview question improvement

• Formal definition of big-O analysis

• Intro to Θ,Ω, o, ω

• Intro to correctness proofs

1

Important Log Facts

• logx f = (log f)x

• logxy = log(xy) (multiplication binds the tightest)

Examples:

• log2 n5 = (logn5)2 = 25(logn)2 = 25 log2 n

• log 5n = log 5 + logn

2

Interview Question from before

• The Question: Design an algorithm to return the largest sum

of contiguous integers in an array of ints

• Example: if the input is (−10,2,3,−2,0,5,−15), the largest

sum is 8, which we get from (2,3,−2,0,5).

3

A Naive Algorithm

MaxSeq1 (int arr[], int n)

int max = 0;

for (int i = 0;i<n;i++)

for (int j=i;j<n;j++)

int sum = 0;

for (int k=i;k<=j;k++)

sum += arr[k];

if (sum > max)

max = sum;

return max;

4

Naive Algorithm

• Analysis from last time showed this takes O(n3) steps

• Worst case and best case is the same

• Can we do better?

5



A Better Algorithm

MaxSeq2 (int arr[], int n)

int max = 0;

for (int i = 1;i<=n;i++)

int sum = 0;

for (int j=i;j<=n;j++)

sum += arr[j];

if (sum > max)

max = sum; //and store i and j if desired

return max;

6

Analysis of MaxSeq2

• Let f be the number of operations this algorithm performs.

The:

f =
n∑

i=1

n∑

j=i

1 (1)

=
n∑

i=1

(n− i+ 1) (2)

=
n∑

i=1

i (3)

= (n+ 1)(n/2) (4)

= O(n2) (5)

7

Challenge

• MaxSeq2 is much better than MaxSeq1 (O(n2) vs O(n3))

• But it’s still not great, can you do better?

• We’ll come back to this when we do recurrences

8

Beyond Big-O

• Both MaxSeq1 and MaxSeq2 have same best case and worst

case behavior

• In a sense, we can say more about them than big-O time

• I.e. we can say more than that their run time is approx “≤”

some amount

• Want a way of saying “assymptotically equal to”

• In general, want assymptotic analogues of ≤, ≥, =, etc.

9

Formal Defn of Big-O

• Before we go beyond big-O, what precisely does it mean?

• It has a precise, mathematical definition:

• A function f(n) is O(g(n)) if there exist positive constants c

and n0 such that f(n) ≤ cg(n) for all n ≥ n0

10

Example

• Let’s try to show that f(n) = 10n + 100 is O(g(n)) where

g(n) = n

• We need to give constants c and n0 such that f(n) ≤ cg(n)

for all n ≥ n0

• In other words, we need constants c and n0 such that 10n+

100 ≤ cn for all n ≥ n0

11



Example

• We can solve for appropriate constants:

10n+ 100 ≤ cn (6)

10 + 100/n ≤ c (7)

• So if n > 1, then c need be greater than 110.

• In other words, for all n > 1, 10n+ 100 ≤ 110n

• So 10n+ 100 is O(n)

12

Another Example

• Let’s try to show that f(n) = n2 + 100n is O(g(n)) where

g(n) = n2

• We need to give constants c and n0 such that f(n) ≤ cg(n)

for all n ≥ n0

• In other words, we need constants c and n0 such that n2 +

100n ≤ cn2 for all n ≥ n0

13

Another Example

• We can solve for appropriate constants:

n2 + 100n ≤ cn2 (8)

1 + 100/n ≤ c (9)

• So if n > 1, then c need be greater than 101.

• In other words, for all n > 1, n2 + 100n ≤ 101n2

14

Relatives of big-O

Following are some of the relatives of big-O:

O “≤”
Θ “=”
Ω “≥”
o “<”
ω “>”

15

Relatives of big-O

When would you use each of these? Examples:

O “≤” This algorithm is O(n2) (i.e. worst case is Θ(n2))
Θ “=” This algorithm is Θ(n) (best and worst case are Θ(n))
Ω “≥” Any algorithm for sorting is worst case Ω(n logn)
o “<” Can you write an algorithm for sorting that is o(n2)?
ω “>” This algorithm is not linear, it can take time ω(n)

16

Formal Defns

• O(g(n)) = {f(n) : there exist positive constants c and n0

such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}

• Θ(g(n)) = {f(n) : there exist positive constants c1, c2, and n0

such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}

• Ω(g(n)) = {f(n) : there exist positive constants c and n0

such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0}

17



Formal Defns (II)

• o(g(n)) = {f(n) : for any positive constant c > 0 there exists

n0 > 0 such that 0 ≤ f(n) < cg(n) for all n ≥ n0}

• ω(g(n)) = {f(n) : for any positive constant c > 0 there exists

n0 > 0 such that 0 ≤ cg(n) < f(n) for all n ≥ n0}

18

Examples

• Worst case time of linear search is Θ(n)

• Worst case time of linear search is Ω(logn)

• Best case time of linear search is Θ(1)

• Worst case time of binary search is o(n)

• Worst case time of binary search is Θ(logn)

19

More Examples

The following are all true statements:

• From last lecture,
∑n
i=1 i

2 is O(n3), Ω(n3) and Θ(n3)

• logn is o(
√
n)

• logn is o(log2 n)

• 10,000n2 + 25n is Θ(n2)

20

In Class Exercise

True or False? (Justify your answer)

• n3 + 4 is ω(n2)

• n logn3 is Θ(n logn)

• log3 5n2 is Θ(logn)

• 10−10n2 + n is Θ(n)

• n logn is Ω(n)

• n3 + 4 is o(n4)

(These equations represent run times of algorithms)

21

Asymptotic Analysis - Take Away

• In studying behavior of algorithms, we’ll more concerned with

rate of growth than with constants

• O, Θ,Ω, o, ω give us a way to talk about rates of growth

• Asymptotic analysis is an extremely useful way to compare

run times of algorithms

• However, empirical analysis is also important (you’ll be study-

ing this in your project)

22

Correctness of Algorithms

• Another important aspect of algorithms is their correctness

• An algorithm by definition always gives the right answer to

the problem

• A procedure which doesn’t always give the right answer is a

heuristic

• All things being equal, we prefer an algorithm to a heuristic

• How do we prove an algorithm is really correct?

23



Loop Invariants

Must useful tool is loop invariants. Three things must be shown

about a loop invariant

• Initialization: Invariant is true before first iteration of loop

• Maintenance: If invariant is true before iteration i, it is also

true before iteration i+ 1 (for any i)

• Termination: When the loop terminates, the invariant gives

a property which can be used to show the algorithm is correct

24

Example Loop Invariant

• We’ll prove the correctness of a simple algorithm which solves

the following interview question:

• Find the middle of a linked list, while only going through the

list once

• The basic idea is to keep two pointers into the list, one of

the pointers moves twice as fast as the other

• (Call the head of the list the 0-th elem, and the tail of the list

the (n−1)-st element, assume that n−1 is an even number)

25

Example Algorithm

GetMiddle (List l){

pSlow = pFast = l;

while ((pFast->next)&&(pFast->next->next)){

pFast = pFast->next->next

pSlow = pSlow->next

}

return pSlow

}

26

Example Loop Invariant

• Invariant: At the start of the i-th iteration of the while loop,

pSlow points to the i-th element in the list and pFast points

to the 2i-th element

• Initialization: True when i = 0 since both pointers are at

the head

• Maintenance: if pSlow, pFast are at positions i and 2i re-

spectively before i-th iteration, they will be at positions i+1,

2(i+ 1) respectively before the i+ 1-st iteration

• Termination: When the loop terminates, pFast is at ele-

ment n− 1. Then by the loop invariant, pSlow is at element

(n− 1)/2. Thus pSlow points to the middle of the list

27

Challenge

• Figure out how to use a similar idea to determine if there is

a loop in a linked list without marking nodes!

28

Todo

• Read Chapter 4 (Recurrences) in text

29


