
CS 361, Lecture 8

Jared Saia

University of New Mexico

Outline

• Recurrence Relations, Induction, and Substitution Method

1

Recurrence Relations

• T (n) = 2 ∗ T (n/2) + n is an example of a recurrence relation

• A Recurrence Relation is any equation for a function T , where

T appears on both the left and right sides of the equation.

• We always want to “solve” these recurrence relation by get-

ting an equation for T , where T appears on just the left side

of the equation

2

Recurrence Relations

• Whenever we analyze the run time of a recursive algorithm,

we will first get a recurrence relation

• To get the real run time, we need to solve the recurrence

relation

3

Recurrences and Induction

Recurrences and Induction are closely related:

• To find some solution to f(n), solve a recurrence

• To prove that a solution for f(n) is correct, use induction

For both recurrences and induction, we always solve a big prob-

lem by reducing it to smaller problems!

4

Some Examples

• The next several problems can be attacked by induction/recurrences

• For each problem, we’ll need to reduce it to smaller problems

• Question: How can we reduce each problem to a smaller

subproblem?

5



Sum Problem

• f(n) is the sum of the integers 1, . . . , n

6

Tree Problem

• f(n) is the maximum number of leaf nodes in a binary tree

of height n

Recall:

• In a binary tree, each node has at most two children

• A leaf node is a node with no children

• The height of a tree is the length of the longest path from

the root to a leaf node.

7

Binary Search Problem

• f(n) is the maximum number of queries that need to be

made for binary search on a sorted array of size n.

8

Dominoes Problem

• f(n) is the number of ways to tile a 2 by n rectangle with

dominoes (a domino is a 2 by 1 rectangle)

9

Simpler Subproblems

• Sum Problem: What is the sum of all numbers between 1

and n− 1 (i.e. f(n− 1))?

• Tree Problem: What is the maximum number of leaf nodes

in a binary tree of height n− 1? (i.e. f(n− 1))

• Binary Search Problem: What is the maximum number of

queries that need to be made for binary search on a sorted

array of size n/2? (i.e. f(n/2))

• Dominoes problem: What is the number of ways to tile a

2 by n − 1 rectangle with dominoes? What is the number

of ways to tile a 2 by n − 2 rectangle with dominoes? (i.e.

f(n− 1), f(n− 2))

10

Recurrences

• Sum Problem: f(n) = f(n− 1) + n, f(1) = 1

• Tree Problem: f(n) = 2 ∗ f(n− 1), f(0) = 1

• Binary Search Problem: f(n) = f(n/2) + 1, f(1) = 0

• Dominoes problem: f(n) = f(n − 1) + f(n − 2), f(1) = 1,

f(2) = 1

11



Guesses

• Sum Problem: f(n) = (n+ 1)n/2

• Tree Problem: f(n) = 2n

• Binary Search Problem: f(n) = logn

• Dominoes problem: f(n) = 1√
5

(
1+
√

5
2

)n
− 1√

5

(
1−
√

5
2

)n

12

Inductive Proofs

“Trying is the first step to failure” - Homer Simpson

• Now that we’ve made these guesses, we can try using induc-

tion to prove they’re correct

• (This is the Substitution Method)

• We’ll give inductive proofs that these guesses are correct for

the first three problems

13

Sum Problem

• Want to show that f(n) = (n+ 1)n/2.

• Prove by induction on n

• Base case: f(1) = 2 ∗ 1/2 = 1

• Inductive hypothesis: for all j < n, f(j) = (j + 1)j/2

• Inductive step:

f(n) = f(n− 1) + n (1)

= n(n− 1)/2 + n (2)

= (n+ 1)n/2 (3)

14

Tree Problem

• Want to show that f(n) = 2n.

• Prove by induction on n

• Base case: f(0) = 20 = 1

• Inductive hypothesis: for all j < n, f(j) = 2j

• Inductive step:

f(n) = 2 ∗ f(n− 1) (4)

= 2 ∗ (2n−1) (5)

= 2n (6)

15

Binary Search Problem

• Want to show that f(n) = logn. (assume n is a power of 2)

• Prove by induction on n

• Base case: f(1) = log 1 = 0

• Inductive hypothesis: for all j < n, f(j) = log j

• Inductive step:

f(n) = f(n/2) + 1 (7)

= logn/2 + 1 (8)

= logn− log 2 + 1 (9)

= logn (10)

16

In Class Exercise

Consider the following interview question:

• Out of n coins, one weighs less than the others

• You have a scale

• What is the minimum number of weighs on the scale you can

do to find the odd coin?

17



The Smaller Problem

• Q: How can we reduce the problem of finding the odd coin

among n coins to a smaller problem???

18

Solving the Big Problem

• A: The simpler problem is: “How many weighings does it

take to find an odd coin in a set of size n/3?”

• Idea:

– We divide the coins into 3 piles of size n/3.

– We pick two of these piles at random and put them on

opposite sides of the scale

– If one of these two piles weighs less than the other, we

know the odd coin is in that pile

– If both piles weigh the same, we know the odd coin is in

the third pile

– Thus we now know which pile of size n/3 contains the

odd coin, so we recursively find the odd coin in this pile.

19

Simplest Case

• If n = 3, we can find the odd coin in a single weighing:

– Choose two coins at random and put each on either side

of the scale

– If both weigh the same, odd coin is the third one. If one

coin weighs less, that coin is the odd one

20

Recurrence

(Assume n is a power of 3)

• Let f(n) be the number of weighings needed to find the odd

coin

• Q: What is the recurrence for f(n)?

• Note: We first do a single weighing for the two piles of size

n/3, then the problem reduces to the problem on a pile of

coins of size n/3

21

Recurrence

• A: The recurrence is: f(n) = f(n/3) + 1, f(3) = 1

• “Guess” that the solution to this is f(n) = log3 n

22

In Class Exercise

Goal: Prove by induction that the solution to f(n) = f(n/3)+1,

f(3) = 1 is f(n) = log3 n

• Q1: What is the base case? Prove that it holds.

• Q2: What is the inductive hypothesis?

• Q3: Prove the inductive step.

23



Inequalities

• Often easier to prove that a recurrence is no more than some

quantity than to prove that it equals something

• Consider: f(n) = f(n− 1) + f(n− 2), f(1) = f(2) = 1

• “Guess” that f(n) ≤ 2n

24

Inequalities (II)

Goal: Prove by induction that for f(n) = f(n − 1) + f(n − 2),

f(1) = f(2) = 1, f(n) ≤ 2n

• Base case: f(1) = 1 ≤ 21, f(2) = 1 ≤ 22

• Inductive hypothesis: for all j < n, f(j) ≤ 2j

• Inductive step:

f(n) = f(n− 1) + f(n− 2) (11)

≤ 2n−1 + 2n−2 (12)

< 2 ∗ 2n−1 (13)

= 2n (14)

25

Take Away

• Recurrences and Induction are closely related

• Both techniques require that we solve a big problem by using

a solution to a smaller problem

• One technique for solving recurrences is to “guess” the so-

lution and then prove this guess is right by induction

26

Things to think about

• Up to this point, I’ve been supplying you with good “guesses”

for recurrence solutions

• Q: How do we get these guesses?

27

Good Guesses

Following are some good guesses for solutions to recurrences.
logn√
n

n
n logn
n2

n3

2n

28

Todo

• Read Chapter 4 in book (skip proof of the Masters Theorem)

29


