— Interview Question from before

CS 361, Lecture 4

e The Question: Design an algorithm to return the largest sum
of contiguous integers in an array of ints

e Example: if the input is (-10,2,3,-2,0,5,—15), the largest
sum is 8, which we get from (2,3,-2,0,5).

Jared Saia
University of New Mexico

— Today's Outline — — A Naive Algorithm ——

MaxSeql (int arr[], int n)
int max = 0;

e Interview question improvement for (int i = 0;i<n;i++)
e Formal definition of big-O analysis for (int j=i;j<n;j++)
e Intro to ©,Q,0,w int sum = O;

e Intro to correctness proofs

for (int k=i;k<=j;k++)
sum += arr[k];
if (sum > max)
max = sum;
return max;

1,
4
— Important Log Facts — — Naive Algorithm ——
e log” f = (log f)*
e logzy = log(zy) (multiplication binds the tightest)
e Analysis from last time showed this takes O(n3) steps
Examples:

e \Worst case and best case is the same

e Can we do better?
e 1092n° = (logn®)2 = 25(logn)? = 25log?n

e logbn =1og5 -+ logn

A Better Algorithm — Beyond Big-O —

| |
MaxSeq2 (int arr[], int n)
int max = 0; e Both MaxSeql and MaxSeq2 have same best case and worst
for (int i = 1;i<=n;i++) case behavior

In a sense, we can say more about them than big-O time
I.e. we can say more than that their run time is approx “<”

int sum = O;

for (int j=i;j<=n;j++)

sum += arr[j]; some amount
if (sum > max) e Want a way of saying “assymptotically equal to”
max = sum; //and store i and j if desired e In general, want assymptotic analogues of <, >, =, etc.
return max;
6 | 9
Analysis of MaxSeq2 — Formal Defn of Big-O ———
—— Analy Seq — 9-O
e Let f be the number of operations this algorithm performs.
The:
n n
f=>>1 1) , , ,
i=1j=i e Before we go beyond big-O, what precisely does it mean?
n) e It has a precise, mathematical definition:
= 2 (it &) A functi is O if th st positi tant
= . unction f(n) is O(g(n)) if there exist positive constants c
n and ng such that f(n) < cg(n) for all n > ng
= > i 3)
i=1
= (n+1)(n/2))
= 0(n?) (5)
7 | 10
hallenge — Example —
 — C 9 — P

e Let's try to show that f(n) = 10n + 100 is O(g(n)) where
g(n) =n

e We need to give constants ¢ and ng such that f(n) < cg(n)
for all n > ng

e In other words, we need constants ¢ and ng such that 10n +
100 < ¢n for all n > ng

e MaxSeq?2 is much better than MaxSeql (O(n2) vs O(n3))
e But it's still not great, can you do better?
e \We'll come back to this when we do recurrences

8 11

Example

—

We can solve for appropriate constants:

10n+ 100 < ecn (6)
104 100/n < ¢ @)
So if n > 1, then ¢ need be greater than 110.
In other words, for all n > 1, 10n 4+ 100 < 110n
So 10n + 100 is O(n)

12

— Another Example

e Let's try to show that f(n) = n2 + 100n is O(g(n)) where
g(n) =n?
e We need to give constants ¢ and ng such that f(n) < cg(n)

for all n > ng
e In other words, we need constants ¢ and ng such that n2 +

100n < ¢n? for all n > ng

13 |
— Another Example
e \We can solve for appropriate constants:
n2+ 100n < cn? (8)
14+100/n < ¢ (9)

e So if n > 1, then ¢ need be greater than 101.
e In other words, for all n > 1, n?2 4+ 100n < 101n2

14

—

Relatives of big-O —_

Following are some of the relatives of big-O:

o <"
o ="
Q>
o R
w "
—

15

Relatives of big-O —

When would you use each of these? Examples:

This algorithm is O(n?) (i.e. worst case is ©(n2))
This algorithm is ©(n) (best and worst case are ©(n))
Any algorithm for sorting is worst case Q2(nlogn)

Can you write an algorithm for sorting that is o(n?)?
This algorithm is not linear, it can take time w(n)

16

Formal Defns ——

o <
e "=
Q >
o <
w "

—

e O(g(n)) = {f(n) : there exist positive constants ¢ and ng
such that 0 < f(n) < cg(n) for all n > ng}

e O(g(n)) = {f(n) : there exist positive constants c1,cp, and ng
such that 0 < c1g9(n) < f(n) < cpg(n) for all n > ng}

e Q(g(n)) = {f(n) : there exist positive constants ¢ and ng
such that 0 < cg(n) < f(n) for all n > ng}

17

Formal Defns (II) — In Class Exercise —

| |
True or False? (Justify your answer)

e o(g(n)) = {f(n) : for any positive constant ¢ > 0 there exists
ng > 0 such that 0 < f(n) < cg(n) for all n > ng}

n3 44 is w(n?)
nlogn3 is ©(nlogn)
log35n2 is ©(logn)
107192 4 n is ©(n)
nlogn is Q(n)

n3 44 is o(n?)

e w(g(n)) = {f(n) : for any positive constant ¢ > 0 there exists
ng > 0 such that 0 < cg(n) < f(n) for all n > ng}

(These equations represent run times of algorithms)

18 21

Examples —— Asymptotic Analysis - Take Away —

| |

e In studying behavior of algorithms, we'll more concerned with

e Worst case time of linear search is ©(n) rate of growth than with constants

e Worst case time of linear search is Q2(logn) e O, ©,Q,0,w give us a way to talk about rates of growth

e Best case time of linear search is ©(1) e Asymptotic analysis is an extremely useful way to compare
e Worst case time of binary search is o(n) run times of algorithms

e Worst case time of binary search is @(logn) e However, empirical analysis is also important (you'll be study-

ing this in your project)

19 22

More Examples — Correctness of Algorithms —

| |

Another important aspect of algorithms is their correctness
An algorithm by definition always gives the right answer to
the problem

e A procedure which doesn’'t always give the right answer is a
heuristic

All things being equal, we prefer an algorithm to a heuristic
e How do we prove an algorithm is really correct?

The following are all true statements:

e From last lecture, Y%, i2 is O(n3), Q(n3) and ©(n3)
e logn is o(y/n)

e logn is o(log2n)

e 10,000n2 + 25n is ©(n?)

20 23

Loop Invariants —— Example Loop Invariant ——

| |

e Invariant: At the start of the i-th iteration of the while loop,
pSlow points to the i-th element in the list and pFast points
to the 2i-th element

e Initialization: True when ¢ = 0 since both pointers are at
the head

e Maintenance: if pSlow, pFast are at positions i and 2i re-
spectively before i-th iteration, they will be at positions i+ 1,
2(i+ 1) respectively before the i + 1-st iteration

e Termination: When the loop terminates, pFast is at ele-
ment n — 1. Then by the loop invariant, pSlow is at element
(n—1)/2. Thus pSlow points to the middle of the list

Must useful tool is loop invariants. Three things must be shown
about a loop invariant

e Initialization: Invariant is true before first iteration of loop

e Maintenance: If invariant is true before iteration 4, it is also
true before iteration i + 1 (for any i)

e Termination: When the loop terminates, the invariant gives
a property which can be used to show the algorithm is correct

24 27

Example Loop Invariant —— Challenge ——

| |

e We'll prove the correctness of a simple algorithm which solves
the following interview question:
e Find the middle of a linked list, while only going through the
list once e Figure out how to use a similar idea to determine if there is
e The basic idea is to keep two pointers into the list, one of a loop in a linked list without marking nodes!
the pointers moves twice as fast as the other
e (Call the head of the list the O-th elem, and the tail of the list
the (n—1)-st element, assume that n— 1 is an even number)

25 28

Example Algorithm —— Todo ——

—

GetMiddle (List 1){
pSlow = pFast = 1;
while ((pFast->next)&&(pFast->next->next)){
Fast = pFast->next->next ;
pras prastronextonex e Read Chapter 4 (Recurrences) in text
pSlow = pSlow->next
}

return pSlow

26 29

