A Note —_

CS 361, Lecture 9

e In most cases, T'(n) = O(1), so we will leave out the ‘“base

Jared Saia " . .
cases” for recurrences when we want just an asymptotic so-

University of New Mexico

lution.
3
utline —— Review
— @) —
e Recurrence Relations
* Recursion Tre§ Method e Up to this point, I've been supplying you with good *“guesses”
e In Class Exercise .
e for recurrence solutions
e Intro to Annihilators

e Q: How do we get these guesses?

1 |
4
Recurrence Relations — ettin ood Guesses (I) —
— — G g G G (D)
Following are some good esses for solutions to recurrences.
e T'(n) =2+T(n/2)+n is an example of a recurrence relation log 7\LNI g an 9 gu ut Y
e A Recurrence Relation is any equation for a function T, where N
T appears on both the left and right sides of the equation. n
e We always want to “solve” these recurrence relation by get- n2|09n
ting an equation for T', where T appears on just the left side ”3
of the equation g‘n

—— Better Techniques (I —— —— Example 1

e Consider the recurrence for the running time of Mergesort:
T(n) =2T(n/2) +n, T(1) = 0O(1)
We will review two new techniques:

n n
e Recursion tree method / \
e Characteristic polynomials /”’2\ /”’2\ n
4 n/4
(note: we will not cover the Master Theorem given in the book wa 4
since the method of annihilators is more powerful) / \ / /\ / \

>

n/8 n/8 n/8
RoRoR®RR RN A NN

Recursion-tree method Example 1 —

| - |

e Each node represents the cost of a single subproblem in a e We can see that each level of the tree sums to n
recursive call e Further the depth of the tree is logn (n/2d = 1 implies that
e First, we sum the costs of the nodes in each level of the tree d =logn])
e Then, we sum the costs of all of the levels e SO we can guess that T'(n) = O(nlogn)
7 | 10
Recursion-tree method — Now Verify!
| — | — y

We've got a “guess” that T'(n) = O(nlogn)

We need to verify that this guess is in fact correct

We verify using induction

In particular, want to verify that T'(n) < cnlogn for all n. > 1

e Used to get a good guess which is then refined and verified
using substitution method

e Best method (usually) for recurrences where a term like
T(n/c) appears on the right hand side of the equality

— Induction — — A guess —
e To show: T'(n) < cnlogn for some constants ¢, for n > 1
e Base Case: T(2) = O(1) by definition. This means T'(2) < k
for some constant k. Thus we can chose c large enough so
that T(2) < k< cx2log?2 is true
e Inductive Hypothesis: For all j <n, T(j) < cjlogj

e Inductive step T(n) = log§71(3/16)in2 (7
i=0
T(n) = 2T(n/2)+n 1) < n? 1_;)(3/16)i (®)
< 2(en/2log(n/2)) +n 2 1 2
= ———mn (9)
= cnlog(n/2)+n 3) 1-(3/16)
= cnlogn—cn+n 4) = 0(n?) (10)
= cnlogn)
(6)
Where the last step holds provided that ¢ > 1
12 15

Example 2 — Now Verify! —

| |

e Let's solve the recurrence T(n) = 3T (n/4) + n2
We've got a “guess” that T(n) = O(n?)

"z We need to verify that this guess is in fact correct

m2
(NM/ ‘m\mwz @162 We verify using induction

In particular, want to verify that T(n) < cn?2, for some con-
o2 (V16P2 (W2 (V62 (VIE)2 (16P2 (162 (n/li)AZ (W16)"2 (316)"2* 2

AR KN N N /N stant c.

13 16

Example 2 Induction ——

| |

To show: T'(n) < en?, for some constant c

Base Case: T'(1) = O(1) by definition. This means T(1) < k
for some constant k. Thus we can chose ¢ large enough so
that T(1) < k < c1? is true

Inductive Hypothesis: For all j <n, T(j) < cj
e Inductive step

2

e We can see that the i-th level of the tree sums to (3/16)'n?.

e Further the depth of the tree is logsn T(n) = 3T(n/4) +n? (1)
e SO we can guess that T(n) = Y12%""1(3/16)in2 < 3(c(n/4)?) +n? (12)
= ¢(3/16)n% +n? (13)

= (c(3/16) + 1)n? (14)

< en? (15)

(16)

Where the last step holds provided that ¢(3/16) + 1 < ¢, which
is true when ¢ > 16/13

14 17

In Class Exercise (I) — Another Tool —

| |

Use the recursion tree method to guess a solution to the recur-
sion T(n) = 2T(n/2) + n2. Give the guess in terms of big-O
notation:

e We'll learn another more powerful method for solving recur-
rences called annihilators

e This will take three to four classes to go over

e Annihilators are similar to “generating functions”

e Q1: What is the total cost of the O-th, 1-st and 2-nd level
of the tree?

e Q2: What is the total cost of the i-th level of the tree for
general 7

e Q3: How many levels of the tree are there?

e Q4: What is the summation giving the total cost of the tree?

e Q5: Give a good upperbound on this summation.

18 21

In Class Exercise (II) —— Intro to Annihilators —

| |

Now prove that this guess works using induction!
e Suppose we are given a sequence of numbers A = (ag,a1,a2,)
e Q1: What is the base case? Prove that it holds. e This might be a sequence like the Fibonacci numbers
e Q2: What is the inductive hypothesis? e Le. A={ag,ay,a2,...) =(T(1),7(2),T(3),---)
e Q3: What is the inductive step?

19 22

Take Away — Annihilator Operators —

| |

e Recursion tree method is good for getting “guesses” for re- We define three basic operations we can perform on this se-
currences where a term like T'(n/c) appears on the right side quence:
of the equality

e Once we get the guess, then need to verify using the substi- 1. Multiply the sequence by a constant: cA = (caq, cai,cap,)
tution method 2. Shift the sequence to the left: LA = (a1,an,a3,---)

e Recursion trees are useful but limited (they can’'t help us get 3. Add two sequences: if A = (ag,a1,ap,---)and B = (bg,by,bp,---),
guesses for recurrences like f(n) = f(n—1) + f(n —2)) then A4 B = (ag + bg,a1 + b1,a0 4+ bo,---)

20 23

— Annihilator Description ———

We first express our recurrence as a sequence T

We use these three operators to “annihilate” T, i.e. make it
all0's

Key rule: can't multiply by the constant 0

We can then determine the solution to the recurrence from
the sequence of operations performed to annihilate T'

24

— Example ——

e Consider the recurrence T'(n) =2T(n—1), T(0) =1

e If we solve for the first few terms of this sequence, we can
see they are (20,2122 23 ...)

e Thus this recurrence becomes the sequence:

T=(20,21,2223 ...y

25

—— Example (I ——

Let's annihilate 7= (29,2122 23 ...)

e Multiplying by a constant ¢ = 2 gets:
27 = (220,221 2422 2423 ...) = (21,2223 2% ...}

e Shifting one place to the left gets LT = (21,2223 24 ...)
e Adding the sequence LT and —2T gives:

LT - 27 = (2! - 21,22 - 22,23 - 23,...) = (0,0,0,---)
e The annihilator of T is thus L — 2

26

TodOo ———

e Start hw2!

27

