
CS 361, Lecture 6

Jared Saia

University of New Mexico

Today’s Outline

• Tons ’o Loop Invariants

• MaxSeq Algorithm

• Sorting?

1

Loop Invariants

• Initialization: Invariant is true before first iteration of loop

• Maintenance: If invariant is true before iteration i, it is also

true before iteration i+ 1 (for any i)

• Termination: When the loop terminates, the invariant gives

a property which can be used to show the algorithm is correct

2

Sum

//PRE:

//POST: res is the sum of the elements in arrIn

Sum(int arrIn[], int n)

int sum = arrIn[0];

for (int i=1;i<n;i++){

sum += arrIn[i];

}

return sum;

}

3

Sum Invariant

Invariant: At the start of the i-th iteration of the for loop, sum

is the summation of arr[0] through arr[i-1]

• Initialization: When i=1, sum = arr[0], which establishes

the invariant

• Maintenance: Assume at the start of the i-th iteration that

sum is the summation of arr[0] through arr[i-1]. Then at

start of the i+1 iteration, sum is the summation of arr[0]

through arr[i-1] plus arr[i]. Thus, sum is the summation of

arr[0] through arr[i].

• Termination: When the loop terminates, sum is the sum-

mation of arr[0] through arr[n-1], which is the sum of the

entire array.

4

Reverse

//PRE: n is the size of arrIn

//POST: arrRes is the reverse of arrIn

Reverse(int arrIn[], int n)

int arrRes[] = new int[n]

for (int i=0;i<n;i++){

arrRes[i] = arrIn[(n-1)-i];

}

return arrRes;

}

5

Reverse Invariant

Loop Invariant: At the start of the i-th iteration of the for loop,

for all 0 ≤ j < i, arrRes[j] = arrIn[(n-1)-j]

• Initialization: When i=0, there is no j such that 0 ≤ j < i,

so the invariant is trivially true

• Maintenance: (Assume at the start of the i-th iteration

of the for loop, for all 0 ≤ j < i, arrRes[j] = arrIn[(n-1)-j].

Show that at the start of the i+1 iteration of the for loop,

for all 0 ≤ j < i + 1, arrRes[j] = arrIn[(n-1)-j]). At the end

of the i + 1 iteration, we know that arrRes[i+1] = arrIn[(n-

1)- (i+1)]. This fact, along with the assumption that the

invariant holds at the start of the i-th iteration implies that

for all 0 ≤ j < i+ 1, arrRes[j] = arrIn[(n-1)-j])

• Termination: When the loop terminates, we know that: for

all 0 ≤ i < n, arrRes[i] = arrIn[(n-1)-i]. This implies that

arrRes is the reverse of arrIn.

6

Max

//PRE: n is the size of arrIn

//POST: res is the max element in arrIn

Max(int arrIn[], int n)

int max = arrRes[0]

for (int i=1;i<n;i++){

if (arrIn[i]>max)

max = arrIn[i];

}

return max;

}

7

In Class Exercise

Prove that the algorithm Max is correct.

• Give a good loop invariant

• Show the Initialization, Maintenance and Termination condi-

tions for that loop invariant.

8

MaxSeq

• Proofs of correctness can be very challenging

• Question from before: Design an algorithm to return the

largest sum of contiguous integers in an array of ints

• Example: if the input is (−10,2,3,−2,0,5,−15), the largest

sum is 8, which we get from (2,3,−2,0,5).

9

Our Last Algorithm

MaxSeq2 (int arr[], int n)

int max = 0;

for (int i = 1;i<=n;i++)

int sum = 0;

for (int j=i;j<=n;j++)

sum += arr[j];

if (sum > max)

max = sum; //and store i and j if desired

return max;

takes O(n2) time.

10

A New Algorithm

MaxSeq3 (int arr[], int n){

int arrLeft[] = new int[n];

arrLeft[0] = arr[0];

for (int i=1;i<n;i++){

arrLeft[i] = max (arr[i], arrLeft[i-1] + arr[i]);

}

int arrRight[] = new int[n];

arrRight[n-1] = arr[n-1];

for (int i=n-2;i>=0;i--){

arrRight[i] = max (arr[i], arrRight[i+1] + arr[i]);

}

;;now compute the maximum subsequence using

;;arrLeft and arrRight

11

int arrMax[] = new int[n];

arrMax[0] = arrRight[0];

arrMax[n-1] = arrLeft[n-1];

for (int i=1;i<n-1;i++){

int sum = arrLeft[i] + arrRight[i] - arr[i];

arrMax[i] = sum;

}

return the maximum element in the array arrMax or 0,

whichever is larger;

}

Example

arr -10 2 3 -2 0 5 -15
arrLeft -10 2 5 3 3 8 -7

arrRight -2 8 6 3 5 5 -15
arrMax -2 8 8 8 8 8 -7

12

MaxSeq3

• What is the run time of this algorithm?

• Is it correct?

13

Loop1 Invariant

• Loop 1 Invariant: At the start of the i-th iteration, for all
0 ≤ j < i, arrLeft[j] gives the largest value of any subsequence
whose rightmost term is arr[j].
• Initialization: When i = 1, arrLeft[0] = arr[0], which is the

largest value of any subsequence whose rightmost term is
arr[0].
• Maintenance: Assume the invariant is true before iteration
i. This means arrLeft[i-1] gives the value of the largest sub-
sequence whose rightmost term is arrLeft[i-1].
Note that at the end of the iteration, arrLeft[i] = max (arr[i],
arrLeft[i-1] + arr[i]). Further note that there exists a subse-
quence, li∗ which terminates at arr[i] and obtains this value.
It’s either the subsequence consisting of just arr[i], or the
subsequence with term arr[i] concatenated with the subse-
quence associated with the value arrLeft[i-1].
Now consider some arbitrary subsequence, li which has right-
most term arr[i]. Let v(li) be the value of this subsequence.

14

To show arrLeft[i] is indeed the maximal value, we need only

show that that v(li) ≤ arrLeft[i]. There are two cases.

Case 1 is that li includes only the term arr[i]. In this case,

v(li) ≤ arr[i] ≤ arrLeft[i].

Case 2 is that li extends left beyond arr[i]. Let li−1 be the

part of li that does not contain arr[i]. Then v(li) = v(li−1)+

arr[i]. But v(li−1) ≤ arrLeft[i-1], by the inductive hypothesis.

Thus v(li) ≤ v arrLeft[i-1] + arr[i] ≤ arrLeft[i].

Hence the value arrLeft[i] does in fact give the largest value

of any subsequence whose rightmost term is arr[i], so by the

inductive hypothesis, the loop invariant holds after iteration

i.

• Termination: When the loop terminates, for all values of

0 ≤ j < n, arrLeft[j] gives the largest value of any subse-

quence whose rightmost term is arr[j].

Loop2 Invariant

• Loop 2 Invariant: At the start of the i-th iteration, arrRight[j]

gives the value of the largest subsequence whose leftmost

term is arr[j], for all n > j > i.

• Initialization, Maintenance, and Termination proofs are

similar to Loop 1 invariant

• Good at home exercise to see if you can prove these facts

for loop2

15

Loop3 Invariant

• Loop 3 Invariant: At the start of the i-th iteration, for all

j < i, arrMax[j] gives the value of the best subsequence which

includes value arr[j].

• We can assume the termination conditions of the loop1 and

loop2 invariants hold during loop3.

• Initialization: When i = 1, arrMax[0] = arrRight[0]. We’ve

shown that arrRight[0] is the best value of any subsequence

whose leftmost value is arr[0]. Any subsequence contain-

ing arr[0] will have arr[0] as the leftmost element. Hence

arrMax[0] is in fact the value of the best subsequence con-

taining arr[0].

• Maintenance: Assume the invariant is true before iteration

i. Note that at the end of the iteration, arrMax[i] = arrLeft[i]

+ arrRight[i] - arr[i].

We first note that there exists a subsequence si∗ which achieves

this value arrMax[i]. It’s just the subsequence consisting

16

of the subsequence which achieves the value arrLeft[i] con-

catenated with the subsequence which achieves the value

arrRight[i].

Now consider some arbitrary subsequence, si, which contains

arr[i]. To show arrMax[i] is indeed the maximal value, we

need only show that v(si) ≤ arrMax[i]. Let li be the subse-

quence of si which includes arr[i] and all elems to the left of

arr[i]. Similarly, let ri be the subsequence of si which includes

arr[i] and all elems to the right of arr[i]. Note that

– v(li) ≤ arrLeft[i]

– v(ri) ≤ arrRight[i]

Hence v(si) = v(li) + v(ri)− arr[i] ≤ arrLeft[i] + arrRight[i]

-arr[i] = arrMax[i]. And so arrMax[i] does in fact give the

value of the best subsequence which includes value arr[i].

Thus, the loop invariant remains true at the beginning of

iteration i+ 1.

• Termination: When the loop terminates, for all 1 < j <

n−1, arrMax[j] gives the value of the best subsequence which

includes value arr[j]. We further note that arrMax[n-1] gives

the value of the best subsequence containing arr[n-1], since

arrMax[n-1] = arrLeft[n-1], and any subsequence containing

arr[n-1] will have arr[n-1] as the rightmost element.

The best subsequence in the array arr must contain some

element in the array or be the empty subsequence. If it’s not

the empty subsequence, the value of it is stored somewhere

in arrMax. Thus the return value of MaxSeq3 is the value of

the best possible subsequence.

Take away

• We needed 3 loop invariants for MaxSeq3

• MaxSeq3 was much harder to show correct, but it runs much

faster than our other algorithms

• I don’t expect you to be able to do the entire proof for

MaxSeq3, especially not from scratch

• However, you should be able to understand and do something

similar to the individual loop invariant proofs

• Also, you should be able to understand the entire proof!

17

The Sorting Problem

• The Problem: we want to sort an array, A, of integers in

non-decreasing order

• E.g. if A is 3,2,2,1,5 at the start, we want it to be 1,2,2,3,5

at the end

• Sorting is a very common programming problem!

• Last time, we analyzed the Insertion-Sort Algorithm

18

Insertion Sort

Insertion-Sort (A, int n)

for (j=1;j<n;j++){

key = A[j];

//Insert A[j] into the sorted sequence A[0,...,j-1],

//in the location such that it is as large as all elems

// to the left of it

i = j-1

while (i>=0 and A[i] > key){

A[i+1] = A[i]

i--

}

A[i+1] = key

}

19

Analysis

• Best case run time of Insertion Sort is O(n) (if the array is

already sorted)

• However, we proved last time that the run time of Insertion

Sort is Θ(n2) in the worst case

• Q: Can we do better than this?

• A: Yes, we can use a recursive algorithm called Merge Sort

20

Merge Sort

High Level Idea:

• Split the array into two parts of the same size, A1 and A2

• Recursively sort A1 and A2

• Merge A1 and A2 together into one big sorted array

21

Merge Sort

//POST: res[]

Merge-Sort (int A[])

int arrRes[] = A;

if (A.size() > 1){

//set m to be the ‘‘middle’’ of the array

m = floor (A.size()/2);

int arrLeft[] = A[0,..,m]

int arrRight[] = A[m+1,..,A.size()]

arrLeft = Merge-Sort (arrLeft);

arrRight = Merge-Sort (arrRight);

arrRes = Merge (arrLeft,arrRight);

}

return arrRes;

}

22

Merge

//PRE: arrLeft and arrRight are in sorted order

//POST: arrRes contains the elems of arrLeft and arrRight

// in sorted order

Merge(int arrLeft[], int arrRight[])

iLeft = iRight = 0;

int arrRes[] = new int[arrLeft.size()+ arrRight.size()];

for (int i=0;i<arrRes.size();i++){

if (iRight == arrRight.size () ||

(iLeft<arrLeft.size()

&& arrLeft[iLeft]<=arrRight[iRight])){

arrRes[i] = arrLeft[iLeft];

iLeft++;

}else{

arrRes[i] = arrRight[iRight];

iRight++;}

}

return arrRes;

}

23

Merge Example

arrLeft 1 4 5
arrRight 2 3 6

arrRes 1 2 3 4 5 6

24

Todo

• Read Chapter 4 (Recurrences) in text

25

