
CS 361, Lecture 7

Jared Saia

University of New Mexico

Outline

• MaxSeq Algorithm

• Merge Sort

• Intro to Recurrence Relations

1

Max Seq Problem

• Question from before: Design an algorithm to return the

largest sum of contiguous integers in an array of ints

• Example: if the input is (−10,2,3,−2,0,5,−15), the largest

sum is 8, which we get from (2,3,−2,0,5).

2

A New Algorithm

MaxSeq4 (int arr[], int n){

int arrVal[] = new int[n];

List arrMaxSubseq[] = new List[n];

if (arr[0]>0){

arrVal[0] = arr[0];

arrMaxSubseq[0] = {arr[0]};

}else{

arrVal[0] = 0;

arrMaxSub seq[0] = {};

}

int maxVal = arrVal[0];

List maxSubseq = arrMaxSubseq[0];

for (int i=1;i<n;i++){

3

int bestVal = arrVal[i-1] + arr[i];

if (bestVal > 0){

arrVal[i] = bestVal;

arrMaxSubseq[i] = {arrMaxSubseq[i-1], arr[i]};

}else{

arrVal[i] = 0;

arrMaxSubseq[i] = {};

}

if (arrVal[i] > maxVal){

maxVal = arrVal[i];

maxSubseq = arrMaxSubseq[i];

}

}

return maxVal as the maximum value,

and maxSubseq as the maximum subsequence

}

Example

arr -10 2 3 -2 0 5 -15
arrVal 0 2 5 3 3 8 0

maxVal 0 2 5 5 5 8 8

4

Loop Invariant

At the beginning of the i-th iteration of the for loop, the following

is true:

• For all 0 ≤ j < i, arrVal[j] gives the value of the maximum

value subsequence with rightmost index j, and arrMaxSub-

seq[j] gives a subsequence with rightmost index j that has

value arrVal[j].

• The variable maxVal gives the value of the maximum sub-

sequence with rightmost index less than i, and maxSubseq

gives a subsequence with rightmost index less than i that has

value maxVal.

5

Loop1 Invariant

• Initialization: Before the 1-st iteration of the loop, arrVal[0]

gives the value of the maximum value subsequence with

rightmost index 0, and arrMaxSubseq[0] gives a subsequence

with rightmost index at 0 that has value arrVal[0]. Further

maxVal gives the value of the maximum value subsequence

with rightmost index less than 1, and maxSubseq is a subse-

quence achieving this value.

• Maintenance: See next slide

• Termination: When i = n, the second part of the loop in-

variant says that maxVal is the maximum of all possible sub-

sequences in the array arr (i.e. with rightmost index less than

n), and that maxSubseq gives a subsequence which achieves

this value. These facts directly imply that the algorithm is

correct.

6

Maintenance Sketch

We sketch only the first part of the maintenance proof.

• Since arrVal[i-1] gives the best value of a subsequence with

rightmost index i− 1 (by inductive hypothesis), the variable

bestVal gives the best value of a subsequence that includes

arr[i]. If this value is greater than 0, then the value of the

maximum value subsequence with rightmost index at i is

bestVal. Otherwise, the value of the maximum value subse-

quence with rightmost index at i is 0.

• Thus arrVal[i] is set correctly in the loop

• Must also show that arrMaxSubseq[i], maxVal and maxSub-

seq are set correctly

• This is left as an exercise.

7

The Sorting Problem

• The Problem: we want to sort an array, A, of integers in

non-decreasing order

• E.g. if A is 3,2,2,1,5 at the start, we want it to be 1,2,2,3,5

at the end

• Sorting is a very common programming problem!

• Last time, we analyzed the Insertion-Sort Algorithm

8

Insertion Sort

Insertion-Sort (A, int n)

for (j=1;j<n;j++){

key = A[j];

//Insert A[j] into the sorted sequence A[0,...,j-1],

//in the location such that it is as large as all elems

// to the left of it

i = j-1

while (i>=0 and A[i] > key){

A[i+1] = A[i]

i--

}

A[i+1] = key

}

9

Analysis

• Best case run time of Insertion Sort is O(n) (if the array is

already sorted)

• However, we proved before that the run time of Insertion

Sort is Θ(n2) in the worst case

• Q: Can we do better than this?

• A: Yes, we can use a recursive algorithm called Merge Sort

10

Merge Sort

High Level Idea:

• Split the array into two parts of the same size, A1 and A2

• Recursively sort A1 and A2

• Merge A1 and A2 together into one big sorted array

11

Merge Sort

//POST: res[]

Merge-Sort (int A[])

int arrRes[] = A;

if (A.size() > 1){

//set m to be the ‘‘middle’’ of the array

m = floor (A.size()/2);

int arrLeft[] = A[0,..,m]

int arrRight[] = A[m+1,..,A.size()-1]

arrLeft = Merge-Sort (arrLeft);

arrRight = Merge-Sort (arrRight);

arrRes = Merge (arrLeft,arrRight);

}

return arrRes;

}

12

Merge

//PRE: arrLeft and arrRight are in sorted order

//POST: arrRes contains the elems of arrLeft and arrRight

// in sorted order

Merge(int arrLeft[], int arrRight[])

iLeft = iRight = 0;

int arrRes[] = new int[arrLeft.size()+ arrRight.size()];

for (int i=0;i<arrRes.size();i++){

if (iRight == arrRight.size () ||

(iLeft<arrLeft.size()

&& arrLeft[iLeft]<=arrRight[iRight])){

arrRes[i] = arrLeft[iLeft];

iLeft++;

}else{

arrRes[i] = arrRight[iRight];

iRight++;}

}

return arrRes;

}

13

Merge Sort Example

arr 1 4 5 2 3 6
arrLeft 1 4 5

arrRight 2 3 6
arrRes 1 2 3 4 5 6

14

Sketch of Correctness Proof

• Assume the subroutine Merge does what it says (proof of

this is given on page 30 of book)

• We can then prove by induction on the size of A, that Merge-

Sort works

• Base case: if A.size() = 1, A is already in sorted order, so

the algorithm returns the correct value.

15

Sketch of Correctness Proof

• Inductive Step: Assume that if A.size() < n, Merge-Sort

returns an array giving the elems of A in sorted order. We

must show that if A.size() = n, Merge-Sort returns an array

giving the elems of A in sorted order.

• Proof: Let A be of size n. Note that arrLeft and arrRight

are both of size less than n, so by the inductive hypothesis,

arrLeft and arrRight are both correctly sorted by the recursive

calls. Further note that arrLeft and arrRight together contain

all elems of A. So if we assume that the Merge subroutine

works correctly, the array returned by Merge-Sort is in fact

the elems of A in sorted order.

16

Merge Run Time

• Let’s analyze the worst case run time of Merge-Sort

• First need to analyze run time of the Merge subroutine

• Let n = arrLeft.size() + arrRight.size ()

• Then the for loop has n iterations, each taking Θ(1) time.

• Thus, total time Merge takes is Θ(n)

17

Merge-Sort Run Time

• Let T (n) be the number of time steps Merge-Sort takes on

an array of size n

• Total cost is 2 calls to Merge-Sort on arrays of size ≤ n/2,

one call to Merge which takes time Θ(n), plus Θ(n) time to

split the array, plus Θ(1) time for assignments.

• Thus, if n = 1, T (n) = θ(1), and if T (n) = 2∗T (n/2) + Θ(n)

18

What?

• We’ve found a function giving the run time of Merge-Sort.

• But what does this mean: f(n) = 2 ∗ T (n/2) + Θ(n)?

• How can we write this in big-O or Θ notation?

• How does this algorithm compare with the O(n2) run time

of insertion sort?

19

A Side Note

• The running time of an algorithm on a constant size input is

always Θ(1)

• Thus for convenience, we usually omit statements of the

boundary conditions and just assume T (n) is constant when

n is a constant.

• Example: Instead of saying “If n = 1, T (n) = θ(1), and if

T (n) = 2∗T (n/2) + Θ(n)”, we just say “T (n) = 2∗T (n/2) +

Θ(n)”

20

Recurrence Relations

“Oh how should I not lust after eternity and after the nuptial

ring of rings, the ring of recurrence” - Friedrich Nietzsche, Thus

Spoke Zarathustra

• T (n) = 2 ∗ T (n/2) + n is an example of a recurrence relation

• A Recurrence Relation is any equation for a function T , where

T appears on both the left and right sides of the equation.

• We always want to “solve” these recurrence relation by get-

ting an equation for T , where T appears on just the left side

of the equation

21

Recurrence Relations

• Whenever we analyze the run time of a recursive algorithm,

we will first get a recurrence relation

• To get the real run time, we need to solve the recurrence

relation

22

Substitution Method

• One way to solve recurrences is the substitution method aka

“guess and check”

• What we do is make a good guess for the solution to T (n),

and then try to prove this is the solution by induction

23

Example

• Let’s guess that the solution to T (n) = 2 ∗ T (n/2) + n is

T (n) = O(n logn)

• In other words, T (n) ≤ cn logn for appropriate choice of con-

stant c

• We can prove that T (n) ≤ cn logn is true by plugging back

into the recurrence

24

Proof

• We prove this by induction, Assume that T (n/2) ≤ cn/2 log(n/2)

T (n) ≤ 2T (n/2) + n (1)

≤ 2(cn/2 log(n/2)) + n (2)

≤ cn log(n/2) + n (3)

= cn(logn− log 2) + n (4)

= cn logn− cn+ n (5)

≤ cn logn (6)

last step holds if c ≥ 1

25

Recurrence Relations

• There are many ways to solve recurrence relations

• Next time, we’ll see some other methods.

26

