— Interview Question from before

CS 361, Lecture 4

e The Question: Design an algorithm to return the largest sum
of contiguous integers in an array of ints

e Example: if the input is (-10,2,3,-2,0,5,—15), the largest
sum is 8, which we get from (2,3,-2,0,5).
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— Today's Outline — — A Naive Algorithm ——

MaxSeql (int arr[], int n)
int max = 0;

e Interview question improvement for (int i = 0;i<n;i++)
e Formal definition of big-O analysis for (int j=i;j<n;j++)
e Intro to ©,Q,0,w int sum = O;

e Intro to correctness proofs

for (int k=i;k<=j;k++)
sum += arr[k];
if (sum > max)
max = sum;
return max;
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— Important Log Facts — — Naive Algorithm ——
e log” f = (log f)*
e logzy = log(zy) (multiplication binds the tightest)
e Analysis from last time showed this takes O(n3) steps
Examples:

e \Worst case and best case is the same

e Can we do better?
e 1092n° = (logn®)2 = 25(logn)? = 25log?n

e logbn =1og5 -+ logn




A Better Algorithm — Beyond Big-O —

| |
MaxSeq2 (int arr[], int n)
int max = 0; e Both MaxSeql and MaxSeq2 have same best case and worst
for (int i = 1;i<=n;i++) case behavior

In a sense, we can say more about them than big-O time
I.e. we can say more than that their run time is approx “<”

int sum = O;

for (int j=i;j<=n;j++)

sum += arr[j]; some amount
if (sum > max) e Want a way of saying “assymptotically equal to”
max = sum; //and store i and j if desired e In general, want assymptotic analogues of <, >, =, etc.
return max;
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Analysis of MaxSeq2 — Formal Defn of Big-O ———
—— Analy Seq — 9-O
e Let f be the number of operations this algorithm performs.
The:
n n
f=>>1 1) , , ,
i=1j=i e Before we go beyond big-O, what precisely does it mean?
n ) e It has a precise, mathematical definition:
= 2 (it &) A functi is O if th st positi tant
= . unction f(n) is O(g(n)) if there exist positive constants c
n and ng such that f(n) < cg(n) for all n > ng
= > i 3)
i=1
= (n+1)(n/2) )
= 0(n?) (5)
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hallenge — Example —
 — C 9  — P

e Let's try to show that f(n) = 10n + 100 is O(g(n)) where
g(n) =n

e We need to give constants ¢ and ng such that f(n) < cg(n)
for all n > ng

e In other words, we need constants ¢ and ng such that 10n +
100 < ¢n for all n > ng

e MaxSeq?2 is much better than MaxSeql (O(n2) vs O(n3))
e But it's still not great, can you do better?
e \We'll come back to this when we do recurrences
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Example

—

We can solve for appropriate constants:

10n+ 100 < ecn (6)
104 100/n < ¢ @)
So if n > 1, then ¢ need be greater than 110.
In other words, for all n > 1, 10n 4+ 100 < 110n
So 10n + 100 is O(n)
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— Another Example

e Let's try to show that f(n) = n2 + 100n is O(g(n)) where
g(n) =n?
e We need to give constants ¢ and ng such that f(n) < cg(n)

for all n > ng
e In other words, we need constants ¢ and ng such that n2 +

100n < ¢n? for all n > ng
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— Another Example
e \We can solve for appropriate constants:
n2+ 100n < cn? (8)
14+100/n < ¢ (9)

e So if n > 1, then ¢ need be greater than 101.
e In other words, for all n > 1, n?2 4+ 100n < 101n2
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Relatives of big-O —_

Following are some of the relatives of big-O:

o <"
o ="
Q>
o R
w "
—
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Relatives of big-O —

When would you use each of these? Examples:

This algorithm is O(n?) (i.e. worst case is ©(n2))
This algorithm is ©(n) (best and worst case are ©(n))
Any algorithm for sorting is worst case Q2(nlogn)

Can you write an algorithm for sorting that is o(n?)?
This algorithm is not linear, it can take time w(n)
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Formal Defns ——

o <
e "=
Q >
o <
w "

—

e O(g(n)) = {f(n) : there exist positive constants ¢ and ng
such that 0 < f(n) < cg(n) for all n > ng}

e O(g(n)) = {f(n) : there exist positive constants c1,cp, and ng
such that 0 < c1g9(n) < f(n) < cpg(n) for all n > ng}

e Q(g(n)) = {f(n) : there exist positive constants ¢ and ng
such that 0 < cg(n) < f(n) for all n > ng}
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Formal Defns (II) — In Class Exercise —

| |
True or False? (Justify your answer)

e o(g(n)) = {f(n) : for any positive constant ¢ > 0 there exists
ng > 0 such that 0 < f(n) < cg(n) for all n > ng}

n3 44 is w(n?)
nlogn3 is ©(nlogn)
log35n2 is ©(logn)
107192 4 n is ©(n)
nlogn is Q(n)

n3 44 is o(n?)

e w(g(n)) = {f(n) : for any positive constant ¢ > 0 there exists
ng > 0 such that 0 < cg(n) < f(n) for all n > ng}

(These equations represent run times of algorithms)
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Examples —— Asymptotic Analysis - Take Away —

| |

e In studying behavior of algorithms, we'll more concerned with

e Worst case time of linear search is ©(n) rate of growth than with constants

e Worst case time of linear search is Q2(logn) e O, ©,Q,0,w give us a way to talk about rates of growth

e Best case time of linear search is ©(1) e Asymptotic analysis is an extremely useful way to compare
e Worst case time of binary search is o(n) run times of algorithms

e Worst case time of binary search is @(logn) e However, empirical analysis is also important (you'll be study-

ing this in your project)
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More Examples — Correctness of Algorithms —

| |

Another important aspect of algorithms is their correctness
An algorithm by definition always gives the right answer to
the problem

e A procedure which doesn’'t always give the right answer is a
heuristic

All things being equal, we prefer an algorithm to a heuristic
e How do we prove an algorithm is really correct?

The following are all true statements:

e From last lecture, Y%, i2 is O(n3), Q(n3) and ©(n3)
e logn is o(y/n)

e logn is o(log2n)

e 10,000n2 + 25n is ©(n?)
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Loop Invariants —— Example Loop Invariant ——

| |

e Invariant: At the start of the i-th iteration of the while loop,
pSlow points to the i-th element in the list and pFast points
to the 2i-th element

e Initialization: True when ¢ = 0 since both pointers are at
the head

e Maintenance: if pSlow, pFast are at positions i and 2i re-
spectively before i-th iteration, they will be at positions i+ 1,
2(i+ 1) respectively before the i + 1-st iteration

e Termination: When the loop terminates, pFast is at ele-
ment n — 1. Then by the loop invariant, pSlow is at element
(n—1)/2. Thus pSlow points to the middle of the list

Must useful tool is loop invariants. Three things must be shown
about a loop invariant

e Initialization: Invariant is true before first iteration of loop

e Maintenance: If invariant is true before iteration 4, it is also
true before iteration i + 1 (for any i)

e Termination: When the loop terminates, the invariant gives
a property which can be used to show the algorithm is correct
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Example Loop Invariant —— Challenge ——

| |

e We'll prove the correctness of a simple algorithm which solves
the following interview question:
e Find the middle of a linked list, while only going through the
list once e Figure out how to use a similar idea to determine if there is
e The basic idea is to keep two pointers into the list, one of a loop in a linked list without marking nodes!
the pointers moves twice as fast as the other
e (Call the head of the list the O-th elem, and the tail of the list
the (n—1)-st element, assume that n— 1 is an even number)
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Example Algorithm —— Todo ——

—

GetMiddle (List 1){
pSlow = pFast = 1;
while ((pFast->next)&&(pFast->next->next)){
Fast = pFast->next->next ;
pras prastronextonex e Read Chapter 4 (Recurrences) in text
pSlow = pSlow->next
}

return pSlow
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